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Uber ein Typenproblem')

von CHRISTIAN BLATTER, Basel

1. Einleitung und Ergebnisse

1.1. Es bezeichne S den Halbstreifen
S=z=xz+iy |[2>0, 0 <y <1}
der z-Ebene, und es sei T die Gesamtheit der Funktionen

T (z) = t >0
mit den Eigenschaften @) =2+il) (= )

t(z) >0, T'(x) =1+ t'(x) >0, T(x)eC? (x>0).

Jedes 7T ¢ T ist insbesondere ein Homdomorphismus von Rt = [0, co[ mit
[T(0), oof.

1.2. Fithrt man in S fir ein 7 ¢ T die Aquivalenzrelation («Verheftungs-
vorschrift») t = gmr=T(2) i (2> 0) (1.1)

ein, 8o ist der Faktorraum Sz nach dem Satz tiber implizite Funktionen eine
differenzierbare Mannigfaltigkeit und besitzt sogar fast iiberall eine konforme
Struktur, in den Ausnahmepunkten jedenfalls noch eine Winkelmessung. Damit
laBt sich Sr in natiirlicher Weise zu einer RiEMANNschen Fliche machen?),
die wir wiederum mit S bezeichnen. Diese Fliche ist ersichtlich zweifach
zusammenhingend und besitzt eine Randkomponente, die aus den Segmenten
z=1y (0<y<1l) und z=2 417 (0 <z < 7T(0)) besteht.
Nach dem Uniformisierungssatz gibt es daher einen Kreisring

W=w=u+t+iv| l<|w| <™ oo}, (1.2)

der eineindeutig und konform auf das Innere von Sr bezogen werden kann.
Wir nennen die Funktion 7' hyperbolisch, falls M < oo, und parabolisch, falls
M = co. Die Menge T zerfallt hiernach in zwei disjunkte Teilmengen, die wir
beziehungsweise mit H und P bezeichnen.

1.3. Es stellt sich damit das Problem, fiir ein vorgelegtes 7'e¢ T zu ent-
scheiden, ob es zu H oder zu P gehort. Diese Frage wurde schon verschiedentlich
untersucht?); wir notieren hier den im wesentlichen auf NEVANLINNA [5]
zuriickgehenden

1) Diese Untersuchungen wurden erméglicht durch ein Nachwuchs-Stipendium des Schweize-
rischen Nationalfonds.

%) Vgl. VorLrovyskis [8], ferner PFLUGER [6].

3) Siehe das Literaturverzeichnis am Schlu3 dieser Arbeit.
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Satz 1. Ist 7' e T und divergiert das Integral

)

/‘ 1 dz + d(T (x))
14+ #(x) 14 |logT'(x)]’

soist T eP.

Allgemeine, das heiflt auf jedes 7' ¢ T anwendbare Kriterien fir 7' ¢ H
anzugeben, erscheint schwieriger; auf ein derartiges Kriterium von JENKINS [4]
werden wir zuriickkommen. Insbesondere ist es ein ungeldstes Problem, ob
ein 7' e H mit beschrinktem ¢(z) existiert; Satz 1 zeigt, dal hiezu jedenfalls
ein sehr pathologisches Verhalten von 7" (x) notwendig ist.

1.4. In der vorliegenden Arbeit handelt es sich nun um Kriterien, die sich
zwar nur auf eine wohlbestimmte Teilmenge T T beziehen, dafiir aber
scharf sind, das heiB3t fiir jedes 7 ¢ T effektiv entscheiden, ob T hyperbolisch
oder parabolisch ist. Wir beweisen néimlich

Satz A. Ist T eT und t'(x) von beschrinkter totaler Variation, so ist
T e H, wenn das Integral o P
7

t?(x)

konvergiert, und 7 ¢ P, wenn dieses Integral divergiert.
Hierin ist ein Ergebnis von Vorkovyskiy [8] — WIrTH [9] reichlich ent-
halten?). Als Beispiel diene der

Satz 2. Ist 0 <o <1 und gelten fiir weitere Konstanten «, § die Unglei-

chungen I<a<o<a+f<a+428<1,

T: t(x) = x° + 2®sin (2B) (x> 1) (1.3)
hyperbolisch, wenn ¢ > %, und parabolisch, wenn ¢ < 3.

80 ist

Bewets. Wie man leicht nachrechnet, gilt
¢ (z)| = O (a>2P-2)
wegen o + 28 <1 ist daher ¢ (x) von beschrinkter totaler Variation. Die
Behauptung folgt nun unmittelbar aus Satz A; denn es ist x* = o(x9).

Bemerkung. Das Beispiel (1.3) fillt weder unter das Vergleichskriterium von
Braxc [2], da die «Stérfunktion» z*sin (#f) unbeschrinkt ist, noch unter
das angefiihrte Kriterium von VoLkovYSKI1J-WIRTH; denn

{ (x) = Ba=+P-1 (cos (aF) + o(1))

andert unendlich oft das Vorzeichen.

4) Es wird dort, ceteris paribus, vorausgesetzt, da8 ¢’(z) > 0 monoton fallend nach 0 konvergiert.



200 CHRISTIAN BLATTER
1.5. Zur Herleitung von Satz A betrachten wir die Gesamtheit T* der in
beiden Richtungen zweimal stetig differenzierbaren Homéomorphismen
x=1(v) (v¥=0)
von R} mit R} . Jedes 7 e T* definiert vermoge
z=1(W)~z=t(v+1)+1 (»=0) (1.4)
eine Verheftungsvorschrift fiir den Halbstreifen S. Bezeichnet
v = 1¥(x), 7% € C?,
die zu 7 (») inverse Funktion, so ist offenbar (1. 4) gleichwertig mit der Relation
z=ax~z=1t(*@)+1) +:¢ (x=0), (1.5)
die nunmehr die Gestalt (1.1) besitzt; man bemerkt, dag
T(t*(x) + 1) eT.
Somit legt jedes 7 € T* ein wohlbestimmtes 7' e T, namlich
T (2) = v(v*(2) + 1) (1.6)
und damit vermdége (1.5) ein Ringgebiet Sy im Sinne von 1.2 fest. Da um-

gekehrt jedes Sr, T e T, auf diese Weise erhalten werden kann, ergibt sich
aus dem folgenden

Lemma. Jedes 7T e T 1iBt sich mit Hilfe eines explizit angebbaren v e T*
in der Form (1.6) darstellen.

1.6. Hiernach bedeutet es keine Beschrinkung der Allgemeinheit, wenn wir
nun Kriterien fiir Verheftungsvorschriften der Gestalt (1.4) angeben. Dabei
bezeichnet immer 7' die zu dem betrachteten 7 e T* gehorige Funktion (1.6).
Wir beweisen:

Satz 3. Ist 7 e T* und divergiert das Integral
dv

J= H
(fj(f’(v+n)+ 1e' v+ 7)) dn

(1.7)

soist T eP.
Satz 4. Ist 7 e T* und konvergiert das Integral

;d
soist T eH. o

1.7. Aus Satz 3 und Satz 4 folgt nun durch eine einfache Uberlegung (Hilfs-
satz 5) das folgende scharfe Kriterium:
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Satz B. Ist 7 e T* und gilt fiir ein ¢ > 0:
T+ )

7' (v)

so ist T e¢H, wenn das Integral (1.8) konvergiert, und 7' ¢ P, wenn dieses
Integral divergiert.

>e 0<7<1,v3>0), (1.9)

Bemerkung. Die Bedingung (1.9) ist insbesondere erfiillt, wenn

‘rll (’V)

inf —-> —oco.
=0T ()

Da die in Satz B zur Konkurrenz zugelassenen Funktionen 7 e T* einer
recht schwachen Bedingung geniigen miissen, 1Bt sich Satz A mit Hilfe
eines ziemlich groben Ubertragungsverfahrens aus Satz B gewinnen; dabei
wird die Darstellung eines zu vorgegebenem 7' e T gehorigen 7 e T* wesent-
lich benutzt.

1.8. Die den Beweis von Satz 4 vorbereitenden Hilfssitze liefern ferner den

Satz . Ist 7e T* und gilt
® 1
& =
=0T (v + J)
auf einer Menge 4 c [0, 1] positiven Mafles, soist T e H.
Dies ist eine andere Formulierung des Kriteriums von JENKINS [4], das

anstelle von 7(v) die Iterierten 7™ der Funktion 7T (x) benutzt. Aus Satz 5
folgt insbesondere

<C (ved) (1.10)

Satz 6. Ist 7 ¢ T und
t'(x) =2e>0 (2=, (1.11)
soist T eH.

Beweis. Nach dem Lemma gibt es ein 7 e T*, so daf (1.6) gilt. Ersetzt man
in (1.6) xz wieder durch 7 (»), so folgt

T@w) =70+ 1)
TEE)TE) =20+ 1),

und hieraus

wegen (1.11) daher

T,(” + 1) o
= TEe) =1t b >w).
Die Reihe (1.10) konvergiert somit gleichmiBig in [0, 1].
Satz 6 enthilt reichlich ein Kriterium von Braxc [1].
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2. Beweis der Sitze 1 und 3

2.1. Hilfssatz 1 (NEvaNLINNA [5]). Sei R ein Ringgebiet®) mit lokalen kon-
formen Koordinaten z = x -4 ¢y, und es sei die Zyklenschar I' = {y,}<,<co
schlicht und nichttrivial in R eingebettet. Die v,, 0 < <oo, seien so auf
einen Parameter 7 bezogen,

Wwiz=2x@n) +iy,n) O<7<1),

dafB die Funktionaldeterminante
d(x, y)

(v, 7)
fast iiberall existiert und positiv ist. Dann gilt fiir den Modul M von R :

M >

(2.1)

2.2. Beweis. Der Ausdruck (2.1) ist ers1chthch gegen Anderung der lokalen
konformen Koordinaten 2z mvarlant Wir konnen daher annehmen, daB 2z
die Fliche R uniformisiert: Das Gebiet

= {z| 0 < Rz < M}
der z-Ebene sei universelle Uberlagerung von R und
T z—>2+1
eine erzeugende Decktransformation. Dann gilt

1 <(y{|dz|)2= (f LI l/_dn)
0

0z
on

0z

an

_ZIQ fAdn(0<v<oo)

el

und somit 1

/

Hieraus folgt durch Integration

1
<(!Ad17 (0<v<o0).
0z
an

2d17
a4

;fobjl'ddndv.

5) Unter einem Ringgebiet verstehen wir hier und im folgenden immer eine RIEMANNsche
Fléache, die einem Kreisring (1.2) konform équivalent ist.
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Anderseits ist trivialerweise o1
JJAdndy <M ;
00

denn die linke Seite dieser Ungleichung stellt gerade den Flacheninhalt des von
I" bedeckten Teils der Fliche R = By/n dar.

2.3. Beweis von Satz 1. Die Kurvenschar 2 = {0;}y<s<o0 »
oprz=E&+nté) +ip (0<n <)

in S geniigt, als Kurvenschar in Sz aufgefalt, den Voraussetzungen von Hilfs-
satz 1: X ist die Gesamtheit der Verbindungsstrecken dquivalenter Punkte
in 8. Nun gilt

2
A_M=1+nt’(£), o =14 (&) ;

I an
somit folgt o
dé _ v (&) o dé
il I BT (R ) A T
f(l +EEO) ey

0 0
Erweitert man hier den Integranden rechter Hand mit

1+ 7)) (1 + |log T"(5)]) ,

so ergibt sich

FT(E) —1 1+ |log T'(&)] 1 AT dE o

M>o T +1°  logT'(,) " 1+8E 1+ |logT'(&)] "

Man iiberzeugt sich leicht davon, dafl fiir ein geeignetes ¢ > 1 die Relation

1 _p—11+|logp <0

C “p+1 logp
gilt. Wendet man dies mit p = 7" (£) auf (2.2) an, so folgt insbesondere

(0 < p <o0)

1 1 dE+a@e)
M>06[1+z2(5) T+ |log 7' ()] °

2.4. Beweis von Satz 3. Die Kurvenschar I' = {§,} ocyco s
i z=t0+n)+in (0<9<])

in 8 geniigt, als Kurvenschar in Sy aufgefa8t, den Voraussetzungen von Hilfs-
satz 1: Jedes p, verbindet zwei #quivalente Punkte in S§. Ferner folgt aus
(v, + n) + ¢9, = T(vp + 73) + i, zunéchst 7, = 7, und dann wegen der
Monotonie von z(¥): v, = ,.
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Nun gilt

2

e ST ERE

o(x, y)
A —— . / 5
(v +7) o

(v, n)

woraus durch Einsetzen in (2.1) die Behauptung unmittelbar folgt.

3. Beweis der Siitze 4 und 5

3.1. Hilfssatz 2. Sind u,(z) und , (z) fiir x > 0 definiert und C*, existieren
ferner die Integrale

o0

}ou;z(x)dx (G=0,1), [(u(z) — u(x))%dx,
0 0

so gibt es in dem Halbstreifen S eine Funktion «(z,y)e C' mit endlichem
Dirichletintegral, die auf den Halbgeraden z=x(x>0) und z=2 +¢(z > 0)
beziehungsweise die Randwerte u,(x) und %, () annimmt.

Beweis. Setzt man
u(@,y) = (1 —y)u(@) +yu(xr) (z¢9),
so erfillt »(z, y) die Randbedingungen und ist C!; ferner gilt

uy + up = (1 — yPug® + y2u® + (u, — w)

und somit o w

D) =} [ (a2 + u)dz + [ (u — wg)dz <oo.
0 0

3.2. Hilfssatz 3 (HuBERr [3]). Sei R ein Ringgebiet und w ein stiickweise
stetiges geschlossenes, das heillt lokal integrierbares Differential auf R mit der
Periode 1 in bezug auf einen erzeugenden Zyklus. Dann gilt fiir den Modul M

von R :
M<L||olP,

wo || w ||* das Dirichletintegral von w bezeichnet.

Beweis. Wir konnen wiederum annehmen, daf3 R auf einen uniformisierenden
Parameter z bezogen ist: R = Bpy/n; dabei haben By und = die in 2.2
erklirte Bedeutung. Ist nun

o = Pdx 4+ Qdy (z € Bu) ,

so folgt nach unserer Voraussetzung iiber w :

1

1 1
1<(OIQdy)2<OfQ?dy <0§(P2+Q2)dy (0<z< M)
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und somit durch Integration
M1
M <6f0j (P2 + @)dydx = ||w][*.

3.3. Hilfssatz 4. Es sei 7 ¢ T* und 7 die zugehérige Funktion (1.6). Gibt
es dann eine meBbare Funktion ¢(») (v > 0),

Jotidy =20),
fir die die Integrale

(P0) . [ee-1 ‘
B[T'(?’) e if 7' (v) w, (3.1)
j'o((D(v) —Pw —1) — 1)27' (v)dv (3.2)
1

konvergieren, so ist 7' e H.

Bewess.

3.4. Nach Voraussetzung ist ¢ (v) insbesondere lokal quadratisch integrier-
bar. Es gibt daher eine Folge von trigonometrischen Polynomen

ko(n)
P,(v)= X o sin(kmy) (n=0,1,...),
k=1
so daf} die GroBen
n+1
on = [ (p(v) — P,()*dv (3.3)
den Ungleichungen
! 1 1 i
anglflg;(-}_g(f (V)+7G)—><—§7{ (n=20,1,...) (3.4)

geniigen. Definieren wir nun die Funktion @(v) (v > 0) durch
o) =P,») m<rv<n+1;n=0,1,...), (3.5)
so ist ersichtlich @(v) e C (v = 0).

Wir zeigen ferner: Die Integrale (3.1) und (3.2) konvergieren auch mit
F(v), ®(») an Stelle von ¢(v), D(»).

3.5. Beweis. Nach (3.3) und (3.4) gilt

n+1
— P 2 1 1
f((P(V)z’(v) )? o e, max <o (3.6)

n<r<nt+1 T (v)
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Aus (3.5) folgt jetzt wegen (a—-— b)2 < 2 (a®+ b?) und (3.6):
n+1

n+41
() 242(r) 2(p(3) — P, ())?
f 7o) <f w +f o

n n
nt1

¢*(v) —
<2f ) dv + —— 2n — (n=20,1,...).
n
Dies beweist die Konvergenz des ersten Integrals (3.1) beziiglich §(»); analog
schlieBt man fiir das zweite.
Weiter gilt fiir die Funktion

=(@0) —Pp—1)-1) —(B0) — B —1)—1) = f (P() — @ () dv

und n <v <n -+ 1 die Abschitzung "
» n n+1
() < [ 1(99(”) —PM)idv < ! 1(99(1’) — P, ()Pdv + § (p(v) — P,(v))* dv

= Qp—1 1 On -
Hieraus folgt mit (3.4)

n+1
[ 280)7 () dv < 2(on-1 + 0n) max () <2 ( L —17;) ,
n n<y<n+1 2 2

n+1

j'262 )T (v)dv < n=1,...). (3.7)

3
on—1
Mit (3.7) ergibt sich nunmehr wie oben
n+l

j' (P(r)—B(v—1)—1)27'(»)dy gnf§(¢(v) —P(v—1)—1)27'(v)dy —|—nf§62(v)r’(v) dv

<”}r12“((b(v) — D(v— 1) — D2’ (v)dv + (n=1,...)

2n -1
und damit die Konvergenz des Integrals (3.2) beziiglich @ ().

3.6. Wir konnen daher im folgenden 0.B.d.A. ¢(») e C voraussetzen. Wir
zeigen zunichst: Die Funktionen %y (z) und , (),

w@®) = OB (» = 0)
1 0 <y <1) (3.8)
U (T (v)) = { dr—-—1)+1 (r>=1)),

geniigen den Voraussetzungen von Hilfssatz 2.

Beweis. Schreibt man die Gleichungen (3.8) mit Hilfe von » = 7*(x) auf
um, so ergibt sich
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U(r) = D(r*(2)) (x > 0)
i) — |1 (0 <z < (1) (3.9)
Tl o@*(@) — D) 4+ 1 (z>=1()).
Beide Funktionen sind ersichtlich fiir 2 > 0 definiert und C!. Man hat ferner
0 , . o , . c0 . 1 ,
bfuo2(x)da: — (‘)f @ (r* () T*2(x)dx = ! @2 (») ) ' (v)dy
?u?(x)dw =1{Z¢2(T*(x) — 1)t*2(x)dz = f(pz(v — 1)?—21(7)*;’ (v)dv ,

- ]

J (@) — w@)de = [ @@+ (@) - 9@ (@) — 1) - 1)de

7(1)

= ;F(di(v) — @y — 1) — )27 (v)dv.

3.7. Nach Hilfssatz 2 gibt es in § eine Funktion «(z, ) ¢ C* mit endlichem
Dirichletintegral, die auf den Halbgeraden z =2 (x >0) und z= 2 + ¢
(x = 0) beziehungsweise die Randwerte (3.9) annimmt. Aus den zu (3.9)
dquivalenten Gleichungen (3.8) folgt insbesondere

@@+ 1) =uGE)+1 (=20). (3.10)

Mit Riicksicht auf (1.4) induziert daher u(z,y) in natiirlicher Weise eine
stetige und stiickweise stetig differenzierbare Abbildung

Q: ST-—> R/Z
durch die Festsetzung
Qx,y)y=u(x,y) (modl) (ze8). (3.11)

3.8. Das Differential
w=d8Q

auf Sy ist hiernach geschlossen und stiickweise stetig. Wegen (3.11) gilt im
Innern von §, aufgefal3t als Gebiet auf Sr:
w=4du (zeint S) . (3.12)

Hieraus folgt wegen (3.10) und der Stetigkeit von £2, daBl w auf Sr die Periode 1
besitzt. Somit geniigt w den Voraussetzungen von Hilfssatz 3.
Nun ist Sy — int § eine Nullmenge; aus (3.12) folgt daher weiter

w][* = D(u) .
Wegen D(u) < oo ergibt sich hieraus mit Hilfssatz 3 die Behauptung.

3.9. Beweisvon Satz 4. Konvergiert das Integral (1. 8),so geniigt ¢ (v) =1 (v =0)
den Voraussetzungen von Hilfssatz 4.
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3.10. Beweis von Satz 5. Es sei
A={p>=0|v— [p]ed}
und x(v) die charakteristische Funktion von A4; y(») ist fiir » > 0 periodisch

mit der Periode 1. Setzt man dann

1
@) = TZTX(V) (» >0),

so geniigt @ (v) den Voraussetzungen von Hilfssatz 4.

Beweis. Aus der Mef3barkeit von 4 folgt diejenige von ¢ (v). Ferner gilt nach
Voraussetzung des Satzes fiir positive ganze N :

F 2 0) L [0 1 v= )
Fo) AL SN P1C
/pwo” |APffmd” Lﬂhif?wd”
0 0 7
N1 ( ) FoN-1
1 3 [x(v + 1 o
ks L RO e K
C
STAT

|
Dies beweist wegen ¢(v) = ¢(» — 1) die Konvergenz der Integrale (3.1).
Endlich gilt

D(v) — Dy — 1) :il(p(v)dv =— i rdv=1(»>=1);

(3.2) konvergiert somit trivialerweise.

4. Beweis von Satz B

4.1. Wegen Satz 4 bedarf nur die zweite Behauptung von Satz B eines
Beweises, und zwar geniigt es wegen Satz 3, zu zeigen, dafl unter der ange-
gebenen Voraussetzung die Divergenz des Integrals (1.8) diejenige des Inte-
grals (1.7) nach sich zieht. Dies leistet nun der folgende Hilfssatz 5. Wir
bemerken dazu, daBl wir in (1.9) insbesondere 0 < &< 1 annehmen konnen.

4.2. Hilfssatz 5. Es sei 7 e T* und das Integral (1.7) konvergent. Ferner
gelte fiir ein ¢, 0 <& <1, die Relation

' (v + %)
o ze 0<n<1,2>0). (4.1)

Dann konvergiert auch das Integral (1.8).
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4.3. Beweis. Wegen (4.1) ist
, 1
T+ 1) + m
so daf fir beliebiges N > 0 folgt

<~2—(r’(v +1)+ T,:v)),

N

N
dy dy
J = | 5 = 0 — . (4.2)
be(,rl(v_l__n) fT( + 1) 4 1/2'(»)

=
+ (v +n)dy ¥
Wie man sich leicht iiberlegt, geniigt 7'(v) wenigstens einer der folgenden
Bedingungen:

(I) Es gibt ein », > 0 mit
YO Ze (V=)
(II) Es gibt ein v, > 0 mit

1
7' (v) <? (v = v,) .

(III) Es gibt eine unendliche Folge paarweise fremder Intervalle
[, pe]l (B=1,2,...)

mit 1
r’(lk)z—;, () =¢ (k=1,2,...), (4.3)
—i—}r'(w)}e (A <y s k=12,...). (4.4)
4.4. Im Fall (I) gilt
1

und somit fir N >, :
N N N+1

dv < dv . . dv
>[1"(7}—}»1)4—1/‘;’(1}) /f(1+_1;)1/(v+1)—1+82 ()
v, v, & v+1
Zusammen mit (4.2) folgt hieraus die Behauptung.
Im Fall (II) gilt 1

1
7' (1) <;<m (v, p =)

und somit fir N > »,:

N ’ N P . N
v v € ,
f‘fl(”‘f— D+ 177 0) >f(_1?+ s “1+ezf’ () dv
vy vy 2 vy

= o ) = 7w) .

14 CMH vol. 37
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Hier ist aber die linke Seite nach (4.2) und Voraussetzung beschrinkt, wihrend
anderseits 7(N)-— oo (N —oc0) gilt. Somit kann Fall (IT) nicht eintreten.
Im Fall (IIT) endlich folgt aus (4.1) und (4.3):

”k>lk+2 (k=1,2,...)-

Damit ergibt sich wegen (4.4)

Ap+1 Ak+1
dv dv €

TeF DT Pm o | T oz ®=hE )

o Xy € €
Hieraus folgt aber wiederum ein Widerspruch zu der Tatsache, dafl das In-
tegral rechter Hand in (4.2) beschrankt ist. Damit ist auch Fall (III) aus-

geschlossen.

b. Beweis des Lemmas
5.1. Es sei T €T, und es bezeichne T"(z) (n=0,1,...) die n-malige
Anwendung von 7T auf x. Die im iibrigen willkiirliche Funktion

g(t) (0 <t < 1)
geniige den Relationen
9'#) >0, g()eC* (0<t<]);

9(0)=0,9(0)=1, ¢"(0)=0; (5.1)
g(1) =T(0), ¢'(1) = T'(0), g"(1) = T7(0) . (5.2)

Mit diesen Festsetzungen definieren wir
tr(v) = T (g(v — [])) (» > 0); (5.3)

man iiberlegt sich, dafl der Ausdruck rechter Hand fiir jedes » > 0 erklart ist.
Wegen [v + 1] = [»] + 1 folgt aus (5.3)

e (v + 1) = T"(g(r — ]) (v > 0)
und somit durch nochmalige Anwendung von (5.3) die Rekursion
v+ 1)=TEr(») (¥=0). (5.4)
b.3. Wir zeigen zundchst: 77 e T*.
Bewets. T* enthilt nach 1.5 genau die Funktionen

z=1t( (»=0)
mit den Eigenschaften

7(0) = 0, lim t(») =o0; T'(») >0, T(») e C? (v = 0).
>0
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Wir werden diese Eigenschaften bei 77(v) in der umgekehrten Reihenfolge
nachweisen.

Die in der Definition (5.3) von zr(v) auftretenden Funktionen 7'(z), g(t)
und [»] sind C2, ausgenommen die letzte fiir die Uberginge »tn(n =1, 2,...).
Zum Beweis von 77 e (? geniigt es daher, diese Ubergiinge zu betrachten;
wegen (5.4) kann man sich dabei auf »}1 beschrinken. Nach (5.3) gilt fir
0<y<1;:

() =90 O0<r<I); (5.5)
somit ergibt sich wegen (5.2):
77(l — 0) =T(0), 77 (1 — 0) = T"(0), 7p(1—0) =T"(0). (5.6)

Anderseits liefert (5.3) fiir 1 < v < 2 nacheinander

wW) =T (gl — 1)
0) =T (gl — 1) ¢'(v — 1) (1<r<2).

Tp() =T"(g» — 1)) g2(» — 1) + T'(g(v — 1)) ¢"(» — 1)
Setzt man in diesen drei Gleichungen » = 1, so folgt mit (5.1):
r(1) = T'(0), v7(1) = 1"(0), vz(1) = T7(0) .

Der Vergleich dieser Zeile mit (5.6) beweist nach den obigen Bemerkungen
Tp e C2.

b.4. Aus (5.4) ergibt sich nun
Tplv + 1) = T' ez () 7o) (v > 0) (5.7)

und hieraus wegen 7"(x) >0 (x >0) und ¢'(t) >0 (0 <t < 1) mit voll-
standiger Induktion
Tp(») >0 (»>=0).

Dies zeigt ferner die Existenz des

lim tp(v) = 2, < oo.
>0

Aus 2z, <oo ergibe sich aber wegen (5.4): z, = T (x,), gegen die Voraus-
setzung 7'(xz) > z(z > 0). Endlich folgt aus (5.5) und (5.1): tp(0) = 0.

b.5. Insbesondere existiert nun die zu 7p(») inverse Funktion
v = 1h(x), Tp e CR,
Fiihrt man dies in (5.4) ein, so erhilt man in der Tat

T(x) =1r@p(x) + 1), 1re T*.
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6. Beweis von Satz A

6.1. Hilfssatz 6. Es sei 7' ¢ T und ¢’ (x) von beschrinkter totaler Variation.
Gehort dann 7 e T* zu 7' im Sinne des Lemmas, so gibt es ein ¢, 0 <e <1,

mit ,
< (v + n)
7' (v)
6.2. Beweis. Nach (5.7) gilt

Yot T Ehtn—1) Te+n—1)
7' (v) T (v(v — 1)) T'(v — 1)

1
<— 0<7<1,v>0). (6.1)

O<n<1l,v=21);

somit geniigt die Funktion

K,(v) = log i(%—(-—i:)-n—) (6.2)

T'(x(v +n — 1)

der Rekursion

K,(v) = log A CICE=Y) + K,(v — 1).
Dies liefert
ety 53,, ar
(x)
1K,0) - Ky = ) = | [ ]\f} v>1)
'r v—l (v—1
und damit w(v-41m)

| K,(v + n) — K,(») | <f |T
()
6.3. Nun existiert nach Voraussetzung iiber ¢'(x) der
lim ¢ (x) = a,
T—»0

und zwar ist @ > 0, wenn anders

t(x) = £(0) +yt'(§)d5>o (z = 0)

gelten soll. Daher gibt es ein », > 0 mit
T'(z)=1+1t(x) =2} (x>7(n);

und aus (6.3) folgt weiter

| Ky (v + m) — j‘ 11" (2) | do < z“T"(x)mx (r 20

() (¥,)

Hier hat der Ausdruck rechter Hand nach Voraussetzung einen endlichen
Wert ¢, > 0; somit ergibt sich

| K,(v +n) | <[ K,0) | + ¢ (v =)
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und daher insbesondere fiir », <o’ <9, +1:

| K,(v +n)| < max llli',,(v)l—l—cl::c2 (n=0,1,...). (6.4)

Y, <SPY,

Da sich nun jedes » > », in der Form
v=1v +n, <Y <r+1, ne {0,1,...}
darstellen 1i8t, folgt aus (6.4)
| K,(») | <6 (v =)
und damit nach Definition (6.2) von K; (») die Behauptung (6.1).

6.4. Bewetis von Satz A. Es gehore v e T* zu 7 im Sinne des Lemmas. Nach
Hilfssatz 6 geniigt 7(») insbesondere der Voraussetzung von Satz B. Nun gilt
mit x = 7v(») und nach (5.4):

t(x)=T(x) —x=7@v + 1) — () =§lr’(v—}—n)dn;

wir erhalten daher

0

f T’ (v)dy :f[ 7’ (v) ]2 dv
#a) (IT v + n)dn)® flr’ o +myn ]

0 0

Durch nochmalige Anwendung von Hilfssatz 6 folgt, dal das letzte Integral
gleichzeitig mit dem Integral (1.8) von Satz B konvergiert, beziehungsweise
divergiert. Damit ist Satz A bewiesen.
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