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tîber ein Typenproblem1)
von Chbistian Blatter, Basel

1. Einleitung und Ergebnisse

1.1. Es bezeichne S den Halbstreifen

S {z x + iy | x > 0, 0 < y < 1}

der 2-Ebene, und es sei T die Gesamtheit der Funktionen

T(x) x + t(x) (x ^ 0)
mit den Eigenschaften

t(x)>0, T'(x) 1 + t'(x)>0, T(x)eC* (x^O).
Jedes T e T ist insbesondere ein Homôomorphismus von R+ [0, oo[ mit
[T(0),oo[.

1.2. Fuhrt man in S fur ein T € T die Âquivalenzrelation («Verheftungs-
vorschrift») m _x; ' z — x~z — T(x) + i (x > 0) (1.1)

ein, so ist der Faktorraum St nach dem Satz uber implizite Funktionen eine
differenzierbare Mannigfaltigkeit und besitzt sogar fast ûberall eine konforme
Struktur, in den Ausnahmepunkten jedenfalls noch eine Winkelmessung. Damit
lâfit sich St in natûrlicher Weise zu einer RiEMANNschen Flâche machen2),
die wir wiederum mit St bezeichnen. Dièse Flâche ist ersichtlich zweifach
zusammenhângend und besitzt eine Randkomponente, die aus den Segmenten
z iy (0 < y < 1) und z x + i (0 < x < ^(0)) besteht.

Nach dem Uniformisierungssatz gibt es daher einen Kreisring

W {w u + iv | 1 < \w\ <e27™ <oo}, (1.2)

der eineindeutig und konform auf das Innere von St bezogen werden kann.
Wir nennen die Funktion T hyperbolisch, falls M < oo, und parabolisch, falls
M oo. Die Menge T zerfâllt hiernach in zwei disjunkte Teilmengen, die wir
beziehungsweise mit H und P bezeichnen.

1.3. Es stellt sich damit das Problem, fur ein vorgelegtes T e T zu ent-
scheiden, ob es zu H oder zu P gehôrt. Dièse Frage wurde schon verschiedentlich
untersucht3); wir notieren hier den im wesentlichen auf Nevanlinna [5]
zurtickgehenden

x) Dièse Untersuehungen wurden ermôglicht durch ein Nachwuchs-Stipendium des Schweize-
rischen Nationalfonds.

*) Vgl. Volkovyskij [8], ferner Pfluger [6].
•) Siehe das Literaturverzeichnis am Schluû dieser Arbeit.
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Satz 1. Ist T e T und divergiert das Intégral

1 dx + d(T(x))

soist Te P. °

Allgemeine, das heiBt auf jedes T e T anwendbare Kriterien fur Te H
anzugeben, erscheint schwieriger; auf ein derartiges Kriterium von Jenkins [4]
werden wir zuruckkommen. Insbesondere ist es ein ungelostes Problem, ob
ein T e H mit beschr&nktem t(x) existiert; Satz 1 zeigt, daB hiezu jedenfalls
ein sehr pathologisehes Verhalten von T' (x) notwendig ist.

1,4. In der vorliegenden Arbeit handelt es sieh nun um Kriterien, die sich

zwar nur auf eine wohlbestimmte Teilmenge T <zT beziehen, dafiïr aber
scharf sind, das heiBt fur jedes T ef effektiv entscheiden, ob T hyperbolisch
oder parabolisch ist. Wir beweisen nâmlich

Satz A. Ist T e T und t' (x) von beschrânkter totaler Variation, so ist
T eH, wenn das Intégral »

f dx
J *{x)
o

konvergiert, und TeP, wenn dièses Intégral divergiert.
Hierin ist ein Ergebnis von Volkovyskij [8] — Wirth [9] reichlich ent-

halten4). Als Beispiel diene der

Satz 2. Ist 0 < a < 1 und gelten fur weitere Konstanten oc, /? die Unglei-
chungen

0 < ^ < cr < ^ + ^ <^ + 2^ < 1

80 1St
T: t{x) xa + zasin {xP) (x > 1) (1.3)

hyperbolisch, wenn a > J, und parabolisch, wenn a ^ \.
Beweis. Wie man leicht nachrechnet, gilt

\f(x)\ O(a^+2^-2)

wegen <x + 2/? < 1 ist daher t'(x) von beschrânkter totaler Variation. Die
Behauptung folgt nun unmittelbar aus Satz A; denn es ist x01- o(xa).

Bemerkung. Das Beispiel (1.3) fallt weder unter das Vergleichskriterium von
Blakc [2], da die «Stôrfunktion» x01 sin (xP) unbeschrânkt ist, noch unter
das angefuhrte Kriterium von Volkovyskij-Wibth; denn

t'(x) pxv+P-1 (cos (xP) + o(l))
ândert unendlich oft das Vorzeichen.

4) Es wird dort, ceteris paribus, vorausgesetzt, dafi t' (x) > 0 monoton fallend nach 0 konvergiert.
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1.5. Zur Herleitung von Satz A betrachten wir die Gesamtheit 7"* der in
beiden Richtungen zweimal stetig differenzierbaren Homoomorphismen

x r(v) (v^O)
von R+ mit R+. Jedes t € T* definiert vermoge

eine Verheftungsvorschrift fur den Haibstreifen S. Bezeiehnet

v r*(x), r* eC2,

die zu r(v) inverse Funktion, so ist offenbar (1.4) gleichwertig mit der Relation

die nunmehr die Gestalt (1.1) besitzt; man bemerkt, daB

Somit legt jedes r e 7"* ein wohlbestimmtes T e T, nâmlich

T(x) r(r*(aî) + 1) (1.6)

und damit vermoge (1.5) ein Ringgebiet St im Sinne von 1.2 fest. DaB um-
gekehrt jedes St, T e T, auf dièse Weise erhalten werden kann, ergibt sich

aus dem folgenden

Lemma. Jedes T e T lâBt sich mit Hilfe eines explizit angebbaren r e 7"*

in der Form (1.6) darstellen.

1.6. Hiernaeh bedeutet es keine Beschrânkung der AUgemeinheit, wenn wir
nun Kriterien fur Verheffcungsvorschriften der Gestalt (1.4) angeben. Dabei
bezeiehnet immer T die zu dem betrachteten r e T* gehorige Funktion (1.6).
Wir beweisen :

Satz 3. Ist r € T* und divergiert das Intégral

J=f— ^ 7' (1-7)

soist Te P. ° °

4. Ist t c 7* und konvergiert das Intégral

soist TeH. °

1.7. Aus Satz 3 und Satz 4 folgt nun durch eine einfache Ùberlegung (Hilfs-
satz 5) das folgende scharfe Kriterium :
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Satz B. Ist r e T* und gilt fur ein e > 0 :

t> + rj) ^
riv)

(0 <?7 < 1, v > 0) (1.9)

so ist T çH, wenn das Intégral (1.8) konvergiert, und T eP, wenn dièses

Intégral divergiert.

Bemerkung. Die Bedingung (1.9) ist insbesondere erfùllt, wenn

inf > — oo

Da die in Satz B zur Konkurrenz zugelassenen Funktionen r e F* einer
recht schwaehen Bedingung geniigen miissen, làBt sich Satz A mit Hilfe
eines ziemlich groben Ûbertragungsverfahrens aus Satz B gewinnen; dabei
wird die Darstellung eines zu vorgegebenem T e F gehôrigen r e F* wesent-
lich benutzt.

1.8. Die den Beweis von Satz 4 vorbereitenden Hilfssâtze liefern ferner den

Satz 5. Ist r e F* und gilt

Z „ \ <C (veA) (1.10)*-0T> + J)

auf einer Menge A c [0, 1] positiven MaBes, so ist T eH.
Dies ist eine andere Formulierung des Kriteriums von Jekkins [4], das

anstelle von r(^) die Iterierten Tn der Funktion T(x) benutzt. Aus Satz 5

folgt insbesondere

Satz 6. Ist T c F und

soist Te A/.

Beweis. Nach dem Lemma gibt es ein r c F*, so daB (1.6) gilt. Ersetzt man
in (1.6) x wieder durch r(v), so folgt

T(r(v))=r(v+1)
und meraus

T'{t(v))t'{v)=t'{v+\),
wegen (1.11) daher

Die Reihe (1.10) konvergiert somit gleichmâBig in [0, 1].
Satz 6 enthâlt reichlich ein Kriterium von Blanc [1].
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2. Beweis der Sâtze 1 und 3

2.1. Hilîssatz 1 (Nevanlinna [5]). Sei R ein Ringgebiet5) mit lokalen kon-
formen Koordinaten z x + iy, und es sei die Zyklenschar F {yv}o<v<ao
schUcht und nichttrivial in R eingebettet. Die yv, 0 < v <oo, seien so auf
einen Parameter rj bezogen,

yv : z x(v, rj) + iy(v, rj)

daB die Funktionaldeterminante

(0 < r\ < 1)

A d(x,y)
d(v,rj)

fast ûberall existiert und positiv ist. Dann gilt fur den Modul M von R :

(2.1)

2.2. Beweis. Der Ausdruck (2.1) ist ersichtlich gegen Ânderung der lokalen
konformen Koordinaten z invariant. Wir kônnen daher annehmen, daB z
die Flâehe R uniformisiert : Das Gebiet

BM={z\0<9iz<M}
der 2-Ebene sei universelle Ûberlagerung von R und

n : z->z + i
eine erzeugende Decktransformation. Dann gilt

V <CX))

und somit

dz dr,

Hieraus folgt durch Intégration

A drjdv

B) Unter einem Ringgebiet verstehen wir hier und ira folgenden humer eine KiEMANNsche
Flâehe, die einem Kreisring (1.2) konform âquivalent ist.
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Anderseits ist trivialerweise
J$ A drjdv < M ;

o o

denn die linke Seite dieser Ungleichung stellt gerade den Flâcheninhalt des von
F bedeckten Teils der Mâche R Bu/n dar.

2.3. Beweis von Satz 1. Die Kurvenschar Z

ir] (0

in S geniigt, als Kurvenschar in St aufgefaBt, den Voraussetzungen von Hilfs-
satz 1 : S ist die Gesamtheit der Verbindungsstrecken âquivalenter Punkte
in S. Nun gilt dz

dr,

somit folgt

M >

i +

log(l+*'(£))

0 0

Erweitert man hier den Integranden rechter Hand mit

so ergibt sich

^j T'd) + 1
'

log T'(£)
'

1 + t*(Ç)
'

1 + |log T'(S)\ ' y ' >

o

Man ùberzeugt sich leicht davon, daB fur ein geeignetes G > 1 die Relation

l p-l l + |logp| 0 (0<p<oo)

gilt. Wendet man dies mit p T'(g) auf (2.2) an, so folgt insbesondere

00

o

2.4. Beweis von Satz 3. Die Kurvenschar F {yv} q<v<o0,

yy: z r(v + r]) + ir) (0 < rj < 1)

in /S geniigt, als Kurvenschar in St aufgefaBt, den Voraussetzungen von Hilfs-
satz 1: Jedes yv verbindet zwei âquivalente Punkte in S. Ferner folgt aus

TK + %) + *% T(V2 + V2) + iy* zunâchst r\x rj2 und dann wegen der
Monotonie von r(v) : vx v2.
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Nun gilt 2/ \ -3 9& d(x,y) dz 2

^=-^7—nr T'(v + ^), -£- =t/2(^ + ^) + 1,
o(v,r]) orj '

woraus durch Einsetzen in (2.1) die Behauptung unmittelbar folgt.

3. Beweis der Satze 4 und 5

3.1. Hilfssatz 2. Sind uo(x) und ux(x) fur x > 0 definiert und C1, existieren
ferner die Intégrale

J ui2(x)dx (i 0, 1), J(^i(#) — ^0(a:))2da;,

so gibt es in dem Halbstreifen S eine Funktion u(xyy) € C1 mit endlichem
Diriehletintegral, die auf den Halbgeraden z x (x ^ 0) und z x-\-i(x^0)
beziehungsweise die Randwerte uo(x) und ux{x) annimmt.

Beweis. Setzt man

^(#> y) (i - y) ^o(^) + »%(«) (« c S),

so erfûllt u(x,y) die Randbedingungen und ist C1; ferner gilt

«4 + *J (1 - 2/)2^2 + 2/2%2 + («i - ^o)2

und somit ^ «
^>N * J (u'o2 + v<ï)dx + J K - uofdx <oo

0 0

3.2. Hilfssatz 3 (Huber [3]). Sei R ein Ringgebiet und w ein sttickweise
stetiges geschlossenes, das heiBt lokal integrierbares Differential auf R mit der
Période 1 in bezug auf einen erzeugenden Zyklus. Dann gilt fur den Modul M
von R :

if <||o>||«,

wo II o) ||2 das Diriehletintegral von co bezeichnet.

Beweis. Wir kônnen wiederum annehmen, daB R auf einen uniformisierenden
Parameter z bezogen ist : R Bm/m ; dabei haben Bm und n die in 2.2
erklârte Bedeutung. Ist nun

co Pdx + Qdy (z e BM),

so folgt nach unserer Voraussetzung liber œ :

(0<x<M)
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und somit durch Intégration
Ml

M^S$(P* + Q*)dydx \\co\\*.
0 0

3.3. Hilfssatz 4. Es sei r e F* und T die zugehorige Funktion (1.6). Gibt
es dann eine meBbare Funktion cp{v) (v > 0),

V

J (p(v)dv 0(v)
0

fur die die Intégrale

J{0(v) - 0{v - 1) - l)2r'(v)dv (3.2)
i

konvergieren, so ist T e H.

Beweis.

3.4. Nach Voraussetzung ist <p (v) insbesondere lokal quadratisch integrier-
bar. Es gibt daher eine Folge von trigonometrischen Polynomen

Un)
Pn(v) E 4W) sin (hnv) (w 0, 1,

so daB die GrôBen

Qn
T(<P(») ~ Pn(v))2dv (3.3)
n

den Ungleichungen

Qn max (T'W+-7J_\<ir (n 0,l,...) (3.4)

gentigen. Definieren wir nun die Funktion îp(v) (v > 0) dureh

V(v) Pn(v) (»<v<n+l; w 0, 1,...), (3.5)

so ist ersichtlich ç> (v) e G (v ^ 0).

Wir zeigen ferner: Die Intégrale (3.1) und (3.2) konvergieren auch mit
<p(v), 0(v) an Stelle von (p(v), &(v).

3.5. Beweis. Nach (3.3) und (3.4) gilt
n+l

^^^JXg. max 4T<ir. (3-6)
;() ^'W 2^
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Aus (3.5) folgt jetzt wegen (a — 6)2 < 2 (a2 + 62) und (3.6):
n+1 n+1 n+1m f

n

n+1

n
Dies beweist die Konvergenz des ersten Intégrais (3.1) beziiglich <p(v) ; analog
schlieBt man fur das zweite.

Weiter gilt fur die Funktion

ô(v) (0(v) - 0{v - 1) - 1) - (0(v) - 0(v - 1) - 1) J (<p{v) - y (v)) dv
9-1

und n ^.v ^.n + l die Abschâtzung
i» n n+1

ô(v? < J (y(v) - <p{v]fdv < J (ç.(v) - Pn^{v)fdv + J (y(v) - Pn(v)f dv
v—1 n—1 n

e»-i + ^n •

Hieraus folgt mit (3.4)
n+1 / 1 1 \
$ 2ÔHv)T'(v)dv^2(Qn_1 + Qn) max x'(v)<2 —zr + ^
"1T'(v)<fo<1|T (n=l, ...)• (3-7)

Mit (3.7) ergibt sich nunmehr wie oben

n+1 ^ ^ n+1 n+1
J (0(v)^0(v—l)-l)Ht(v)dv^l J 2(0(v)-0(v-l)-ï)2x'(v)dv+ J 2
n n n

J - 0{v- 1) - \)H'{v)dv + -JL- (n 1,

und damit die Konvergenz des Intégrais (3.2) bezûglieh 0(v).

3.6. Wir kônnen daher im folgenden o.B.d.A. <p{v) eC voraussetzen. Wir
zeigen zunâehst: Die Funktionen uo(x) und

(3.8)
uo(r(v)) 0(v) (v > 0)

^-ij + i (v > i),
genligen den Voraussetzungen von Hilfssatz 2.

Beweis. Sehreibt man die Gleichungen (3.8) mit Hilfe von v r*(x) auf a;

um, so ergibt sich



Ûber ein Typenproblem 207

uo(x) &(t*(x)) (x ^ 0)
1 (0<*<T(l))

Beide Funktionen sind ersichtlich fur x ^ 0 definiert und C1. Man hat ferner

Juf<?(x)dx ] J^

3.7« Nach Hilfssatz 2 gibt es in S eine Funktion u(x,y) e C1 mit endlichem
Dirichletintegral, die auf den Halbgeraden z x (x ^ 0) und z x -f- i
(a: ^0) beziehungsweise die Randwerte (3.9) annimmt. Aus den zu (3.9)
âquivalenten Gleichungen (3.8) folgt insbesondere

MtHl))=«o(tW) + l (^>0). (3.10)

Mit Rûcksicht auf (1.4) induziert daher u(x,y) in natûrlicher Weise eine

stetige und stuckweise stetig differenzierbare Abbildung

durch die Festsetzung

Q{x,y)=u(x,y) (modl) (z e S) (3.11)

3.8. Das Differential
m dQ

auf St ist hiernach geschlossen und stuckweise stetig. Wegen (3.11) gilt im
Innern von 89 aufgefaBt als Gebiet auf 8t •

œ du (zeintS) (3.12)

Hieraus folgt wegen (3.10) und der Stetigkeit von Q, daB œ aufSt die Période 1

besitzt. Somit genûgt co den Voraussetzungen von Hilfssatz 3.

Nun ist St — int S eine Nullmenge; aus (3.12) folgt daher weiter

||oi||» 2)(«).

Wegen D(u) < oo ergibt sich hieraus mit Hilfssatz 3 die Behauptung.

3.9. Beweis von Satz 4. Konvergiert das Intégral 1.8), so geniigt cp (v) 1

den Voraussetzungen von Hilfssatz 4.
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3.10. Beweis von Satz 5. Es sei

A {v > 0 | v - [v] e A}

und %{v) die charakteristische Funktion von A\ %(y) ist fur v > 0 periodisch
mit der Période 1. Setzt man dann

so genugt <p(v) den Voraussetzungen von Hilfssatz 4.

Beweis. Aus der MeBbarkeit von A folgt diejenige von cp(v). Ferner gilt nach
Voraussetzung des Satzes fur positive ganze N :

h2w [ Nf{v)dvJ vw - Jlyj W) ~ TWâJ ^¥oo i

\A\*tZ
o

G

Dies beweist wegen <p(v) <p(v — 1) die Konvergenz der Intégrale (3.1).
Endlich gilt

0W _ 0(V - l) J 7(y)cfo t^t J *W * 1 (v > 1) ;

(3.2) konvergiert somit trivialerweise.

4. Beweis von Satz B

4.1. Wegen Satz 4 bedarf nur die zweite Behauptung von Satz B eines

Beweises, und zwar genugt es wegen Satz 3, zu zeigen, daB unter der ange-
gebenen Voraussetzung die Divergenz des Intégrais (1.8) diejenige des Intégrais

(1.7) naeh sich zieht. Dies leistet nun der folgende Hilfssatz 5. Wir
bemerken dazu, daB wir in (1.9) insbesondere 0 < e < 1 annehmen kônnen.

4.2. Hilfssatz 5. Es sei t € 7"* und das Intégral (1.7) konvergent. Ferner
gelte fur ein e, 0 < e < 1, die Relation

Dann konvergiert auch das Intégral (1.8).
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4,3, Beweis. Wegen (4.1) ist

so dafi fur beliebiges N > 0 folgt
N N

"+ *+ "-» ¦ (4-2)

Wie man sich leicht iïberlegt, genugt r'(v) wenigstens einer der folgenden
Bedingungen :

(I) Es gibt ein vL ^ 0 mit
rr(v)^e (v^vj).

(II) Es gibt ein v2 > 0 mit

(III) Es gibt eine unendliche Polge paarweise fremder Intervalle

y*^J (fc=l,2,...)
mit

r'(Afc) ~, T'(^fc) e (É=l,2,

4.4. Im Fall (I) gilt

und somit fur N >v1:
N N
r dv r dv 62 r

J r'{v + 1) + l/r'W -J (l +J^)T'(, + 1)
" l + £2J

i
Zusammen mit (4.2) folgt hieraus die Behauptung.

Im Fall (II) gilt x l

und somit fur N > v2:
N N N
r dv ç dv

__
g2 r

r'(, + i) + i/t'M >
/_L+ X\_J_ "T+7- T

14 CMH vol. 37
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Hier ist aber die linke Seite nach (4.2) und Voraussetzung beschrânkt, wàhrend
anderseits r(N)-+oo (N ->oo) gilt. Somit kann Fall (II) nicht eintreten.

Im Fall (III) endlich folgt aus (4.1) und (4.3):

/**>** +2 (É=l,2,...).
Damit ergibt sich wegen (4.4)

/*
dv r dv

r'(v+ 1) + 1/r» \ ±<±J e
"*"

e

Hieraus folgt aber wiederum ein Widerspruch zu der Tatsache, daB das

Intégral rechter Hand in (4.2) beschrânkt ist. Damit ist auch Fall (III) aus-
geschlossen.

6. Beweis des Lemmas

5.1. Es sei TeT, und es bezeichne Tn(x) (w 0,l,...) die w-malige
Anwendung von T auf x. Die im iibrigen willkurliche Funktion

g(t) (0 <£ < 1)

genuge den Relationen

9f(t) > 0, g{t) € C2 (0 < t < 1) ;

g(0) 0, ^(0) 1, g"(0) 0 ; (5.1)

<7(1) T(0), g'(l) T'(0), g"(l) — T"(0) (5.2)

Mit diesen Festsetzungen definieren wir

xt{v) T[v](g{v — [*>])) (v ^ 0) ; (5-3)

man uberlegt sich, daB der Ausdruck rechter Hand fur jedes v ^ 0 erklârt ist.
Wegen [v + 1] [v] + 1 folgt aus (5.3)

und somit durch nochmalige Anwendung von (5.3) die Rekursion

tt(v+1) T(tt(v)) (v>0). (5.4)

5.3. Wir zeigen zunâchst: %t € 7"*.

Beweis. F* enthàlt nach 1.5 genau die Funktionen

x r(v) {v^O)
mit den Eigenschaften

T(0) 0, Km r(v) oo; rf (v) > 0, x(v) c C2 (v ^ 0)
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Wir werden dièse Eigenschaften bei xt(v) in der umgekehrten Reihenfolge
nachweisen.

Die in der Définition (5.3) von tt{v) auftretenden Funktionen T{x)ig(t)
und [v] sind C2, ausgenommen die letzte fur die Ûbergànge v\n(n 1, 2,...
Zum Beweis von %t e C2 geniigt es daher, dièse Ûbergànge zu betrachten;
wegen (5.4) kann man sich dabei auf v\\ beschrànken. Nach (5.3) gilt fur
0 <*< 1:

rT(v) g(v) (0<v<l); (5.5)

somit ergibt sich wegen (5.2):

rT(ï - 0) T(0), rT(l - 0) 2T'(0), 4(1 — 0) T"(0) (5.6)

Anderseits liefert (5.3) fur 1 < v < 2 nacheinander

rT(v) T (g(v - 1))

t't(v) T1 (g(v - 1)) g'(v-\) (1 < r < 2)

rT(v) T'(g(v - 1)) g'*{v - 1) + T'(g(v - 1)) g"{v - 1)

Setzt man in diesen drei Gleichungen v 1, so folgt mit (5.1):

tt(1) T(0), ri(l) ^(0), 4(1) ^(0)
Der Vergleich dieser Zeile mit (5.6) beweist nach den obigen Bemerkungen
TreC2.

5.4. Aus (5.4) ergibt sich nun

)tt(v) (v^0) (5.7)

und hieraus wegen T' (x) > 0 (x ^ 0) und gr (t) > 0 (0 < t < 1) mit voll-
stândiger Induktion

r'T(v) > 0 (v > 0)

Dies zeigt ferner die Existenz des

lim tt(v) Xq < oo

Aus a;0<oo ergàbe sich aber wegen (5.4): x0 — T(x0), gegen die Voraus-
setzung T(x) > x(x > 0). Endlich folgt aus (5.5) und (5.1): tt(0) 0.

5.5. Insbesondere existiert nun die zu tt(v) inverse Funktion

Fûhrt man dies in (5.4) ein, so erhâlt man in der Tat
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6. Beweis von Satz A

6.1. Hilfssatz 6. Es sei T e T und t'(x) von beschrànkter totaler Variation.
Gehôrt dann Te 7"* zu T im Sinne des Lemmas, so gibt es ein e, 0 < e < 1,
mit

6.2. Beweis. Nach (5.7) gilt

t'(v + ri) _
Tr (r(v + rj - 1)) r'(v + V - 1) /n ^ „ ^ f

T'W r'(r(v- 1))

somit geniigt die Funktion

der Rekursion
r'(v)

Dies liefert

\ Kv(v) - K.iv - 1)\

:{v+n-l) t(v)

fT"Wdx < fJ T'(x)
dx ^J

r(v-l)
2" (3)

und damit t(v+n)

Kn(v + n) - Kv(v) J
z(v)

T"(x)
T'(x)

(6.2)

(v > 1)

dx (v>0; rc 0, 1,. (6.3)

6.3. Nun existiert nach Voraussetzung uber t1 (x) der

lim t1 (x) a

und zwar ist a ^ 0, wenn anders

*(&) «(0) + }t'(£)dÇ > 0 (a; > 0)

gelten soll. Daher gibt es ein v0 > 0 mit

r'(a?)=l + «'(a?)>i (x>r(v0));
und aus (6.3) folgt weiter

| Kn{v + n)~ Kn{v) | < 2T(j"1 ^(«) I dx < 2 J | T" (x) \dx (v > v0)
*(*) t(i»0)

Hier hat der Ausdruck reehter Hand nach Voraussetzung einen endlichen
Wert cx ^ 0 ; somit ergibt sich
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und daher insbesondere fur v0 ^ v' ^ v0 + 1 :

\Kv{v' + n)\^ max | Kn{v) \ +c1 c2 (n 0,1,. (6.4)

Da sich nun jedes v ^ v0 in der Form

v v' + n, v0 < v! < v0 + 1, n c {0, 1, ...}
darstellen lafit, folgt aus (6.4)

\Kv(v)\ <c2 (v>v0)

und damit nach Définition ($.2) von K^(v) die Behauptung (6.1).

6.4. Beweis von Satz A. Es gehore r € f* zu jP im Sinne des Lemmas. Nach
Hilfssatz 6 genugt r(v) insbesondere der Voraussetzung von Satz B. Nun gilt
mit x r(v) und nach (5.4):

t(x) T(x) ~x r(v+l)- r(v) jrf(v + rj)drj;

wir erhalten daher

r dx _ r x'{v)dv rr rf(v) i

J f{x) J (}T'{v + n)dnY J [ Jt> + V)dV
J

0 0 0 0 0

J J } nnY J
0 0 0 0

Durch nochmalige Anwendung von Hilfssatz 6 folgt, daB das letzte Intégral
gleichzeitig mit dem Intégral (1.8) von Satz B konvergiert, beziehungsweise
divergiert. Damit ist Satz A bewiesen.
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