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Die Grundgleichungen der Flâchentheorie III
von W. Schebber, Bern

§ 1. Einleitung

Da die Teile 1 und II1) schon um einige Jahre zurtickliegen, sollen hier zuerst
die Leitgedanken der ganzen Untersuchung in Erinnerung gerufen werden.

Die klassische Théorie einer Flàche im euklidischen Raum mit dem Orts-
vektor

x x(u,v) (1.1)
und der Normalen

,xJ| (1.2)

griindet sich bekanntlich auf zwei quadratische Differentialformen, die erste
Grundform oder das Linienelement

(1.3)

und die zweite Grundform

- <hx=Lu2 + 2MÙv + Nv*. (1.4)

Bei Anwendungen macht man immer wieder die Erfahrung, da8 der Ùber-

gang von den 6 Koeffizienten der beiden Grundformen zu direkt geometrisch
deutbaren GroBen umstàndlich und undurchsichtig ausfâllt, speziell dann,
wenn man die Freiheit der Parameterwahl wahren will.

In einer ersten Phase war ich daher bestrebt, geometrische GrôBen, nàmlich
den Winkel, die Bogenlàngen und die Kriimmungen des Parameternetzes, direkt
in die Grundgleichungen einzubauen. DemgemàB bezeichne ich mit 0 den
Netzwinkel und mit 8l9 s2] yly y2; nx, x2 und rl5 r2 die Bogenlàngen, geo-
dâtischen Krûmmungen, Normalschnittkrtimmungen und geodàtischen Tor-
sionen der %-Linien (v konst.), respektive der v-Linien (u konst.).

Ein erster Schritt besteht nun darin, dem Linienelement die Gestalt

è=EX2==E2û2 + 2EGco8dùv + G*v2 (1.5)

zu erteilen. Dann stellen die GrôBen

E ^,G ^- (1.6)du dv '

*) Dièse Zeitschrift Bd. 29, S. 180-198 (1955) und Bd. 32, S. 73-84 (1957), im vorliegenden
Text zitiert unter I und II.
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die Verzerrungen der Netzlinien relajiïv zu den Parameterskalen dar und geben
AnlaB, die Ableitungen nach den Bogenlângen der u- respektive v-Linien als
Operatoren

D =—— D —
8 (1.7)—Edu

einzufuhren.
Fur die geodâtischen Krummungen der Netzlinien ergeben sich die Formeln

Yl A - DU6, y2 T2 + Dv 6 (1.8)

worin die Sjrmbole Ji und F2 definiert sind durch

Hier empfiehlt es sich, auch die oft benôtigte Auflôsung von (1.9) zu no-
tieren :

Als Kommutator der Operatoren (1.7) schlieBlich ergibt sich

DVDU - DUDV ^~DV ~^-Du. (1.11)

Wegen (1.10) kann man fur ihn auch schreiben

sin 0{DvDu - DnDv)
r1Du + r%Dv - cos e (r2Du + r1Dv). (i. 12)

Der zweite Schritt der ersten Phase fûhrt zur Feststellung, daB die 4 Linien-
krûmmungen «l5 k2, r1? t2, zwischen denen die Relation

cos 0 + t\ sin 0 «2 cos 9 — t2 sin d (1.13)

besteht, einen vollstândigen Ersatz fur die 3 Koeffizienten L,M,N der
zweiten Grundform liefern.

Im Verein mit der eben skizzierten Anpassung der ersten Grundform erhâlt
man als Ergebnis der ersten Phase die Grundgleichungen der Flâchentheorie in
einer Grestalt [I, §§ 3 und 4], die den Bedûrfhissen der geometrischen Deutung
entgegenkommt, wie ich an einigen Beispielen erlâutert habe [I, §9].
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Fur das Folgende benôtigen wir jedoch nicht den ganzen Formelapparat der
ersten Phase. Ich verzichte daher auf seine Wiedergabe und begnûge mich,
diejenigen Relationen herauszugreifen, die zusammen mit (1.13) den Ausgangs-
punkt fur die zweite Phase bilden. Es sind dies diejenigen Formehi, welche an
die Stelle der klassischen Darstellung der GAirss'schen Krûminung K und der
mittleren Kriimmung H als Simultaninvarianten der beiden Grundfonnen
treten :

K : cotg 0

und

H - i (*1 - *2) C»tg 8

(1.14)

(1.15)

Ein Blick auf die Gleichungen (1.13) - (1.15) regt an zum Versuch, dièse
Gleichungen soweit als môglich nach den Linienkrûmmungen xli x2, tlf r2
aufzulôsen. Die Analyse zeigt, daB es sich zu diesem Zweck empfiehlt, einen
Hilfswinkel co einzufuhren gemâB

(1.16)

(1.17)

(1.18)

Macht man noch Gebrauch von der Abkûrzung

- K
so ergibt die Auflôsung folgende Tabelle

H + J cos (co + 0); t\ J sin (co + 0)

H + J cos (co — 6); r2 J sin (co — 6)

Dabei ist noch zu bemerken, daB wir hier - wie schon in II - das in I gewâhlte
co durch — co ersetzt haben.

Betrachtet man schlieBlich eine beliebige Flâchenkurve C durch den Punkt
(uyv), deren Richtung mit der w-Linie (v konst.) daselbst den Winkel oc

einschliefit, so gelten fur die Normalschnittkrummung x und die geodâtische
Torsion x von C folgende Formeln:

x H + J cos (co + 0 — 2oc)

t= Jsin(co + 6 - 2<x) (1.19)

Da eine Hauptrichtung durch t 0 charakterisiert werden kann, folgt aus

(1.19)
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Satz 1: Dreht man eine Winkelhalbierende des Parameternetzes um —, so

fâllt sie mit einer Hauptrichtung zusammen.

Desgleichen ergibt sich aus (1.17) oder (1.19)

Satz 2: Die Transformation
co -> co + n

muji durch

J-+-J
kompensiert werden.

Wegen dieser Eigenschaften habe ich co als Hauptwinkel des Netzes be-
zeichnet.

Die zweite Phase der Untersuchung wird nun dadurch eingeleitet, daB man
in den CoDAZZischen Gleichungen der ersten Phase [I § 4 (7) oder (9)] die GrôBen

*h> ^2? Ti> r2 gemâB (1.18) durch H,J, 6 und co ersetzt. Doch ist es fur
unsere jetzigen Zweeke nicht nôtig, den Weg liber dièse Station zu nehmen.
Vielmehr gentigt es, vermittels klassischer Fonnehi fur k und r die Koeffi-
zienten L,M,N der zweiten Grundform direkt durch H,J, 6 und o> aus-
zudrxicken. Das Ergebnis dieser Berechnung erhàlt man aus I § 8 (3), wenn man
daselbst co durch — œ ersetzt:

L E2 [H + J cos (co + 6)]
M EG(Hcos6 + Jcoseo) (1.20)
N G2 [H + J cos (œ - 6)]

Fuhrt man nun dièse Werte unter Beachtung von (1.5) in die klassischen
CoDAZZischen Gleichungen ein, so erhalten dieselben die der zweiten Phase der
Untersuchung entsprechende Gestalt [II, § 2, (1), (2a), (2b)]. Wie man leicht
feststellt, erfahren dièse Gleichungen eine gewisse formale Vereinfachung,
wenn man von den durch (1.7) definierten Operatoren Du und Dv Gebrauch
macht. Wir notieren daher die CoDAZziscAew Gleichungen in dieser Gestalt :

J sin 6 Duco (DUH — cos 6 DVH) cos co -f- sin ODVH sin co

- DVJ + cos 6DUJ + J sin 6 (2 rt - Du 0)

J sin 6Dvco (DVH — cos 6DUH) cos co — sin ODUH sin co

- DUJ + cos ODVJ - J sin 0 (2 T2 + D90)

(1.21)

Sofern wir uns die GAirss'sche Krummung K ein fur allemal als Funktion
des Linienelements vorgegeben denken [I, § 4, (6) resp. (8)], ist also das System
(1.21) maBgebend fur die Einbettung der abstrakten Flâche in den euklidischen
Raum.



Die Grandgleichungen der Flâchentheorie III 181

Fur das Weitere benôtigen wir schlieBlieh noch ein Ergebnis unserer frûheren
Untersuchungen, nâmlich die Darstellung der Grundformen durch zwei
invariante lineare Differentialformen gemâB I, § 8, (10) - (13). Mit Rucksicht auf

— co kônnen wir dieser Darstellung jetzt folgende Fassung geben: Setztco

man

so gilt

(1.22)

J) (1.23)

Die invarianten Linearformen hat schon W. Blaschke2) eingefûhrt und an-
gewendet. Mit Hilfe der von uns verwendeten Zeichen E, L, N, H und J
kann seine Darstellung folgendermaBen geschrieben werden

1/ (H -

y l -
j

(H -

J

E* -

-J)

L (H + J)G* - N
J

N - (H - J)Q*
(1.24)

Fûhrt man hier die Werte L und JV gemâB (1.20) ein, so ergibt sich, wie

man leicht naehrechnet, unsere Darstellung (1.22).

§ 2. Allgemeine Orientierung

Setzt man das Linienelement als bekannt voraus und berlicksichtigt man die

algebraischen Relationen zwischen den noch verbleibenden unbekannten Funk-
tionen, so lassen sich die Gleichungen von Codazzi in jedem Falle auf ein

System von zwei quasilinearen partiellen Differentialgleichungen erster Ord-

nung fur zwei unbekannte Funktionen zurtickfûhren. Dièse unbekannten
Funktionen sind in unserem Falle der Hauptwinkel co(u, v) und die mittlere
Krummung H (u, v). Zwecks einer allgemeinen Orientierung notieren wir nun
das System von Codazzi summarisch in folgender Gestalt:

(2.1)
Fx {u, v;
F2(u,v;

co,

co,

H\ cou,

H;cou,
cov, Hu,

Hv)
0

0

2) Vorlesungen ûber Differentialgeometrie I, 3. A., Springerverlag 1930; §§ 62, 63, 87, 88.
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Durch Auflôsung - etwa nach cov und Hv — fûhrt man (2.1) uber in
kanonische Gestalt

Q>v fi{u>v> co,H; cou, Hu)
&v hiu> v'y û), H,; cou, Hu)

Dieselbe eignet sich zum Existenzbeweis der Lôsung, nicht aber zur Gewinnung
von Aussagen liber die einzelnen Lôsungsfunktionen co(u,v) und H(u,v).
Die fur den letzteren Zweck erforderliche Séparation wird eingeleitet durch die-
jenigen totalen Système, welche man durch Auflôsung von (2.1) nach cou, cov,

respektive nach HU,HV erhàlt:

und

/ii(^> *>*> co,H,Hui Hv)
/i2(^^; co,H;Hu,Hv)

fzi(u>v'> H, co; cou, cov)

f^iu, v'> H, œ; wu, cov)

(2-

(2.1.)

Die drei Système (2.10) - (2.12) sind ledigKch Umformungen von (2.1) und
daher algebraisch gleichwertig mit (2.1). Algebraisch neue Relationen liefern
uns dagegen die zu den Systemen (2. lx) und (2.12) gehôrigen Integrabilitâts-
bedingungen.

oc). Die Integrabilitatsbedingung fur (2.1X) notieren wir summarisch in der
Gestalt

O1(u9v;œ; H, Hu, Hv, Huu, Huv, Hvv) 0

Die Integrabilitatsbedingung fur (2.12) sei entsprechend

O2 (u, v; H; co, a>u, cov, couu, couv, covv) 0

(2.2)

(2.3)

Bei vorgegebenem Linienelement beherrschen nun die vier Gleichungen
(2.1), (2.2) und (2.3) die algebraische Situation.

Wir definieren nun fur die Funktionen co (u, v) und H(u,v) eine Reihe von
Fallunterscheidungen und versehen dieselben zur Vereinfachung der Ausdrucks-
weise mit einer passenden Terminologie :

Do^: Ein «generelles H(u, v)» liegt vor, wenn nach dessen Eintragung in
(2.2) dièse Gleichung die Unbestimmte co noch enthàlt.

Doc^i Ein «spezielles H(u, v)» liegt vor, wenn nach dessen Eintragung in
(2.2) dièse Gleichung die Unbestimmte co nicht mehr enthâlt.

Dpx\ Ein «generelles co(u, v)» liegt vor, wenn nach dessen Eintragung in
(2.3) dièse Gleichung die Unbestimmte H noch enthàlt.
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D/?2: Ein «spezielles o>(u, v)» liegt vor, wenn nach dessen Eintragung in
(2.3) dièse Gleichung die Unbestimmte H nicht mehr enthâlt.

Entsprechend diesen Fâllen ergeben sich nun vier Sâtze.

Satz 3 (erster Starrheitssatz). Besitzt eine Flàche zu vorgegebenem Linien-
élement eine generelle mittlere Krûmmung, so ist sie bis auf Kongruenz festgelegt.

Beweis: Nach Voraussetzung kann co aus (2.2) als Funktion

a> gt(u,v;H,Hu,...H99) (2.2')

ermittelt werden. GemàB (1.20) ist nun auch die zweite Grundform bestimmt.
Nach dem Fundamentalsatz von Bonnet ist aber eine Flâche durch die beiden
Grundfonnen bis auf Kongruenz festgelegt, w.z.b.w.

Natûrlich kann das gefundene co mehrdeutig sein, was Veranlassung zu
Isometrien, nicht aber zu Verbiegungen geben kann.

Satz 4 (erster Verbiegungssatz). Besitzt eine Floche zu vorgegebenem Linien-
element eine spezielle mittlere Krûmmung, so kann sie unter Erhaltung ihrer mitt-
leren Krûmmung verbogen werden.

Beweis: Infolge der Voraussetzung muB (2.2) identisch in u, v erfûllt sein.
Das totale System (2. 1J ist daher im eigentlichen Sinne integrabel und liefert
zu jedem Anfangswert co0 eine Lôsung co(u,v). Eine stetige Verânderung des

Anfangswertes co0 bewirkt somit eine stetige Verânderung der Lôsung co(u,v)9
wàhrend H(u,v) ungeàndert bleibt. Nach (1.20) wird also die zweite Grundform

stetig verândert, wâhrend Linienelement und mittlere Krummung er-
halten bleiben. W.z.b.w.

Satz 5 (zweiter Starrheitssatz). Besitzt eine Flàche zu vorgegebenem lÀnien-
élément einen generellen HauptwinJcel, so ist sie bis auf Kongruenz festgelegt.

Satz 6 (zweiter Verbiegungssatz). Besitzt eine Floche zu vorgegebenem Linienelement

einen speziellen Hauptwinkel, so kann sie unter Erhaltung ih/res Haupt-
winkels verbogen werden.

Die Beweise ergeben sich aus den Beweisen fur die Sâtze 3 und 4 dadurch,
dafi man die Rollen von H und co vertauscht. Insbesondere tritt dann an
die Stelle von (2.2') die Auflôsung von (2.3):

H g2(u,v; co, œu, œvv) (2-3')

Die in den Sâtzen 4 und 6 enthaltenen konkreten Aufgaben, nâmlich die

Ermittlung der einschlâgigen speziellen H(u,v) und co{u,v), sind - wenn
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auch mit anderen Begriffen — schon im vorigen Jahrhundert von Codazzi,
Bour und Bonnet aufgegriffen worden3). Insbesondere hat Bonnet4) die
zweite Aufgabe vollstândig gelost. Da nach Satz 1 durch co(u,v) die Haupt-
richtungen auf einer Flâche festgelegt werden, ist sie aequivalent mit der
Aufgabe, diejenigen Flâchen zu bestimmen, welche unter Erhaltung ihrer Krûm-
mungsKnien verbogen werden kônnen. Dièse Aufgabe hat W. Blaschke5) wie-
der aufgegrifïen und gestûtzt auf die invarianten Linearformen (1.24) be-
handelt.

Die erste Aufgabe kann auch aufgefaBt werden als die Frage nach den-
jenigen Flàchen, welche unter Erhaltung ihrer Hauptkrûmmungen verbogen
werden konnen. Dies folgt ohne weiteres daraus, daB neben der mittleren
Krûmmung auch die GAUSs'sche Krûmmung als Biegungsinvariante erhalten
bleibt. Bonnet6) findet zwei Klassen von Lôsungen: Die Flâchen H konst.
und daneben eine Klasse «vom selben Allgemeinheitsgrad» wie die erste. Dièse
letztere Klasse hat spâter Hazzidakis7) vollstândig integriert.

Auf dièse Aufgabe bin ich in II § 4 gestoBen und habe daselbst die hier in
Satz 4 auftretenden «Flâchen mit spezieller mittlerer Krûmmung» als «inte-
grable Flâchen» bezeichnet. Bei meiner Darstellung wurde es évident, daB die
Flâchen konstanter mittlerer Krûmmung integrabel sind. Dagegen lieB ich die
Frage oflfen, ob es daneben noch weitere integrable Flâchen gibt. Nach den
eben zitierten Arbeiten kann also dièse Frage bejaht werden. Immerhin haben
meine weiteren Untersuchungen eine Einschrânkung geliefert. Es gilt nâmlich

Satz 7. Kann eine réelle Floche im euhlidischen Raum unter Erhaltung ihrer
mittleren Krûmmung verbogen werden, so ist sie notwendigerweise vom Wein-

Typus, d.h. ihre mittlere Krûmmung ist eine Funktion ihrer
Krûmmung.

Bonnet und Hazzidakis arbeiten mit isotropen Parametern. Da nun die von
diesen Autoren gefundenen Flâchen, abgesehen von den Flâchen H konst.,
nicht vom WEiNGARTENschen Typus sind, ergibt sich ohne weiteres der SchluB,
daB dièse Flâchen keine lûckenlos réelle Darstellung gestatten.

Auf dièse Zusammenhânge und den Beweis von Satz 7 hoffe ich bei anderer

Gelegenheit zurûckzukommen. Hier will ich mich auf das Grundsâtzliche und

8) Die historische Entwicklung schildert A. Voss in seinem Artikel «Abbildung und Ab-
wicklung zweier Flâchen aufeinander». Enzyklopâdie der math. Wissenschafben. III D 6a,
S. 406-408 (1903).

4) «Sur la théorie des surfaces applicables sur une surface donnée.» Journal de l'Ecole
polytechnique XXV (Cahier 42), S. 58ff. 1867.

6) a.a.O. 2), §§ 87 und 88.
«) a.a.O.*), S. 73-92.
7) Journal f. Mathematik 117f S. 42-56 (1897).
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Methodische beschrànken. Zunâchst noch einige Hinweise, die dem AnschluB
an die konkreten Problème dienen.

Das mit (2.1) und (2.10) âquivalente summarisch geschriebene System
(2.]x) haben wir in seiner konkreten Gestalt mit Hilfe der Operatoren (1.7)
oben unter (1.21) notiert. Dasselbe System zusammen mit seiner Integrabili-
tâtsbedingung (2.2) findet der Léser auch in II, § 2, (1) - (6). Konsequenter-
weise stellt sich jetzt die Aufgabe, die konkrete Gestalt des ebenfalls zu (2.1)
und (2.10) âquivalenten Systems (2.12), sowie der dazugehorigen Integrabili-
tâtsbedingung (2.3) zu ermitteln. Der fur uns naheliegendste Weg besteht
offenbar darin, das oben angegebene System (1.21) naeh DUH und DVH auf-
zulosen. Nun aber zeigt sich, dafi die Durchfuhrung der Rechnung und ins-
besondere anschlieBend eine durchschaubare Gestaltung der Integrabilitàts-
bedingung noch erheblich groBere Komplikationen bietet als die in II, §§ 2

und 3 angestellte Analyse.
Ich lieB daher die Sache liegen, bis ich bei einer neuerlichen Prûfung des

ganzen Fragenkomplexes feststellte, daB man aus den explizit verfiïgbaren
Difïerentialformen (1.22) einen ubersichtlichen Formalismus gewinnen kann.
Der Nutzen dièses Pormalismus beruht darauf, daB er sich aus wenigen Grund-
invarianten vermittels invarianter Operationen aufbauen lâBt und daher auto-
matisch Invarianten erzeugt und explizit darzustellen gestattet. Das Détail
soll im nâchsten Paragraphen zur Sprache kommen.

§ 3. Invarianter Formalismus

Wir stellen jetzt also die invarianten linearen Difïerentialformen (1.22) an
die Spitze:

X! E sin I j • u + G sm ^—-
0\ • „ œ - 6

Durch sinngemàBe Ûbertragung der Invariantentheorie quadratischer
Difïerentialformen auf ein System linearer Difïerentialformen8) kann man aus (3.1)
invariante Difïerentialoperatoren und Invarianten herleiten.

Die invarianten Difïerentialoperatoren - es sind natxirlich deren zwei - sind
definiert durch

8) Fur die Durehfûhrung dieser Ûbertragung verweise ich den Léser auf meine «Grundlagen
zu einer linearen Feldtheorie», Z. Physik 138, 16-34 (1954). Die invarianten Differentialopera-
toren habe ich eingefûhrt in § 4 meines Artikels «Zur linearen Feldtheorie V», Z. Physik 152,
319-327 (1958), wobei noch zu beachten ist, dafi ich in § 1 des vorausgehenden Artikels IV,
Z. Physik 144, 373-387 (1956), die Bezeichnung leicht geândert habe.
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sin 0 d1 cos /? Du — cos <x Dv
sinô & - sin£Du + sinai),, (3.2)

mit

«s—f-;/» —j-. (3.2')

Sie sind formai invariant gegeniiber beliebigen Parametertransformationen
und erzeugen daher aus einem Funktionensystem eines bestimmten Transfor-
mationscharakters wiederum ein Funktionssystem vom selben Transforma-
tionscharakter, insbesondere also ans einer Invarianten wiederum eine
Invariante.

Aus den Koeffizienten der linearen Grundformen (3.1) kann man nun vier
primâre Invarianten gewinnen, von denen wir aber fur unsere Zwecke nur zwei
benôtigen. Dieselben sind definiert durch

sin 6 f1 sin jî Qx — sin oc Q2

sin 0 /2 cos ft Qt — cosoc Q2 (3.3)
mit den Abkûrzungen

Qx= rx + DJ; Q2= T2 + Dvot. (3.3')

Die Ableitungssymbole d1 und 32 habe ich identisch aus den zitierten Ar-
beiten8) ûbernommen, die Invarianten f1 und /2 dagegen stellen die Verdop-
pelungen der daselbst durch die gleichen Zeichen definierten Invarianten dar.
Im weiteren Verlauf ist nun also wohl zu beachten, dafi die Ziffern 1 und 2

in diesen vier Symbolen keine Exponenten, sondern Zeiger darstellen.
Aus den Invarianten f1 und /2 kônnen wir nun mit Hilfe der vier Spezies

und der Operatoren d1 und S2 aile Invarianten aufbauen, die wir benôtigen.
Zur Illustration dièses Formalismus, aber auch aus systematischen Grûnden
wollen wir jetzt die formale Struktur der zum System (1.21) gehôrigen Inte-
grabilitàtsbedingung analysieren. Die Bedingung selbst wurde oben summa-
risch durch die Gleichung (2.2) symbolisiert. Explizit aufgestellt und einer
ersten Analyse unterworfen habe ich sie in II §§ 2 und 3. Dabei erwies es sich
als notwendig, neben den BELTRAMischen Operatoren V und A weitere Dif-
ferentialoperatoren Vly V2 und Ax> A2 einzufuhren. Die anschlieBende Unter-
suchung lieB dann erst nach mûhsamer und wenig durchsichtiger Rechnung
erkennen, daB sich die neuen Operatoren wie orthogonale Vektoren in der
Tangentialebene transformieren. Mit Hilfe unseres Formalismus kann nun dièse

Rechnung durchsichtig gestaltet werden.
Ich beginne damit, daB ich die in II, §§ 2 und 5 angegebenen Operatoren mit

einer leichten Modifikation und einigen Ergânzungen zusammenstelle.
An die Spitze stelle ich vier lediglich als Abkiirzungen dienende Hilfsopera-

toren Vt{i 0, 3), die durch folgende Identitâten definiert sind:
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sin2
sin2

sin
sin

0Fo=i
dVx=l
0 V2= 1

6VB

\DU +
\DU +
\DU —

r2Dv —

AA,-
r2Dv

cos 0

cos0

raI>B -
(3.4)

AnschlieBend definiere ich vier von einer willkiirlichen Funktion q> be-
herrschte Operatoren <p pf (i 0, 3)

(Dvsin* 0<pV0 Dupu +
sin2 6 <p Vx Dv (p Du + Du <p Dv - cos 6 (Du (p

sin 0<pV2=Du(pDu- Dv<pDv
sin 6 cp Vz= Dv<pDu- Du<pD

Dv)
Dv)

(3.5)

SchlieBlich definiere ich unter Verwendung von (3.4) und (3.5) noch drei
Differentiatoren zweiter Ordnung :

sin1

sin2

!0

6

A»

+
A-
sin2

f
B

f

Dv
v3

Du

D%

+
Dx

— cos
sin 6 •

— cos

e

B

B

(DVDU -

(DUDU -

±DU

\-Dv

D,

D,
+ sin2 6 V2 — cos d sin 6 • 0 Vx (3.

sin d A2 DUDU - DVDV

- sin e vx - cos e • o v2 - e v3

0 DVDU - DUDV - sin 6 Vo

Zu diesen Definitionen sind nun einige Bemerkungen zu machen :

1. Sâmtliche Operatoren sind als ungebundene Operatoren definiert, die auf
eine Funktion tp zur Wirkung gelangen.

2. Die Operatoren |70, Vl9 V2, AOi âx, A2 entsprechen unseren fruheren
Operatoren V, — VlyV2, A, — Al9 A2, wobei die drei ersten jetzt ungebunden
sind, wâhrend sie frûher gebunden waren.

3. Die Vorzeichenànderungen

V1}At in II - F1? - Ax in III (3.7)

nhabe ich vorgenommen, damit im orthogonalen Fall d — ein positives Vor-

zeichen an der Spitze steht. Es empfiehlt sich, diesen Vorzeichenwechsel in
allen einschlâgigen Relationen von II vorzunehmen, bevor man die behauptete
Ûbereinstimmung der Operatoren nachprûft. Bei der weiteren Schilderung setze

ich daher voraus, da6 dieser Zeichenwechsel in II schon vollzogen sei.
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4. Zusâtzlich eingefûhrt habe ioh in (3.5) den Operator cp f73j der, ange-
wendet auf y), die Funktionaldeterminante in der Gestalt

-= V3(y>, (p) (3.8)

liefert.

5. Die behauptete Ûbereinstimmung der Operatoren kann man nun am
besten so nachprûfen, da6 man die - entsprechend (3.7) modifizierten —

Formeln II, § 5, (2) - (4) als Ausgangspunkt wâhlt. Rechnung und Vergleich
ergeben folgende Relationen :

(p yQ y) y)V0<p
çp (7 iy) tyVitp
çp P3 tp — — y) P3 çp — P3 (çp y)) (3.9)
<pF0<p V(<p,<p)

V)

v); (*

v)

;(* 1,2)

2)

und

Aoy> A y>

(3.10)
Aoy> A y>

Axy) A1ip
A2y) A2y)

6. Als vierte Identitât (3.6) haben wir noch den in diesen Zusammenhang
gehôrenden Kommutator (1.12) mit Hilfe des in (3.4) eingefûhrten Operators
Fo notiert.

Nachdem wir uns von der Ubereinstimmung unserer neuen Operatoren mit
unseren frùheren im Sinne der Gleichungen (3.9) und (3.10) uberzeugt haben,
wollen wir fortan nur noch von den Definitionen (3.4) bis (3.6) Gebrauch
machen.

Unser nachstes Ziel besteht darin, die Transformationsweise der Operatoren
(3.5) und (3.6) aufzuklâren. Zu dem Zweck ersetzen wir in ihnen die Operatoren

Du und Dv vermittels der Auflôsung

Du sinoc d1 + cosoc d \ t<\ u\

der Définition (3.2) durch die Operatoren d1 und S2. Unter fortlaufenden
goniometrischen Umformungen und bestândiger Verwendung der Definitionen
(3.3), (3.27) und (3.3') erhâlt man dann folgende Darstellung fiir die in Frage
stehenden Differentiatoren :
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<p vQ a1 <p a1 + d2 cp d2

çpV1z= sin co (d2 cp d1 + d1 cp a2)

— cos co (d1 cp 91 — d2 cp d2)

cpV2 — sin co (d1 cp d1 — d2 cp d2)

+ cos co {d2 cp d1 + d1 cp a2)

cp F3 a2 cp a1 — a1 <p a2

(3.12)

Ax sin
— cos

A2 sin

+ cos

co {d*d
co (d1d

co (d1 d

co (d2d

;+**;
1 - a2 a2 h

i - a2 a2 -

h fT
-fa1
h fa1
h fa1

+ P&)

+ /192)

- Z2^)

-fa2)
+ fa*)

(3.13)

In diesen Zusammenhang gehôrt noch der Kommutator (1.12), der folgende
Gestalt annimmt :

(3.14)

Die Gleichungen (3.12) und (3.13) bringen den Transformationscharakter
der Operatoren zur Evidenz. Es ergeben sich folgende Aussagen, die wir der
Einfachheit halber unter der Voraussetzung formulieren, da6 cp eine
Invariante sei:

Satz 8. Die Operatoren F0iV3 und Ao sind Invarianten.

Satz 9. Die Operatorenpaare VltV2 und Ax, A2 stellen linksdrehende
orthogonale Veictoren dar.

Nun wollen wir noch die geometrische Bedeutung der Operatoren d1, d2 und
der Invarianten f1, f2 ermitteln. Zu dem Zweck genûgt es, Kriimmungslinien-
parameter einzufûhren, was auf die Bedingungen co 6 tz/2 hinauslàuft.
Die Définition (3.2) liefert dann d1 Du, S2 Dv und wir erhalten

Satz 10. Die Operatoren d1 und d2 stellen die Ableitungen nach den Bogen-
lângen der Krûmmungslinien dar.

Weiter ergibt sich aus (3.3) und (3.3') in Verbindung mit (1.8) f1 — y2,
f2 yx und wir haben

Satz 11. Die Invarianten /2 und — f1 stellen die geodàtischen Krûmmungen
der Krûmmungslinien dar.
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Auf die Invarianten 8X /2 und S2 — f1 sind wir ûbrigens in einem
andern Zusammenhang schon in I, § 8, (21) und (22) gestoBen.

Als Anwendung ergibt sich nun leicht

Satz 12. Die G&uss'sche Oleichung erhâlt durch den invarianten Formalismus
folgende Oestalt:

a1/1 + a2/2 - [(Z1)2 + (Z2)2] k (3.15)

in
Beweis. Bei Einfûhnmg von Krûmmungslinienparametern geht (3.15) ûber

- Duy2 + Dv?1 - (y\ + y\) K.

Genau dieselbe Gleichung erhâlt man aber, wenn man die GAUSs'sche Glei-
chung in I, § 4 (6) auf 0 fi/2 spezialisiert. W.z.b.w.

Zum AbschluB wollen wir noch die Integrabilitàtsbedingungen des Systems
(1.21) durch die neu definierten Operatoren (3.5) und (3.6) darstellen. Zu dem
Zweck greifen wir zuriick auf ihre ursprûngliche Fassung in II, § 2, (3) und (4).
Der erste Schritt besteht in der Durchfûhrung der Vorzeichenànderung (3.7).
Als zweiter Schritt empfiehlt sich eine Ânderung der Bezeichnung gemâB

Ql9 Q2, R in II ~> - Ql9 Q2y Qo in III. (3.16)

Als dritter Schritt bleibt dann nur noch die Einfûhrung der neuen Operatoren
gemâB den Gleichungen (3.9). Als Résultat ergibt sich

mit

cos — Q2 sin ct> Qo (3.17)

2HV

2HV
J*

+ HKH
J* 2K,

(3.18)

wobei A einen frei wâhlbaren Proportionalitàtsfaktor darstellt. Die Sàtze 8

und 9 lassen dann unmittelbar den Transformationscharakter der GrôBen

Qo>Qi,Q* erkennen.

riihrt man schliefilich in (3.18) und (3.17) die invarianten Operatoren gemâB

(3.12) und (3.13) ein, so erhâlt die Integrabilitâtsbedingung (3.17) folgende
absolutinvariante Gestalt:
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(3.19)

§ 4. Totales System fur H

Die am SchluB von § 2 geschilderte Aufgabe, also die Aufstellung eines totalen
Systems fur H, kônnen wir jetzt mit Hilfe des invarianten Formalismus in
durchsichtiger Weise bewàltigen.

In den Gleichungen (1.21) fuhren wir vermittels der Spezialisierung

ça 0

Krûmmungslinienparameter ein und ersetzen hierauf entsprechend den Sât-
zen 10 und 11 die Symbole DuiDv,ri9 T2 durch 31, 32, /2, - fl. Unter Be-
achtung von (1.17) ergibt sich dann das absolut invariante totale System

2(H + J)d1H= 4/!J2+ d1K
2(H - J)&H 4/2J2+ &K (4.1)

Fur Berechnungszwecke empfiehlt es sich, daneben das gemâB (1.17) gleich-
wertige System

2(H + J)d1J ±fiHJ - d1K
2{H -J)d*J 4:f*HJ + &K

zu notieren.
Als Integrabilitâtsbedingung fur (4.1) ergibt dann die Berechnung bei Be-

rûcksichtigung des Kommutators (3.14) die Relation

(4.2)

80

mit den invarianten Koeffizienten

^ [fa1 + f a2 - (a2/1 + a1/2 +
& [/2a1 - f1 a2 - (a1/2 - 92/1)

80= K[3*P + a1^ - 3 {f 9- +

(4.3)

K (4.4X)

K-2d1KPK. (4.4,)
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Die Gleichungen (4.1) und (4.3) finden sich im wesentlichen schon bei
Blaschke9). Nur handelt es sich dort nicht um ein totales System fur H,
sondern um ein solches fur (H + J)2.

Mit Hilfe des invarianten Formalismus ist es nun môglich, dièse Gleichungen
fur ein beliebiges Parameternetz explizit darzustellen. Um dies zu erreichen,
haben wir nur nôtig, die Symbole d1, d2, f1, /2 vermittels der Definitionen
(3.2), (3.2'), (3.3) und (3.3') zu eliminieren. Die Rechenarbeit ist allerdings
im Palle der Gleichungen (4.3), (4.4X), (4.42) und (4.4^ erheblich.

An Stelle des Systems (4.1) erhalten wir das System

mit

2K sin 6DUH 4A0J3 -
2K sin 6DVH 4B0J* +

+ A2J + AZH
BBH

(4.5)

Aq= cos co Qx — cos (œ + 0)

At= Q2 ~ cos ^ ®i
A2= [sin (o> + 6) Dv - sin œ Du] K
A3= sin 6DUK

und
Bo=

B2= [sin

cos — cos 6) Qx

- 0) Du - sin coDv] K
sin 6 DVK

wobei Qx und Q2 durch (3.3') gegeben sind.
Fur das Weitere empfiehlt es sich, neben den primâren Operatoren (3.4)

noch folgende Hilfsoperatoren einzufuhren :

nQ= Vo - (2 sin 6)-1 (0 V2 + cos 0 • 0 F8)

nx= Vx + (2 sin 6)-1 (0 Vz + cos 6 • 6 V2)

II2= V2 - (2 sin d)-1 (6 VQ + cos 6 • 6 Vx)

nB= F3 + (2 sin 0)-1 (0 Vx + cos 0 • 0 Fo)

Gestiitzt auf sie gilt dann folgende Ruckverwandlungstabelle

(4.6)

sin a) (I72 + | co V2)

— COS CD (7?! + i CD Fx)

— sin cd (II1 -\- \ coV-ù

- cos cd (772 + i cd Fa)

9) a.a.O. 2), §88 (178) und (179).
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(4.7S)

Unser Hauptanliegen ist jetzt, die invarianten Koeffizienten der Gleichung
(4.3) in bezug auf ein beliebiges Parameternetz explizit darzustellen. Ieh ver-
zichte daher darauf, die Tabelle (4.7) weiter auszubauen. Vielmehr begnuge ich
mich, diejenigen Bestandteile zu notieren, aus denen man unter Beiziehung von
schon verfugbaren Ausdrucken dièse Koeffizienten zusammensetzen kann.

1. S1 gewinnt man aus (4.7J oben zusammen mit

2 sin 20 (B1 f + a2 f1 + 2 f1 /2)

2 [sin e (Durx - Dvr2) + (ri + r\) cos e - 2 r± r2]
sin a)

COS (O

- sin 6 (Ao + cos 6 Ax) 6 + 2 sin 6 (2 F3 - cos 6 F2) 0

2 (0 Vx + cos 0 • 0 Vo) 6 + sin20

pu r2 + D,rt- cos o (Du /i + dv rt) +
sin 6 cos 6 AS6 — 2 sin 0 Fo + cos 7i)0

l2 co

i - r\)

+

(4.8J

2. /S2 gewinnt man aus (4.73) oben zusammen mit

2 sin2 ©(a1/2 - d2/1)
2 [Dw rx + i), r2 - cos e (D. rx + du r2)]

— sin 0 Zl2 0 + sin2 0 Ao co

3. SQ gewinnt man aus (4.7X) oben zusammen mit

(4.82)

und

a2 a1 + d1^ + /2 a1 + z1 a2

sin œ Ax + cos co A2

2 a1 K a2 i£ sin co K Vx K + cos co K V2 K
.83)

Wie man leicht erkennt, bewirkt schon die Einfûhrung orthogonaler Para-
meter einschneidende Reduktionen dieser ausgedehnten Formelaggregate.

§ 5. lUickblick und Ergânzungen

In den beiden vorausgehenden Paragraphen haben wir nun also die explizite
Darstellung derjenigen Gleichungen ermittelt, die wir in § 2 summariseh cha-

rakterisiert haben. Da anhand der summarischen Charakterisierung die all-
gemeinen Zusammenhânge leichter zu erkennen und bequemer zu beschreiben

sind, schicke ich eine Tabelle voraus, die in der linken Kolonne die Nummern
der summarischen Gleichungen enthâlt und in der rechten Kolonne die Nummern

der entsprechenden expliziten Gleichungen :

13 CMH vol. 37
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(2.1j) /*

(2.2) r*

(2.2') r*

(2.12) r*

(2.3) -
(2.3') r,

- (1.21)
(3.17)

^ (3.17')
- (4.5)
^ (4.378)
^ (4.378')

(Auflôsung von (3.

(Auflôsung von (4

17) nach co)

.378) nach H)

(5.1)

Zu dieser Tafel sind noch einige Bemerkungen zu machen.
1. Die explizite Darstellung der Integrabilitâtsbedingung (2.3) haben wir

in § 4 nicht in extenso aufgeschrieben, sondern nur durch die Formelgruppe
(4.3,7 und 8) soweit vorbereitet, daB sie ans dieser zusammengesetzt werden
kann. In diesem Sinne ist nun also in der Tafel der Nummer (2.3) die Nummer
(4.378) zugeordnet worden.

2. Desgleichen haben wir die Auflôsungen von (3.17) nach œ und von
(4.378) nach H nicht in extenso notiert, weil sie zuviel Platz beanspruchen
wiirden, obwohl sie sich elementar bewerkstelligen lieBen. In diesem Sinne
mûssen also in der Tafel die Nummern (3.17') und (4.378') verstanden werden.

Dies vorausgeschickt, kônnen wir nun unsere Ergebnisse um einige weitere
Feststellungen ergânzen.

Satz 13. Eine Floche ist durch ihre beiden invarianten Linearformen bis auf
Kongruenz festgelegt, falls der zugehôrige Hauptwinkel generell ist.

Dièses Ergebnis findet sich, wenn auch in anderer Form, schon bei Blaschke.
Fur uns ist der Satz offenbar eine unmittelbare Folge von Satz 5.

Jetzt aber stellt sich die Einbettungsfrage, also die Frage, wie man zu vor-
gegebenem lanienelement den Hauptwinkel œ (u, v) wahlen muB, damit die
beiden invarianten linearen Differentialformen als diejenigen einer Flâche im
euklidischen jR3 gedeutet werden konnen. Die Antwort liefert

Satz 14. Die beiden invarianten linearen Differentialformen kônnen bei vor-
gegebenem Linienelement dann und nur dann als diejenigen einer Flâche im
euklidischen Rz gedeutet werden, wenn der Hauptwinkel zwei partielle Differential-
gleichungen 3. Ordnung erfûllt, die man erhalt, falls man die mittlere Krûmmung
vermittels (2.3) aus den CoBAZZischen Gleichungen (2.1) eliminiert.

Als notwendige Folge ergibt sich, da/3 dann der Hauptwinkel auch diejenige
partielle Differentialgleichung 4. Ordnung erfiïllt, welche man durch Elimination
von H aus (2.2) erhalt.

Beweis: œ(u,v) ist sicher dann ein einbettbarer Hauptwinkel, wenn zu ihm
ein H(u,v) gefunden werden kann derart, daB die beiden Funktionen zusam-
men die CoDAZZischen Gleichungen erfullen. Wahlen wir nun H gemàB
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H =:g2(u>,v; co, cou, covv), (2.3')

so wird dieser Bedingung nach Voraussetzung gerade Genuge getan. Setzt man
weiter dièses H in (2.2) ein, so ergibt sich als notwendige Folge auch noch die
behauptete partielle Differentialgleichung 4. Ordnung fur co. W.z.b.w.

Durch Vertauschung der Rollen von co und H ergibt sich als weitere Ein-
bettungsaussage

Satz 15. Die Funktion H(u, v) hann bei vorgegebenem Linienelement dann
und nur dann als mittlere Krummung einer Flâche im euJclidischen R3 gedeutet
werden, wenn sie zwei partielle Differentialgleichungen 3. Ordnung erfûllt, die man
erhâlt, falls 'man den Hauptwinhel vermittels (2.2) aus den CoDAZZischen Olei-
chungen (2.1) eliminiert.

Als notwendige Folge ergibt sich, daji dann die mittlere Krummung auch die-
jenige partielle Differentialgleichung 4. Ordnung erfûllt, welche man durch
Elimination von co aus (2.3) erhâlt.

Als weitere Anwendung ergibt sich jetzt die Môglichkeit, die in § 2 definierten
«speziellen co(u,v) resp. H(u, v)» invariant und explizit zu charakterisieren.

Satz 16. Ein spezielles œ(u,v) liegt vor, wenn die invarianten Koeffizienten
von (4.3) verschwinden, also:

S1 82 0. (5.2)

Satz 17, Ein spezielles H{u, v) liegt vor, wenn die Koeffizienten von (3.17)
verschwinden, also:

& & <). (5.3)

Die Begrûndungen flieBen ohne weiteres aus den erwâhnten Definitionen.
Die Gleichungen (5.2), spezialisiert auf Krummungslinienparameter, bilden die

Grundlage zur Bestimmung derjenigen Flâchen, die unter Erhaltung ihrer
Krûmmungslinien verbogen werden konnen. Die Gleichungen (5.3) dagegen
charakterisieren diejenigen Plâchen, die unter Erhaltung ihrer mittleren Krummung

verbogen werden konnen. Insbesondere ergibt sich aus ihnen der oben

behauptete Satz 7.

SchlieBlich noch einige Bemerkungen zu den in den Sâtzen 14 und 15

erwâhnten Eliminationen. Ich beginne mit dem zweiten Fall, also mit der
Elimination vermittels (2.2) oder, explizit formuliert, mit der Berechnung von co

aus der Gleichung (3.17). Es empfiehlt sich, neben dièse Gleichung eine Hilfs-
gleichung zu stellen, so daB folgendes Gleichungspaar den Ausgangspunkt
bildet:

Qx cos co — Q2 sin co Qo

Qx sin co + Q2 cos œ B \ (5.4)
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Durch die zweite Gleichung wird also einfach die HilfsgrôBe R definiert. Die
Auflosung des Systems nach a> und R liefert :

(5.5)

Dièse Gleichungen bilden nun das explizite Âquivalent (3.17') der summa-
rischen Gleichung (2.2').

Im ersten Falle handelt es sich um die Elimination vermittels (2.3), explizit
also um die Auflosung von (4.3) naeh H. Wiederum empfiehlt es sich, eine

Hilfsgleichung beizuziehen, so da8 auch in diesem Falle ein System als Aus-
gangspunkt dient. Die Gleichungen dièses Systems sind

S0 \
T \

K }

wobei die zweite Gleichung lediglich die HilfsgrôBe T definiert. Bei der Auf-
lôsung nach H, die etwas mehr zu rechnen gibt als der vorausgehende Fall,
muB man natûrlich die Beziehung (1.17) beachten. Im ûbrigen erweist es sich
als zweckmàBig, dieser Auflosung folgende Gestalt zu geben :

82)

{80 + 2K8tf - - -SI)

(5.8)

Die geometrische Bedeutung des Verschwindens der Hilfsinvarianten R und
T illustrieren folgende Sàtze :

Satz 18. Eine Flâche kann dann und nur dann unter Erhaltung ihrer mittleren
Krûmmung infinitésimal verbogen werden, falls R verschwindet, d.h. also, falls
sie der Differentialgleichung

Ql + Ql-QÎ o (5.9)
genûgt.

Satz 19. Eine Floche kann dann und nur dann unter Erhaltung ihrer Kriim-
mungslinien infinitésimal verbogen werden, falls T verschwindet, d.h. also, falls
sie der Differentialgleichung

(So + 2KSJ* - 4^2(^2 _ £2) ^ 0 (5 10)

geniigt.
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Es genugt, den Beweis fur Satz 18 zu skizzieren. Nach Voraussetzung darf
einzig co vom Biegungsparameter t abhàngen, so daB gelten muB Et Gt ~

6t Ht 0. Die Ableitung der Integrabilitàtsbedingung (3.17), also der
ersten der Gleichungen (5.4), nach t liefert daher

- R œt 0

Nun ist offenbar wesentlich cot ^ 0 und R 0 ergibt sich als notwendige
Bedingung. Um zu erkennen, daB dièse Bedingung auch hinreichend ist, muB

man das zu (3.17) gehôrige totale System nach t ableiten. Es resultiert ein
totales System fur cot, fur dessen Integrabilitât R 0 hinreichend ist.

Die beiden Sâtze illustrieren iiberdies die Tatsache, daB eine Flàche trotz
infîiiitesimaler Verbiegbarkeit normalerweise nicht verbiegbar ist. Trotz R 0

resp. T 0 kann man nàmlich nach den Gleichungen (5.5) respektive (5.8)
die Funktionen co resp. H berechnen und die Starrheitssàtze 3 resp. 5 ge-
langen zur Anwendung.

(Eingegangen, den 27. April 1962)
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