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Die Grundgleichungen der Flichentheorie III

von W. SCHERRER, Bern

§ 1. Einleitung

Da die Teile I und IT*) schon um einige Jahre zuriickliegen, sollen hier zuerst
die Leitgedanken der ganzen Untersuchung in Erinnerung gerufen werden.
Die klassische Theorie einer Fliche im euklidischen Raum mit dem Orts-
vektor
X =x(u,v) (1.1)
und der Normalen

mz[xu’xv]/l[xu’x'u]l (1.2)

griindet sich bekanntlich auf zwei quadratische Differentialformen, die erste
Grundform oder das Linienelement

== Eu? + 2 Fuv + G2, (1.3)
und die zweite Grundform
—Nx=Lu + 2Muv + No*. (1.4)

Bei Anwendungen macht man immer wieder die Erfahrung, daB der Uber-
gang von den 6 Koeffizienten der beiden Grundformen zu direkt geometrisch
deutbaren Groflen umstéindlich und undurchsichtig ausfillt, speziell dann,
wenn man die Freiheit der Parameterwahl wahren will.

In einer ersten Phase war ich daher bestrebt, geometrische GroBen, nimlich
den Winkel, die Bogenlingen und die Kriimmungen des Parameternetzes, direkt
in die Grundgleichungen einzubauen. Demgemif bezeichne ich mit 6 den
Netzwinkel und mit s;, 8;; ¥y, ¥s; #, %, und 7;, 7, die Bogenlingen, geo-
datischen Kriimmungen, Normalschnittkriimmungen und geoditischen Tor-
sionen der wu-Linien (v = konst.), respektive der v-Linien (u = konst.).

Ein erster Schritt besteht nun darin, dem Linienelement die Gestalt

S==Fu? 1+ 2EGcos Quv + R (1.5)
zu erteilen. Dann stellen die GroBen
__ds; __ ds,
E = T’ G = e (1.6)

1) Diese Zeitschrift Bd. 29, S. 180-198 (1955) und Bd. 32, S. 73-84 (1957), im vorliegenden
Text zitiert unter I und II.

12 CMH vol. 37
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die Verzerrungen der Netzlinien relafiv zu den Parameterskalen dar und geben
AnlaB, die Ableitungen nach den Bogenlingen der - respektive v-Linien als
Operatoren

0 0
B — 1.7
“— Eou » Dy = Gaov (1.7)
einzufiihren.
Fiir die geodatischen Kriimmungen der Netzlinien ergeben sich die Formeln
71=F1_Du0:Y2=P2+D00 (1.8)
worin die Symbole I} und I, definiert sind durch
_ 1 DJE D,G
h=-gg 7 To®0— (1.9)
_ 1 D@ D,E '
9 =— sin 0 G e COtg 0 )7 P

Hier empfiehlt es sich, auch die oft bendtigte Auflésung von (1.9) zu no-
tieren:

D}’EE = — siIr:lB + cotg 6 I,
DG r (1.10)
u — 2
G ~ sinf cotg 0.1
Als Kommutator der Operatoren (1.7) schlieBlich ergibt sich
: DG D, E
D,Du —DuDv=__G-—‘Dv - T.D“. (1.11)

Wegen (1.10) kann man fiir ihn auch schreiben

sin 6(D,D, — D,D,)
= ID, + I,D, — cos 6(I,D, + I,D,). (1.12)

Der zweite Schritt der ersten Phase fiihrt zur Feststellung, da8 die 4 Linien-
krimmungen #,, x,, 7, T, zZwischen denen die Relation

%08 0 4+ 7,8n 0 = 2x,c080 — 7,8in 0 (1.13)

besteht, einen vollstindigen Ersatz fiir die 3 Koeffizienten L, M, N der
zweiten Grundform liefern.

Im Verein mit der eben skizzierten Anpassung der ersten Grundform erhilt
man als Ergebnis der ersten Phase die Grundgleichungen der Flichentheorie in
einer Gestalt [I, §§ 3 und 4], die den Bediirfnissen der geometrischen Deutung
entgegenkommt, wie ich an einigen Beispielen erldutert habe [I, §9].
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Fiir das Folgende bendtigen wir jedoch nicht den ganzen Formelapparat der
ersten Phase. Ich verzichte daher auf seine Wiedergabe und begniige mich,
diejenigen Relationen herauszugreifen, die zusammen mit (1.13) den Ausgangs-
punkt fiir die zweite Phase bilden. Es sind dies diejenigen Formeln, welche an
die Stelle der klassischen Darstellung der Gauss’schen Kriimmung K und der
mittleren Kriimmung H als Simultaninvarianten der beiden Grundformen
treten:

K = x, %y + 7,73 + (%, 75 — %, 7;) cotg 0 (1.14)

und

H=}( + %) — } (v, — 7,) cotg 6 (1.15)

Ein Blick auf die Gleichungen (1.13) - (1.15) regt an zum Versuch, diese
Gleichungen soweit als moglich nach den Linienkriimmungen #,, #,, 7,, 7,
aufzulosen. Die Analyse zeigt, dal es sich zu diesem Zweck empfiehlt, einen
Hilfswinkel @ einzufithren gemif3

Hy — %y
73 — T2

tg 0 = — (1.16)

Macht man noch Gebrauch von der Abkiirzung
J=VH: - K (1.17)
so ergibt die Auflosung folgende Tabelle

#,=H -+ J cos (w + 0); 7, = J sin (w 4 0)

%, =H + J cos (w — 0); 7, =J sin (v — 0) (1.18)

Dabei ist noch zu bemerken, daB3 wir hier — wie schon in IT - das in I gewéhlte
o durch — o ersetzt haben.

Betrachtet man schlieBlich eine beliebige Flichenkurve C durch den Punkt
(u, v), deren Richtung mit der w-Linie (v = konst.) daselbst den Winkel «
einschlieBt, so gelten fiir die Normalschnittkriimmung » und die geodéatische
Torsion v von C folgende Formeln:

# =H + J cos (w + 0 — 2x)
T == J sin (0 + 0 — 2«x) . (1.19)

Da eine Hauptrichtung durch = = 0 charakterisiert werden kann, folgt aus
(1.19)
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Satz 1: Dreht man eine Winkelhalbierende des Parameternetzes um %, 80
fdllt sie mit einer Hauptrichtung zusammen.

Desgleichen ergibt sich aus (1.17) oder (1.19)

Satz 2: Die Transformation
w—>w-+n
muf durch
J—>—-J
kompensiert werden.

Wegen dieser Eigenschaften habe ich o als Hauptwinkel des Netzes be-
zeichnet.

Die zweite Phase der Untersuchung wird nun dadurch eingeleitet, da man
in den Copazzischen Gleichungen der ersten Phase [I § 4 (7) oder (9)] die GréB8en
%y, %y, Ty, Ty gemdB (1.18) durch H,J,0 und o« ersetzt. Doch ist es fiir
unsere jetzigen Zwecke nicht notig, den Weg iiber diese Station zu nehmen.
Vielmehr geniigt es, vermittels klassischer Formeln fiir » und v die Koeffi-
zienten L, M, N der zweiten Grundform direkt durch H,J, 6 und w aus-
zudriicken. Das Ergebnis dieser Berechnung erhilt man aus I § 8 (3), wenn man
daselbst w durch — w ersetzt:

L=E* [H+ Jcos (o + 0)]
M = EG(H cos 0 + J cos w) (1.20)
N =G2 [H + J cos (v — 0)]

Fiihrt man nun diese Werte unter Beachtung von (1.5) in die klassischen
Copazzischen Gleichungen ein, so erhalten dieselben die der zweiten Phase der
Untersuchung entsprechende Gestalt [II, § 2, (1), (2a), (2b)]. Wie man leicht
feststellt, erfahren diese Gleichungen eine gewisse formale Vereinfachung,
wenn man von den durch (1.7) definierten Operatoren D, und D, Gebrauch
macht. Wir notieren daher die Copazzischen Gleichungen in dieser Gestalt:

—dJsin0D,0 = (D,H — cos 6 D H) cos w -+ sin 6D, H sin o
—D,J +cos0D,J + Jsinf (21, — D, 0)

J 8in 0D, 0 = (D,H — cos D, H) cos w — sin 60D, H sin w
— D,J +cos0D,J — J sin b (21, + D,0)

(1.21)

Sofern wir uns die Gauss’sche Krimmung K ein fiir allemal als Funktion
des Linienelements vorgegeben denken [I, § 4, (6) resp. (8)], ist also das System
(1.21) maBgebend fiir die Einbettung der abstrakten Flache in den euklidischen
Raum.
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Fiir das Weitere benétigen wir schlieB8lich noch ein Ergebnis unserer friitheren
Untersuchungen, namlich die Darstellung der Grundformen durch zwei in-
variante lineare Differentialformen gemiB I, § 8, (10) — (13). Mit Riicksicht auf
w— — o konnen wir dieser Darstellung jetzt folgende Fassung geben: Setzt

man
n==ua sin(wje)d—stin(w;G) -
. — . 1.22)
xEEEcos(wje)~u+Gcos(w26)-1} (
so gilt ’

2 =i+
RN =H-N L+ H+I) L (1.23)
Die invarianten Linearformen hat schon W. BLascHKE?) eingefiihrt und an-

gewendet. Mit Hilfe der von uns verwendeten Zeichen E,G,L, N, H und J
kann seine Darstellung folgendermalien geschrieben werden

mEVw+ﬂW—Ld+Vw+ﬂW~N

v

L d,nw N é.ﬂ@ .24
“EV 7 “+V 7 v

Fiithrt man hier die Werte L und N gemiB (1.20) ein, so ergibt sich, wie
man leicht nachrechnet, unsere Darstellung (1.22).

§ 2. Allgemeine Orientierung

Setzt man das Linienelement als bekannt voraus und beriicksichtigt man die
algebraischen Relationen zwischen den noch verbleibenden unbekannten Funk-
tionen, so lassen sich die Gleichungen von Copazzr in jedem Falle auf ein
System von zwei quasilinearen partiellen Differentialgleichungen erster Ord-
nung fiir zwei unbekannte Funktionen zuriickfiihren. Diese unbekannten
Funktionen sind in unserem Falle der Hauptwinkel (%, v) und die mittlere
Kriimmung H (u, v). Zwecks einer allgemeinen Orientierung notieren wir nun
das System von Copazzi summarisch in folgender Gestalt:

Fl(uav;waH;wuawv’Hu’Hv) = O

Fy,(u,v;0,H; w,, w,, H,, H,) 0 (2.1)

I

2) Vorlesungen iiber Differentialgeometrie I, 3. A., Springerverlag 1930; §§ 62, 63, 87, 88.
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Durch Auflésung - etwa nach «, und H, — fiihrt man (2.1) iiber in
kanonische Gestalt
w, = f,(u,v; 0, H; w,, H,) } (2.1,)

Hv = fz(u,vi w, H’; wu’Hu)

Dieselbe eignet sich zum Existenzbeweis der Losung, nicht aber zur Gewinnung
von Aussagen iiber die einzelnen Losungsfunktionen w(u,v) und H(u,v).
Die fiir den letzteren Zweck erforderliche Separation wird eingeleitet durch die-
jenigen totalen Systeme, welche man durch Auflésung von (2.1) nach o,, o,,
respektive nach H,, H, erhilt:

o, = fu(w,v; 0, H; H,, H,) (2.1,)
wvzflz(uﬁv;w,H;Hu’Hv) o
und
Hu=f21(u:v;H’w;wu,w”) } (2.12)

Hv = f22(u> v; H; w; ,, , wv)

Die drei Systeme (2.1;) — (2.1,) sind lediglich Umformungen von (2.1) und
daher algebraisch gleichwertig mit (2.1). Algebraisch neue Relationen liefern
uns dagegen die zu den Systemen (2.1,) und (2.1,) gehérigen Integrabilitéts-
bedingungen.

«). Die Integrabilititsbedingung fir (2.1,) notieren wir summarisch in der
Gestalt

G, (u,v; o;H,H, H, H,,H,, 6 H,) =0 (2.2)

p). Die Integrabilititsbedingung fir (2.1,) sei entsprechend

Gz (w, v; H; o, Wys Wyy Wy, Dyys Byy) = 0 (2.3)

Bei vorgegebenem Linienelement beherrschen nun die vier Gleichungen
(2.1), (2.2) und (2.3) die algebraische Situation.

Wir definieren nun fiir die Funktionen w(%,v) und H (%, v) eine Reihe von
Fallunterscheidungen und versehen dieselben zur Vereinfachung der Ausdrucks-
weise mit einer passenden Terminologie:

Dq,: Ein «generelles H(u,v)» liegt vor, wenn nach dessen Eintragung in
(2.2) diese Gleichung die Unbestimmte @ noch enthilt.

D &y: Ein «spezielles H(u, v)» liegt vor, wenn nach dessen Eintragung in
(2.2) diese Gleichung die Unbestimmte  nicht mehr enthilt.

Dg,: Ein «generelles w(u, v)» liegt vor, wenn nach dessen Eintragung in
(2.3) diese Gleichung die Unbestimmte H noch enthilt.
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Dg,: Ein «spezielles w(u,v)» liegt vor, wenn nach dessen Eintragung in
(2.3) diese Gleichung die Unbestimmte H nicht mehr enthilt.

Entsprechend diesen Fillen ergeben sich nun vier Sitze.

Satz 3 (erster Starrheitssatz). Besitzt eine Fliche zu vorgegebemem Linien-
element eine generelle mittlere Kriimmung, o ist sie bis auf Kongruenz festgelegt.

Beweis: Nach Voraussetzung kann « aus (2.2) als Funktion
w=g (uw,v;H,H,,.. . H,,) (2.2%)

ermittelt werden. Gemif3 (1.20) ist nun auch die zweite Grundform bestimmt.
Nach dem Fundamentalsatz von BONNET ist aber eine Fliche durch die beiden
Grundformen bis auf Kongruenz festgelegt, w.z.b.w.

Natiirlich kann das gefundene w mehrdeutig sein, was Veranlassung zu
Isometrien, nicht aber zu Verbiegungen geben kann.

Satz 4 (erster Verbiegungssatz). Besitzt eine Fliche zu vorgegebenem Lanien-
element eine spezielle mittlere Krivsmmung, so kann sie unter Erhaltung threr mitt-
leren Krimmung verbogen werden.

Beweis: Infolge der Voraussetzung muf} (2.2) identisch in %, v erfiillt sein.
Das totale System (2.1,) ist daher im eigentlichen Sinne integrabel und liefert
zu jedem Anfangswert w, eine Losung w(u,v). Eine stetige Verdnderung des
Anfangswertes w, bewirkt somit eine stetige Veréinderung der Losung w(u, v),
wihrend H (u,v) ungedndert bleibt. Nach (1.20) wird also die zweite Grund-
form stetig verdndert, wihrend Linienelement und mittlere Kriimmung er-
halten bleiben. W.z.b.w.

Satz b (zweiter Starrheitssatz). Besitzt eine Fliche zu vorgegebenem Linien-
element einen generellen Hauptwinkel, so 1st sie bis auf Kongruenz festgelegt.

Satz 6 (zweiter Verbiegungssatz). Besitzt eine Fliche zu vorgegebenem Linien-
element einen speziellen Hauptwinkel, so kann sie unter Erhaltung ihres Haupt-
winkels verbogen werden.

Die Beweise ergeben sich aus den Beweisen fiir die Sitze 3 und 4 dadurch,
daB man die Rollen von H und  vertauscht. Insbesondere tritt dann an
die Stelle von (2.2') die Auflosung von (2.3):

H=g,(u,v; 0,0y, ... Wyy) . (2.3)

Die in den Sitzen 4 und 6 enthaltenen konkreten Aufgaben, némlich die
Ermittlung der einschligigen speziellen H(u,v) und o(u,v), sind — wenn
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auch mit anderen Begriffen — schon im vorigen Jahrhundert von Copazzi,
Bour und BoNNET aufgegriffen worden3). Insbesondere hat BonwET?) die
zweite Aufgabe vollstindig gelost. Da nach Satz 1 durch w(u,v) die Haupt-
richtungen auf einer Fliche festgelegt werden, ist sie aequivalent mit der Auf-
gabe, diejenigen Flachen zu bestimmen, welche unter Erhaltung ihrer Kriim-
mungslinien verbogen werden konnen. Diese Aufgabe hat W. BLASCHKES) wie-
der aufgegriffen und gestiitzt auf die invarianten Linearformen (1.24) be-
handelt.

Die erste Aufgabe kann auch aufgefalt werden als die Frage nach den-
jenigen Flichen, welche unter Erhaltung ihrer Hauptkriimmungen verbogen
werden konnen. Dies folgt ohne weiteres daraus, dal neben der mittleren
Kriimmung auch die Gauss’sche Kriimmung als Biegungsinvariante erhalten
bleibt. BoNNET®) findet zwei Klassen von Losungen: Die Flichen H = konst.
und daneben eine Klasse «vom selben Allgemeinheitsgrad» wie die erste. Diese
letztere Klasse hat spater HazzipAk1s?) vollstindig integriert.

Auf diese Aufgabe bin ich in II § 4 gestofen und habe daselbst die hier in
Satz 4 auftretenden «Flichen mit spezieller mittlerer Kriimmung» als «inte-
grable Flichen» bezeichnet. Bei meiner Darstellung wurde es evident, daB die
Flichen konstanter mittlerer Kriimmung integrabel sind. Dagegen lie ich die
Frage offen, ob es daneben noch weitere integrable Flichen gibt. Nach den
eben zitierten Arbeiten kann also diese Frage bejaht werden. Immerhin haben
meine weiteren Untersuchungen eine Einschrinkung geliefert. Es gilt ndmlich

Satz 7. Kann eine reelle Fliche vm euklidischen Raum unter Erhaltung threr
mattleren Kriimmung verbogen werden, so st sie notwendigerweise vom W EIN-
GARTENSchen Typus, d.h. thre mittlere Kriiommung ist eine Funktion ihrer
Gavuss’schen Krimmung.

BoNNET und HAzziDAKIS arbeiten mit isotropen Parametern. Da nun die von
diesen Autoren gefundenen Flichen, abgesehen von den Flichen H = konst.,
nicht vom WEINGARTENschen Typus sind, ergibt sich ohne weiteres der Schlu8,
daB diese Flichen keine liickenlos reelle Darstellung gestatten.

Auf diese Zusammenhinge und den Beweis von Satz 7 hoffe ich bei anderer
Gelegenheit zuriickzukommen. Hier will ich mich auf das Grundsétzliche und

3) Die historische Entwicklung schildert A. Voss in seinem Artikel «Abbildung und Ab-
wicklung zweier Flichen aufeinander». Enzyklopidie der math. Wissenschaften. III D 6a,
S. 406—408 (1903).

4) «Sur la théorie des surfaces applicables sur une surface donnée.» Journal de I’Ecole poly-
technique XXV (Cahier 42), 8. 568ff. 1867.

5) a.a.0. %), §§ 87 und 88.

%) a.a.0.4), S. 73-92.

7) Journal f. Mathematik 117, S. 42-56 (1897).
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Methodische beschréanken. Zunichst noch einige Hinweise, die dem Anschlufl
an die konkreten Probleme dienen.

Das mit (2.1) und (2.1;,) d&quivalente summarisch geschriebene System
(2.1,) haben wir in seiner konkreten Gestalt mit Hilfe der Operatoren (1.7)
oben unter (1.21) notiert. Dasselbe System zusammen mit seiner Integrabili-
tatsbedingung (2.2) findet der Leser auch in II, § 2, (1) — (6). Konsequenter-
weise stellt sich jetzt die Aufgabe, die konkrete Gestalt des ebenfalls zu (2.1)
und (2.1,) dquivalenten Systems (2.1,), sowie der dazugehorigen Integrabili-
tatsbedingung (2.3) zu ermitteln. Der fiir uns naheliegendste Weg besteht
offenbar darin, das oben angegebene System (1.21) nach D,H und D, H auf-
zulésen. Nun aber zeigt sich, daf3 die Durchfiihrung der Rechnung und ins-
besondere anschlieBend eine durchschaubare Gestaltung der Integrabilitéits-
bedingung noch erheblich groBlere Komplikationen bietet als die in II, §§ 2
und 3 angestellte Analyse.

Ich lieB daher die Sache liegen, bis ich bei einer neuerlichen Priifung des
ganzen Fragenkomplexes feststellte, dal man aus den explizit verfiigbaren
Differentialformen (1.22) einen iibersichtlichen Formalismus gewinnen kann.
Der Nutzen dieses Formalismus beruht darauf, daf} er sich aus wenigen Grund-
invarianten vermittels invarianter Operationen aufbauen 148t und daher auto-
matisch Invarianten erzeugt und explizit darzustellen gestattet. Das Detail
soll im néchsten Paragraphen zur Sprache kommen.

§ 3. Invarianter Formalismus

Wir stellen jetzt also die invarianten linearen Differentialformen (1.22) an

die Spitze:
41 = E sin (—a—)—;——?—) . u + @ sin (wz—ﬂ) . v
(3.1)
22 = K cos (—#—) . u + @ cos (—-ﬁ)——é—_—ﬁ—) . v

Durch sinngemiBe Ubertragung der Invariantentheorie quadratischer Diffe-
rentialformen auf ein System linearer Differentialformen?®) kann man aus (3.1)
invariante Differentialoperatoren und Invarianten herleiten.

Die invarianten Differentialoperatoren — es sind natiirlich deren zwei — sind
definiert durch

8) Fiir die Durchfiihrung dieser Ubertragung verweise ich den Leser auf meine «Grundlagen
zu einer linearen Feldtheorie», Z. Physik 138, 16-34 (1954). Die invarianten Differentialopera-
toren habe ich eingefiihrt in § 4 meines Artikels «Zur linearen Feldtheorie V», Z. Physik 152,
319-327 (1958), wobei noch zu beachten ist, daB ich in § 1 des vorausgehenden Artikels IV,
Z. Physik 144, 373-387 (1956), die Bezeichnung leicht geéindert habe.
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sinfot= cosfD, —cosxD,
sin 0 0*= — sin B D, 4 sinx D, (3.2)
mit
__w+ 0 __w—0
o= 9 ;ﬂ: 2 . (3‘2I)

Sie sind formal invariant gegeniiber beliebigen Parametertransformationen
und erzeugen daher aus einem Funktionensystem eines bestimmten Transfor-
mationscharakters wiederum ein Funktionssystem vom selben Transforma-
tionscharakter, insbesondere also aus einer Invarianten wiederum eine In-
variante.

Aus den Koeffizienten der linearen Grundformen (3.1) kann man nun vier
primére Invarianten gewinnen, von denen wir aber fiir unsere Zwecke nur zwei
benotigen. Dieselben sind definiert durch

sin 0 fl= sin g 2, — sinwx £,

sin 0 f2= cos § 2, — cos x £, (3.3)
mit den Abkiirzungen

Q=1+ D,f; =1, + D, (3.3")

Die Ableitungssymbole 8' und ¢* habe ich identisch aus den zitierten Ar-
beiten?®) iibernommen, die Invarianten f' und f* dagegen stellen die Verdop-
pelungen der daselbst durch die gleichen Zeichen definierten Invarianten dar.
Im weiteren Verlauf ist nun also wohl zu beachten, dafl die Ziffern 1 und 2
in diesen vier Symbolen keine Exponenten, sondern Zeiger darstellen.

Aus den Invarianten f' und f2 konnen wir nun mit Hilfe der vier Spezies
und der Operatoren 9! und ¢ alle Invarianten aufbauen, die wir bendtigen.
Zur Ilustration dieses Formalismus, aber auch aus systematischen Griinden
wollen wir jetzt die formale Struktur der zum System (1.21) gehorigen Inte-
grabilititsbedingung analysieren. Die Bedingung selbst wurde oben summa-
risch durch die Gleichung (2.2) symbolisiert. Explizit aufgestellt und einer
ersten Analyse unterworfen habe ich sie in IT §§ 2 und 3. Dabei erwies es sich
als notwendig, neben den BeELTRAMIschen Operatoren V' und A weitere Dif-
ferentialoperatoren V., V, und 4,, 4, einzufiihren. Die anschlieBende Unter-
suchung lie dann erst nach miihsamer und wenig durchsichtiger Rechnung
erkennen, daB sich die neuen Operatoren wie orthogonale Vektoren in der
Tangentialebene transformieren. Mit Hilfe unseres Formalismus kann nun diese
Rechnung durchsichtig gestaltet werden.

Ich beginne damit, daB ich die in II, §§ 2 und 5 angegebenen Operatoren mit
einer leichten Modifikation und einigen Ergénzungen zusammenstelle.

An die Spitze stelle ich vier lediglich als Abkiirzungen dienende Hilfsopera-
toren V,(¢ =0, .., 3), die durch folgende Identititen definiert sind:
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sin?@ Vo=1I,D,+ IyD, —cos 0 (I'y D, + I, D,)
sin@ Vi=IyD,+I,D, —cos 0 (IyD, + I, D,)
sin 0 Vo=1\D, — I, D,

sin 0 Vy= I,D,—-1TI,\D,

(3.4)

AnschlieBend definiere ich vier von einer willkiirlichen Funktion ¢ be-
herrschte Operatoren ¢ 7, (¢ =0, ..., 3)

sin?6oVy=D,9D,+ D,9 D, —cos6(D,9 D, + D, 9D,
sin®0 ¢ V,= D, ¢ D, + D, p D, — c0s 6 (D, ¢ D, + D, D,)
sin 0pVy=D,9D, —D,¢pD,

sin V= D,¢oD, —D,opD,

(3.5)

SchlieBlich definiere ich unter Verwendung von (3.4) und (3.5) noch drei
Differentiatoren zweiter Ordnung:

sim2 4, =D,D, + D,D, — cos 6 (D,D, + D,D,)
+ sin20 V,+sinf -6V,
sin204, =D,D,+ D,D, — cos 6 (D,D, + D,D,)
+ sin%0 V, —cos Osin -0V, (3.6)
sin 64, =D,D, — D,D,
—sin@V, —cos0-0V,— 0V,
0O =D,D,—D,D, —sin0V,

Zu diesen Definitionen sind nun einige Bemerkungen zu machen:

1. Samtliche Operatoren sind als ungebundene Operatoren definiert, die auf
eine Funktion y zur Wirkung gelangen.

2. Die Operatoren V,, V., V,, 4,, 4,, 4, entsprechen unseren fritheren Ope-
ratoren V, — V,,V,, 4, — 4,, A,, wobei die drei ersten jetzt ungebunden
sind, wihrend sie frither gebunden waren.

3. Die Vorzeichenénderungen
V,,4, in I1 - —V,, — 4, in III (3.7)

habe ich vorgenommen, damit im orthogonalen Fall 6 = —g- ein positives Vor-

zeichen an der Spitze steht. Es empfiehlt sich, diesen Vorzeichenwechsel in
allen einschligigen Relationen von II vorzunehmen, bevor man die behauptete
Ubereinstimmung der Operatoren nachpriift. Bei der weiteren Schilderung setze
ich daher voraus, da3 dieser Zeichenwechsel in IT schon vollzogen sei.
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4. Zusitzlich eingefithrt habe ich in (3.5) den Operator ¢ |,, der, ange-
wendet auf y, die Funktionaldeterminante in der Gestalt

-

Dﬂ:(PDu'p ”“ Du(pDvw = Va(‘/’, (}9) (38)

sin 6

eV p=
liefert.

5. Die behauptete Ubereinstimmung der Operatoren kann man nun am
besten so nachpriifen, daB man die — entsprechend (3.7) modifizierten —
Formeln II, § 5, (2) — (4) als Ausgangspunkt wihlt. Rechnung und Vergleich
ergeben folgende Relationen:

eVey = Vop = Vip, v

pVivy = 9V, = Vip,p);(E=1,2)

pVsy = —9Viep = —Vi(p,y) (3.9)

eVop = Vip,p) = Vi)

eV,ip = Vilp, @) = Vilp); 0 =1, 2)

und

doy = Ay
Ay = Ay (3.10)
day = Ay

6. Als vierte Identitét (3.6) haben wir noch den in diesen Zusammenhang
gehdrenden Kommutator (1.12) mit Hilfe des in (3.4) eingefiihrten Operators
V, notiert.

Nachdem wir uns von der Ubereinstimmung unserer neuen Operatoren mit
unseren fritheren im Sinne der Gleichungen (3.9) und (3.10) iiberzeugt haben,
wollen wir fortan nur noch von den Definitionen (3.4) bis (3.6) Gebrauch
machen.

Unser nichstes Ziel besteht darin, die Transformationsweise der Operatoren
(3.5) und (3.6) aufzukliren. Zu dem Zweck ersetzen wir in ihnen die Opera-
toren D, und D, vermittels der Auflésung

—_— 1 1 2
D, = sinx @' + cos x @ } (3.11)

D, = sin f o* + cos g 72

der Definition (3.2) durch die Operatoren o' und 2. Unter fortlaufenden
goniometrischen Umformungen und bestéandiger Verwendung der Definitionen
(3.3), (3.2') und (3.3’) erhilt man dann folgende Darstellung fiir die in Frage
stehenden Differentiatoren:
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eV, = g o 4 ¢ ¢ o
pV,= sinw(Ppd + ¢
— cosw (Ot &' — 0% ¢ 02
. (¢ @ ) (3.12)
pVy= sinw (¢ ad — ¢ 3
+ cos w (0% @ 9* | ' @ B?)
pVs= Reod — oo
A, = R+ RE — (10 + L)
4, = sin o (%' + ' + f2o* + fL0?)
—cos w (0*at — 92d% 4 frot — f202) (3.13)
Ay =  sin o (0'3* — %% + flot — f2oR)
+ cos w (0%0* + ' 2% + f2o' + flo?)

In diesen Zusammenhang gehort noch der Kommutator (1.12), der folgende
Gestalt annimmt:

PO — P =foit — fige (3.14)

Die Gleichungen (3.12) und (3.13) bringen den Transformationscharakter
der Operatoren zur Evidenz. Es ergeben sich folgende Aussagen, die wir der
Einfachheit halber unter der Voraussetzung formulieren, da ¢ eine In-
variante sei:

Satz 8. Die Operatoren V,, Vs und A, sind Invarianten.

Satz 9. Die Operatorenpaare V,,V, und A,, A, stellen linksdrehende ortho-
gonale Vektoren dar.

Nun wollen wir noch die geometrische Bedeutung der Operatoren o', 9 und
der Invarianten f!, 2 ermitteln. Zu dem Zweck geniigt es, Kriimmungslinien-

parameter einzufiihren, was auf die Bedingungen o = 6 = #/2 hinausliduft.
Die Definition (3.2) liefert dann o* = D,, ¢* = D, und wir erhalten

Satz 10. Die Operatoren @' und ¢* stellen die Ableitungen nach den Bogen-
lingen der Krivmmungslinien dar.

Weiter ergibt sich aus (3.3) und (3.3’) in Verbindung mit (1.8) f! = — y,,
f2 =y, und wir haben

Satz 11. Die Invarianten > und — f' stellen die geoddtischen Kriimmungen
der Kriimmungslinien dar.
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Auf die Invarianten S,=f* und 8= — f sind wir iibrigens in einem
andern Zusammenhang schon in I, § 8, (21) und (22) gestoBen.
Als Anwendung ergibt sich nun leicht

Satz 12. Die GAuUss’sche Gleichung erhdlt durch den tnvarianten Formalismus
folgende Qestalt:

M+ EP - [(FP+ FPl=K (3.15)

Beweis. Bei Einfiihrung von Kriimmungslinienparametern geht (3.15) iiber
in
“Du7’2+Do'Y1 - (?% +7§) = K.

Genau dieselbe Gleichung erhilt man aber, wenn man die GAuss’sche Glei-
chung in I, § 4 (6) auf 0 = u/2 spezialisiert. W.z.b.w.

Zum Abschlufl wollen wir noch die Integrabilitédtsbedingungen des Systems
(1.21) durch die neu definierten Operatoren (3.5) und (3.6) darstellen. Zu dem
Zweck greifen wir zuriick auf ihre urspriingliche Fassung in II, § 2, (3) und (4).
Der erste Schritt besteht in der Durchfithrung der Vorzeichenénderung (3.7).
Als zweiter Schritt empfiehlt sich eine Anderung der Bezeichnung gemés

@,Q:, R inIl -» — @,, Q,, @, in III. (3.16)

Als dritter Schritt bleibt dann nur noch die Einfithrung der neuen Operatoren
gemil den Gleichungen (3.9). Als Resultat ergibt sich

@, co8 w — @, 8in w = @, (3.17)
mit
AQ, = A:IH _ 2HJ1271J
AQy= A}H - 2HJZ*‘J (3.18)
AQ,= A:,IJ _ JVOJ—SZHVOH _ 9K,

wobei A einen frei wihlbaren Proportionalititsfaktor darstellt. Die Sitze 8
und 9 lassen dann unmittelbar den Transformationscharakter der GroBen
Qos @1, @2 erkennen.

Fiihrt man schlieBlich in (3. 18) und (3.17) die invarianten Operatoren geméif
(3.12) und (3.13) ein, so erhilt die Integrabilititsbedingung (3.17) folgende
absolutinvariante Gestalt:
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[oto! + 220 — (f1o* + fo?)]J
J
+|@m-m%+ﬂm-4mﬂﬂ
J (3.19)
(*J + LH) + (#J — *H)e
_ =
= 2K

§ 4. Totales System fiir H

Die am SchluB von § 2 geschilderte Aufgabe, also die Aufstellung eines totalen
Systems fiir H, konnen wir jetzt mit Hilfe des invarianten Formalismus in
durchsichtiger Weise bewiéltigen.

In den Gleichungen (1.21) fithren wir vermittels der Spezialisierung

o =0=umn/2

Kriimmungslinienparameter ein und ersetzen hierauf entsprechend den Sat-
zen 10 und 11 die Symbole D,, D,, I}, I, durch &, ¢, f2, — f*. Unter Be-
achtung von (1.17) ergibt sich dann das absolut invariante totale System

QH+J)PH=4fJ2+ K

2H—-J)2H=4f2J2 4+ 2K (4.1)

Fiir Berechnungszwecke empfiehlt es sich, daneben das gemaf (1.17) gleich-
wertige System

2H+J)orJ=4fHJ — K } (4.2)

2(H —-J)*rJ=4fHJ + *K )

zu notieren. '

Als Integrabilititsbedingung fiir (4.1) ergibt dann die Berechnung bei Be-

riicksichtigung des Kommutators (3.14) die Relation

48,J2 + 48, HJ = 8, (4.3)

mit den invarianten Koeffizienten
S,=[ffo' 4 fr&® — (Bf + 3'f2 + 2f1f*)] K (4.4,)
S =[fto* — fi&® — (O — 2] K (4.45)
Sy=K[?* 4 00 — 3 (f20' + )] K — 20 KPP K. (4.4)
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Die Gleichungen (4.1) und (4.3) finden sich im wesentlichen schon bei
BrascHKE?®). Nur handelt es sich dort nicht um ein totales System fir H,
sondern um ein solches fiir (H -+ J)3.

Mit Hilfe des invarianten Formalismus ist es nun moglich, diese Gleichungen
fir ein beliebiges Parameternetz explizit darzustellen. Um dies zu erreichen,
haben wir nur nétig, die Symbole o, @2, f', f2 vermittels der Definitionen
(3.2), (3.2'), (3.3) und (3.3') zu eliminieren. Die Rechenarbeit ist allerdings
im Falle der Gleichungen (4.3), (4.4,), (4.4,) und (4.4,) erheblich.

An Stelle des Systems (4.1) erhalten wir das System

2K sin 0D, H = 4A4,J° — 44,J*H + A,J + A;H (4.5)
2K sin 6D, H = 4B,J?® 4+ 4B,J*H + B,J + B,H )
mit
A= cos w 2, — cos (w + 0) 2,
A, = £, — cos 0 £, (4.5,)
A,= [sin (0 + 0) D, — sin w D,] K e
A,= sin 6D, K
und
By= cos w £y — cos (w — 6) 0,
B, = £, — cos 0 £, (4.5,)
B,=[sin (w — 0) D, — sin wD,] K R
By= sin 0 D, K

wobei £, und £, durch (3.3') gegeben sind.
Fiir das Weitere empfiehlt es sich, neben den primiren Operatoren (3.4)
noch folgende Hilfsoperatoren einzufiihren:

Iy=V,— (28in0)1 (0V,+ cos0-0V,)
le Vl + (2 Sin 0)_1 (0 V3 + CO8 6 ° 0 Vg)
IL=V, — (2sin0)*(0Vy,+ cos -0V,
I,=V;+ (2sin0) 1 (0V, 4+ cos6-0V,)
Gestiitzt auf sie gilt dann folgende Riickverwandlungstabelle

frot+ o= — (L + oV, (4.7,)

(4.6)

fzal_|_f1a2= sinw(ﬂz-l—%sz) (4.7,)
—cosw (I, + 0 V,) o
flot — 2= —sinw(l;, + 3wV,
(4.7,)
—cos o (I, + 3 0 V,)

%) a.a.0. ?), §88 (178) und (179).
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frot —frot= II,+ 3 oV,. (4.7)

Unser Hauptanliegen ist jetzt, die invarianten Koeffizienten der Gleichung
(4.3) in bezug auf ein beliebiges Parameternetz explizit darzustellen. Ich ver-
zichte daher darauf, die Tabelle (4.7) weiter auszubauen. Vielmehr begniige ich
mich, diejenigen Bestandteile zu notieren, aus denen man unter Beiziehung von
schon verfiigbaren Ausdriicken diese Koeffizienten zusammensetzen kann.

1. S, gewinnt man aus (4.7,) oben zusammen mit

2sin20 (ot 2+ 2L+ 2=

2[sin 0 (D, I}, — D, I}) - (I'* + I'3) cos 6 — 2 I, T]
sinw{ —sinf(4y+cos04,) 0+ 2sin6(2V; —cos0V,)0
+ 20V, +cos0-0V,) 0 + sin260 4, o (4.8,)
2D, I3+ Dy, Iy —cos 6 (D, Iy + D, Iy) + (I'f — I'3) sin 6]

—cosw) +sinfOcos 4,0 —2sin6 (Vy+ cosOV,)0
+ sin 20 4, w

2. S, gewinnt man aus (4.7;) oben zusammen mit

2s8in? (0t f2 — *f1) =
2[D, T, + D, Ty — cos 0 (D, I} + D, Iy)] (4.8,)
—8in 0 4,0 + sin2 0 4, o

3. S, gewinnt man aus (4.7,) oben zusammen mit

a2al+3162+f2al+fla2
= sin w 4, + cos w 4,
und (4.83)
200 KK =sinw KV, K+ cosw KV, K

Wie man leicht erkennt, bewirkt schon die Einfithrung orthogonaler Para-
meter einschneidende Reduktionen dieser ausgedehnten Formelaggregate.

§ 5. Riickblick und Ergiinzungen

In den beiden vorausgehenden Paragraphen haben wir nun also die explizite
Darstellung derjenigen Gleichungen ermittelt, die wir in § 2 summarisch cha-
rakterisiert haben. Da anhand der summarischen Charakterisierung die all-
gemeinen Zusammenhinge leichter zu erkennen und bequemer zu beschreiben
sind, schicke ich eine Tabelle voraus, die in der linken Kolonne die Nummern
der summarischen Gleichungen enthilt und in der rechten Kolonne die Num-
mern der entsprechenden expliziten Gleichungen:

13 CMH vol. 37
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2.1,) ~ (1.21)
(2.2) ~ (3.17)

(2.2") ~ (3.17") (Auflosung von (3.17) nach w)

(2.1,) ~ (4.5) (B:dy
(2.3) ~ (4.378)

(2.3') ~ (4.378") (Auflésung von (4.378) nach H)

Zu dieser Tafel sind noch einige Bemerkungen zu machen.

1. Die explizite Darstellung der Integrabilititsbedingung (2.3) haben wir
in § 4 nicht in extenso aufgeschrieben, sondern nur durch die Formelgruppe
(4.3,7 und 8) soweit vorbereitet, dafl sie aus dieser zusammengesetzt werden
kann. In diesem Sinne ist nun also in der Tafel der Nummer (2.3) die Nummer
(4.378) zugeordnet worden.

2. Desgleichen haben wir die Auflosungen von (3.17) nach @ und von
(4.378) nach H nicht in extenso notiert, weil sie zuviel Platz beanspruchen
wiirden, obwohl sie sich elementar bewerkstelligen lieBen. In diesem Sinne
miissen also in der Tafel die Nummern (3.17') und (4.378’) verstanden werden.

Dies vorausgeschickt, konnen wir nun unsere Ergebnisse um einige weitere
Feststellungen erginzen.

Satz 13. Eine Fliche ist durch thre beiden invarianten Linearformen bis auf
Kongruenz festgelegt, falls der zugehirige Hauptwinkel generell ist.

Dieses Ergebnis findet sich, wenn auch in anderer Form, schon bei BLASCHKE.
Fiir uns ist der Satz offenbar eine unmittelbare Folge von Satz 5.

Jetzt aber stellt sich die Einbettungsfrage, also die Frage, wie man zu vor-
gegebenem Linienelement den Hauptwinkel  (u,v) wihlen mufl, damit die
beiden invarianten linearen Differentialformen als diejenigen einer Fliche im
euklidischen R; gedeutet werden konnen. Die Antwort liefert

Satz 14. Die beiden invarianten linearen Differentialformen kinnen bei vor-
gegebenem Linienelement dann und nur dann als diejenigen einer Fliche im
euklidischen R, gedeutet werden,wenn der Hauptwinkel zwes partielle Differential-
gleichungen 3. Ordnung erfillt, die man erhdlt, falls man die mittlere Krimmung
vermittels (2.3) aus den CopAazzischen Qleichungen (2.1) eliminiert.

Als notwendige Folge ergibt sich, daff dann der Hauptwinkel auch diejenige
partielle Differentialgleichung 4. Ordnung erfallt, welche man durch Elimination
von H aus (2.2) erhdlt.

Beweis: (u,v) ist sicher dann ein einbettbarer Hauptwinkel, wenn zu ihm
ein H(u,v) gefunden werden kann derart, daBl die beiden Funktionen zusam-
men die Copazzischen Gleichungen erfiillen. Wihlen wir nun H gemil



Die Grundgleichungen der Flichentheorie III 195
H=gy,(u,v; 0, 0, ... 0,,), (2.3")

so wird dieser Bedingung nach Voraussetzung gerade Geniige getan. Setzt man
weiter dieses H in (2.2) ein, so ergibt sich als notwendige Folge auch noch die
behauptete partielle Differentialgleichung 4. Ordnung fir w. W.z.b.w.

Durch Vertauschung der Rollen von w und H ergibt sich als weitere Ein-
bettungsaussage

Satz 156. Die Funktion H (u,v) kann bei vorgegebemem Linienelement dann
und nur dann als mittlere Kriommung einer Fliche vm euklidischen Ry gedeutet
werden, wenn sie zwei partrelle Differentialgleichungen 3. Ordnung erfallt, die man
erhdlt, falls man den Hauptwinkel vermittels (2.2) aus den Copazzischen Glei-
chungen (2.1) eliminiert.

Als notwendige Folge ergibt sich, daf3 dann die mittlere Kriimmung auch die-
jenige partielle Differentialgleichung 4. Ordnung erfillt, welche man durch Eli-
maination von w aus (2.3) erhdlt.

Als weitere Anwendung ergibt sich jetzt die Moglichkeit, die in § 2 definierten
«speziellen w(u,v) resp. H (%, v)» invariant und explizit zu charakterisieren.

Satz 16. Ein spezielles w(u, v) liegt vor, wenn die invarianten Koeffizienten

von (4.3) verschwinden, also:
81282=0. (5.2)

Satz 17, Ein spezielles H (u,v) liegt vor, wenn die Koeffizienten von (3.17)
verschwinden, also:

Q=0;,=0. (5.3)

Die Begriindungen flieBen ohne weiteres aus den erwidhnten Definitionen.
Die Gleichungen (5.2), spezialisiert auf Kriimmungslinienparameter, bilden die
Grundlage zur Bestimmung derjenigen Fldchen, die unter Erhaltung ihrer
Kriimmungslinien verbogen werden koénnen. Die Gleichungen (5.3) dagegen
charakterisieren diejenigen Flichen, die unter Erhaltung ihrer mittleren Kriim-
mung verbogen werden konnen. Insbesondere ergibt sich aus ihnen der oben
behauptete Satz 7.

SchlieBlich noch einige Bemerkungen zu den in den Sitzen 14 und 15 er-
wihnten Eliminationen. Ich beginne mit dem zweiten Fall, also mit der Eli-
mination vermittels (2.2) oder, explizit formuliert, mit der Berechnung von w
aus der Gleichung (3.17). Es empfiehlt sich, neben diese Gleichung eine Hilfs-
gleichung zu stellen, so daBl folgendes Gleichungspaar den Ausgangspunkt
bildet:

@, cos w — @, sin w = @,
@ sinw -+ @Qycosw= R (5.4)
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Durch die zweite Gleichung wird also einfach die Hilfsgré8e R definiert. Die
Auflosung des Systems nach w und R liefert:

QR+ Q@
RO T T 3

B =Qi+ Q- @

Diese Gleichungen bilden nun das explizite Aquivalent (3.17') der summa-
rischen Gleichung (2.2").

Im ersten Falle handelt es sich um die Elimination vermittels (2.3), explizit
also um die Auflosung von (4.3) nach H. Wiederum empfiehlt es sich, eine
Hilfsgleichung beizuziehen, so dal auch in diesem Falle ein System als Aus-
gangspunkt dient. Die Gleichungen dieses Systems sind

4.SIJ2 + 482HJ =S0 ‘
48, HJ +28,(H2+T)=T |

wobei die zweite Gleichung lediglich die HilfsgroBe 7' definiert. Bei der Auf-
16sung nach H, die etwas mehr zu rechnen gibt als der vorausgehende Fall,
mul man natiirlich die Beziehung (1.17) beachten. Im iibrigen erweist es sich
als zweckmiBig, dieser Auflosung folgende Gestalt zu geben:

AR — @,
QF + @3 (5.5)

;8in 0 =

(5.86)

8, + 2KS8, + T
2 — Do ]
(H +J) 2(S; + 8
S, + 2K8, — T (5.8)
g = 2o 1
(H —J) 2(S; — S3)
T2 = (S, + 2K 8, — 4K2(8% — S3)

Die geometrische Bedeutung des Verschwindens der Hilfsinvarianten B und
T illustrieren folgende Sitze:

Satz 18. Eine Fliche kann dann und nur dann unter Erhaltung ihrer mittleren
Krivmmung infinitesimal verbogen werden, falls R verschwindet, d.h. also, falls
sie der Differentialgleichung

AR+ —-%=0 (5.9)
genilgt.

Satz 19. Eine Fliche kann dann und nur dann unter Erhaltung ihrer Kriim-
mungslinien infinitesimal verbogen werden, falls T verschwindet, d.h. also, falls
sie der Differentialgleichung

(S + 2K 8, — 4K2(S% - Sg) =0 (5.10)
geniigt.
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Es geniigt, den Beweis fiir Satz 18 zu skizzieren. Nach Voraussetzung darf
einzig » vom Biegungsparameter ¢ abhingen, so dafl gelten mul ¥, = @, =
= 0, = H, = 0. Die Ableitung der Integrabilitatsbedingung (3.17), also der
ersten der Gleichungen (5.4), nach ¢ liefert daher

—R’wt:O.

Nun ist offenbar wesentlich w, 0 und R = 0 ergibt sich als notwendige
Bedingung. Um zu erkennen, daf} diese Bedingung auch hinreichend ist, muf}
man das zu (3.17) gehorige totale System nach ¢ ableiten. Es resultiert ein
totales System fiir w,, fiir dessen Integrabilitit B = 0 hinreichend ist.

Die beiden Sitze illustrieren iiberdies die Tatsache, daB eine Fliche trotz
infinitesimaler Verbiegbarkeit normalerweise nicht verbiegbar ist. Trotz R = 0
resp. 7' = 0 kann man ndmlich nach den Gleichungen (5.5) respektive (5.8)
die Funktionen ® resp. H berechnen und die Starrheitssitze 3 resp. 5 ge-
langen zur Anwendung.

(Eingegangen, den 27. April 1962)
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