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Plongements différentiables dans le domaine stable

par André Haefliger, Genève
En hommage à Arnold Shapiro

L'idée que les obstructions au plongement d'un polyèdre fini K dans l'espace
euclidien se trouvent dans la cohomologie du carré symétrique réduit de K,
remonte à Van Kampen [5]. Cette idée a été reprise avec une grande extension
par Wu Wen Tsun [13] et Arnold Shapiro [6] indépendamment. Ces deux
auteurs ont notamment comblé une lacune dans la démonstration de Van
Kampen [5] de la suffisance d'une condition nécessaire pour pouvoir plonger
un complexe de dimension n dans R2n. Tous deux s'appuyent essentiellement
sur le procédé fondamental imaginé par Whitney [11] pour éliminer les paires
de points doubles isolés de signes opposés, dans le cas différentiable.

Wf Wen Tsun a étudié dans [13] la cohomologie du produit symétrique
réduit d'un complexe et d'une variété et il a défini des classes obstructions au
plongement liées étroitement aux classes caractéristiques. Il a été d'autre part
l'initiateur dans l'étude des isotopies [14], [15], [16]. De son côté Arnold
Shapiro a suggéré dans [6] une méthode, pour l'étude des obstructions d'ordre
supérieur, qu'il a développée dans des travaux non publiés, et il a donné une idée
précise de ce qu'est le domaine stable.

Suivant le point de vue de Van Kampen, Shapiro et Wtr, nous nous bornons
à considérer ici exclusivement le cas différentiable. Cependant tous les théorèmes
de cet article sont probablement aussi vrai pour les plongements de polyèdres
finis dans une variété combinatoire. En revanche, les restrictions sur les dimensions

(domaine stable) sont essentielles pour chacun des théorèmes énoncés ici,
aussi bien dans le cas combinatoire que différentiable.

Au § 1, nous énonçons les théorèmes généraux, nous proposant d'en tirer les

conséquences (même les plus immédiates) dans une publication ultérieure1). Leur
démonstration comprend deux parties distinctes, et suit le même plan que
l'article [11] de H.Whitney consacré au plongement d'une variété de dimension

n dans B?n. Le but de la première partie (§ 2) est la construction d'une
immersion convenable; elle utilise la classification des immersions de Smale-
Hirsch (§ 4) et se trouve essentiellement dans Haemjger-Hirsch (§ 3). La
seconde partie (§ 3 et § 4) consiste à déformer cette immersion en un plongement
par une homotopie régulière d'immersions. Notre méthode est fortement
influencée par celle qu'utilise A. Shapiro dans le cas de la première obstruction
(§ 6); nous avons d'ailleurs grandement profité d'une conversation en mars
1960 avec Arnold Shapiro qui nous avait indiqué les principales idées

géométriques de sa généralisation aux obstructions d'ordre supérieur.

x) Voir mon exposé au séminaire Bourbaki, décembre 1962.
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Les techniques du § 4 sont étendues pour couvrir le cas des isotopies (§ 5)
et des variétés à bord (§ 6) où les restrictions de dimensions peuvent être
affaiblies.

La lecture de cet article est indépendante de celle de [2]. C'est la théorie des

immersions qui permet d'éviter ici la considération des singularités. La plupart
des résultats de [2] peuvent s'obtenir comme conséquence des théorèmes de ce

travail.
1. Enoncés des résultats

1.1. Etant donné un espace topologique X, on désigne par X2 le produit

topologique X X X et par Ax la diagonale de X2, c'est-à-dire
l'ensemble des couples (x, x), où x e X.

Si Y est un autre espace topologique, une application équivariante

jF:X2-> Y2

est une application continue qui commute avec les symétries qui échangent les

facteurs de X2 et Y2: si F(xlf x2) (yl9 y2), alors F(x2, xx) (y2, yx).
Une application F : X2 -> Y2 est une application isovariante si elle est

équivariante et si de plus F~1{Ay) Ax-
Une homotopie équivariante (resp. isovariante) Ft : X2 -> Y2 est une homo-

topie qui, pour chaque valeur du paramètre t, est une application équivariante
(resp. isovariante).

Toute application continue / : X -> y détermine une application
équivariante, à savoir f2 : X2 -> Y2. Si de plus / est biunivoque, alors f2 est iso-
variante.

Si ft: X-> Y est une homotopie, alors f\ est une homotopie équivariante.
Si ft est une isotopie, c'est-à-dire, si pour tout t, ft est biunivoque, alors f2t

est une homotopie isovariante.
Si l'application / est homotope à une application biunivoque, alors il existe

une homotopie équivariante de X2 dans Y2 reliant f2 à une application
isovariante.

Les théorèmes suivants montrent que la réciproque est vraie dans le cas
différentiable et avec d'importantes restrictions de dimensions (domaine stable).

1.2. Sauf mention explicite du contraire, toutes les variétés, applications
et plongements sont indéfiniment différentiables. Rappelons qu'un plongement

différentiable (dans notre terminologie un plongement) d'une variété F dans

une variété V est une application différentiable / biunivoque de F dans

F' qui est, en tout point de F, de rang égal à la dimension de F en ce

point.
Deux plongements /0 et fx de F dans V sont isotopes s'il existe une

homotopie ft différentiable (c'est-à-dire que l'application F de Fx [0, 1]
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dans F' définie par F(x,t) ft(x) est différentiable) reliant /0 à ft et
qui est un plongement pour tout t. Si les applications /0 et /x sont propres
(c'est-à-dire si l'image inverse par /0 et /x de tout compact de F' est un
compact de F) et si ft est indépendant de t en dehors d'un compact de F,
cette définition équivaut à la suivante (cf. Thom [9]): il existe une isotopie
ht de F' sur V, fixe en dehors d'un compact de F, telle que h0 soit l'application

identique de V et que /x h^.
Une homotopie hT, re[0, 1], reliant deux applications /o et fr de F dans

M est homotope à une homotopie tix reliant /0 à f± s'il existe une application
hTt: V->M, r, te[O9 1], telle que hr0 hT, hTl hrihot /0 et AM /t.

1. 8. Théorème 1. Soient V une variété compacte (avec ou sans bord) de

dimension n et V une variété de dimension n'.
a) Supposons 2nf > 3(n + 1). Une application continue f de V dans V

est homotope à un plongement f± si et seulement s'il existe une homotopie équi-
variante continue Ht : F2 -> F/2 reliant /2 à une application isovariante Hx.
De plus on peut construire fx de sorte que f^ et Hx soient réliés par une homotopie

isovariante.
b) Supposons 2n! > 3(n + 1). Une homotopie fT reliant deux plongements

/o et h de V dans V est homotope à une isotopie reliant fQ à fx si et seulement

s'il existe une homotopie équivariante continue Hr t : F2-> F/2, t, t € [0, 1],
telle que H7 0 fx, Hot /q, Hlt f\ et que HT x soit une homotopie
isovariante.

1.4. Rappelons qu'une immersion f d'une variété F dans une variété V
est une application différentiable dont le rang en tout point de F est égal à
la dimension de F en ce point. Deux immersions /0 et fx sont régulièrement
homotopes s'il existe une homotopie différentiable fT (appelée homotopie
régulière) reliant /0 à /t et qui est une immersion pour chaque valeur de r.
Remarquons que si / : F ~> Y' est une immersion, l'application équivariante
/2. 72^ 7/2 egt tene que £v est ouvert dans (/a)~1(JF,).

Théorème 2. Soit F une variété compacte (avec ou sans bord) de dimension n
et soit V une variété de dimension n'.

a) Supposons 2nf > S(n + !)• Une immersion f de V dans V est

régulièrement homotope à un plongement ft si et seulement s'il existe une homotopie
équivariante continue Ht: F2 -> F/2 reliant /2 à une application isovariante Hx
et telle que A y soit ouvert dans Ht~1 (Ay pour tout t. De plus on peut construire
fx de sorte que /x2 et Hx soient reliés par une homotopie isovariante.

b) Supposons 2n' > 3(n + l). Une homotopie régulière fT reliant deux

plongements f0 et jx de V dans V1 est régulièrement homotope à une isotopie
reliant f0 à fx si et seulement s'il existe une homotopie équivariante continue
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que Hro fa Hot ^ Hit /?j ^ jy^ 8oit
homotopie isovariante et que Av soit ouvert dans Hxt~1 (Ay) pour tout r,t.

1.5. Compléments aux énoncés des théorèmes 1 et 2. Pour ne pas surcharger
les énoncés des théorèmes précédents, nous ajoutons séparément ci-dessous

quelques précisions.
Dans les théorèmes 1, a) et 2, a), on peut supposer que F n'est pas forcément

compacte, mais alors que / est une application propre dont la restriction à un
voisinage d'un fermé A de F est déjà un plongement, le complémentaire de
A dans F étant relativement compact. Si en plus des hypothèses du th. \,a) ou
du th. 2, b) on suppose que

a) Ht est fixe sur A2, alors Vhomotopie ft reliant f à fx pourra être
supposée fixe sur A.

p) Si de plus Ht((V — A) x A) r\ Ay, 0 pour tout t> cm pourra alors

supposer de plus que ft(A) ^ ft(V — A) 0
Dans les théorèmes 1, b) et 2, b), on a des précisions analogues en supposant

que l'homotopie fT est une application propre dont la restriction à un voisinage
de A est un plongement indépendant de t, et que les conditions oc) et /?)

sont vérifiées pour HTt. Nous laissons au lecteur le soin de les énoncer
complètement.

1.6. Cas où la variété V est Vespace numérique R™.

Les théorèmes 1 et 2 sont alors équivalents aux théorèmes suivants (cf. [1]).
Une application F de F2 — Av (produit V X V privé de sa diagonale)

dans Sm~1 (sphère unité dans R™) sera dite équivariante si F(xl9 x2)

Théorème 1', Soit V une variété compacte de dimension n. La correspondance

qui associe à tout plongement f de V dans R™ l'application équivariante
/(#i) f(x

f: F2 — Av+S™"1 définie par f(xl9 x2) — induit une appli-
l/(*i) — /tes)!

cation de Vensemble des classes d'isotopie des plongements de V dans Rm dans
Vensemble des classes d homotopie équivariante de F2 — Ay dans S™'1.

Cette correspondance est surjective si 2m>3(w+ 1); elle est bijective si
2m > 3(n + 1).

Pour toute immersion / de F dans R™, il existe un voisinage U de

Av dans F2 tel que si (xly x2) € U — Av, alors f{x1) ^ f(x2). L'application
f(%i, ^2) (/(%) - fi**)) l\ f(xi) - /(#2) I est ainsi définie sur U - Av*

Théorème 2'. Soit V une variété compacte de dimension n.
a) Supposons 2m>3(w+l). Une immersion f: F-^R™ est régulièrement

homotope à un plongement fx si et seulement si l'application équivariante
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f:U — Ay-^S™-1 (où U est un voisinage convenable de Ay) 'peut s'étendre
suivant une application équivariante F: F2 — Ay-^S™"1. Le plongement /a

peut être construit de sorte que fx soit relié à F par une homotopie équivariante.
b) Supposons 2 m > S(n + 1). Une homotopie régulière ft reliant les

plongements f0 et ft de F dans Rm est régulièrement homotope à une isotopie reliant
/0 à fx si Vhomotopie équivariante ft: U — Zip -> S™'1 (où U est un voisinage
assez petit de Av) peut s'étendre suivant une homotopie équivariante Ht de

F2 - Av dans S™"1 telle que H0 J0 et Hx Jx.

Nous laissons au lecteur le soin de formuler dans ce cas le complément 1.5.

1.7. Remarques. 1. L'espace quotient du produit (F2 — Ay) X S™"1 obtenu
en identifiant (xl9 x2i s) et (z2, %ly — s), où xl9 x2 c F, s e S™"1, est un
fibre E en sphères /S™"1 dont la base F* est le carré symétrique réduit de F
(obtenu en identifiant dans F2 — Ay les couples (a^, x2) et (x2, a^))

Les applications équivariantes de F2 — Ay dans S™"1 correspondent ca-
noniquement aux sections du fibre E, et les classes d'homotopie d'applications
équivariantes aux classes d'homotopie des sections de E. Ainsi par le théorème

V, le problème de la classification des plongements de F dans R™ est

ramené, dans le domaine stable, à un problème classique de topologie
algébrique, à savoir celui de la classification des classes d'homotopie des sections
du fibre E.

On peut remarquer que dans le problème de l'existence d'un plongement
d'une variété compacte F dans Rm, les obstructions sont des éléments de

jji+i (F*; TiiiS™-1)); pour l'existence d'une isotopie reliant deux plongements
de F dans HP, les obstructions se trouvent dans H*(V*; 7ii(Sm-1)).

Remarquons enfin que les obstructions à construire un plongement
régulièrement homotope à une immersion donnée sont des éléments du groupe de

cohomologie à support compact jEPJ1 (F*;

2. H serait facile d'obtenir le théorème d'approximation de [2] (et même

pour le cas des variétés à bord) à partir des démonstrations du présent travail
et du théorème d'approximation des immersions de M.Hibsch (cf. [4], § 5).

2. Comment le théorème 1 se déduit du théorème 2.

2.1. Le pas essentiel de cette réduction utilise les résultats de Haefejgeb-
Hirsch [3]. Pour montrer que le théorème 2 a) entraîne le théorème 1 a), nous
utiliserons le fait suivant (loc.cit.4.3,a)):

Soient V et V des variétés de dimension n et nf resp. telles que 2nr > 3n + 1.
Soit h: U(Ay) -> F'2 une application isovariante d'un voisinage U(Ay)
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de Ay dans F'2, c'est-à-dire que si h(x1, x2) (yl9 y2), alors h(x2, xx)

(y2, yx) et que h(xt, x2) e Ay seulement si xx x2. Il existe alors une
immersion f de V dans Vf et une homotopie isovariante reliant les restrictions de

/2 et h à un voisinage assez petit de A y et qui couvre une homotopie donnée

réliant /2 | Av à h\ Ay.

2.2. D'après ce résultat, en se plaçant dans les hypothèses du théorème l,a),
on peut remplacer / par une immersion, encore notée /, telle que les restrictions

de /2 et Hx à un voisinage de Ay soient reliées par une homotopie
isovariante.

Introduisons sur F et V des métriques riemanniennes, et sur F2 et F'2
les métriques produits. Soit ô une fonction strictement positive définie sur
Ay. Un <5-voisinage tubulaire Î7S de Ay est l'ensemble des extrémités des

géodésiques dans F2 issues des points x de Ay, normales à Ay et de

longueur < ô(x). Si ô est assez petit, deux telles géodésiques issues de deux

points distincts de A y ne se rencontrent pas.
Soit, pour ô assez petit, une homotopie isovariante H\ : U$ -> F'2 telle

que, au voisinage de t 0 et t — 1, H\ soit la restriction de Ht à U$ et

que H\ Hj sur Ay.
Soit X(t) une fonction définie sur l'intervalle [0,1], valant 1 pour t 0

et t 1, et telle que 0 < X(t) < 1 pour 0 < t < 1.
Définissons une nouvelle homotopie équivariante H't en posant H't Ht

en dehors de Î7g, Ht H\ sur U\§. Pour un point z de U$ — U\$ situé
sur une géodésique normale à Ay en x et coupant dU\$ et dU$ en zx et
z2 resp., H't(z) sera sur le segment géodésique dans F/2 joignant les points
H^Zj) et Ht(z2) (si ô est assez petit, ce segment géodésique existe et dépend
continuement de ses extrémités) et partagera ce segment dans le même rapport
que z partage le segment géodésique d'origine et d'extrémité zx et z2.

L'homotopie E\ ainsi définie est équivariante; elle coïncide avec /2 pour
t 0 et avec Hx pour t=l. De plus Ay est ouvert dans H'f^-iAy,).
Ainsi toutes les hypothèses du théorème 2, a) sont vérifiées, de sorte qu'il
entraîne le théorème l,a).

On voit d'une manière analogue, en utilisant le théorème 4.3, b) de [3], que
le théorème 1, b) est une conséquence du th. 1, a).

Les légères modifications à apporter à la démonstration précédente pour
obtenir le complément 1.5 sont laissées au lecteur.
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3. Construction d'un modèle de déformation éliminant des points doubles

Nous allons construire une immersion 0 d'une variété L dans une variété
U et une déformation 0t de cette immersion éliminant les points doubles de

0. Ceci nous servira de modèle dans la démonstration du théorème 2.

3.1. Le modèle 0 : L->L' sera construit à partir de 3 éléments :

1) Une variété compacte D (qui peut avoir un bord d D) munie d'une
involution J sans point fixe : pour tout point d e D, Jd =fi d et J2d d.

2) Une fonction X définie sur D, invariante par J (c.-à-d. XJ X),
telle que — 1 < X(d) < 1, A~1(— 1) d D et que A n'ait pas de valeur
critique sur [— 1,0]

3) Un fibre vectoriel L de base D.
Les dimensions des composantes connexes de D et des fibres de L peuvent

varier.
Soit / l'intervalle [— 1, + 1] et soit D' le quotient de D x / par la

relation d'équivalence qui identifie les points {d, t) et {Jd, — t). C'est un
espace fibre de fibre / et de base DjJ, le quotient de D obtenu en
identifiant les points d et Jd.

Nous allons construire un fibre vectoriel L' sur Dr de la manière suivante.
Considérons d'abord le fibre L ®jL sur D image réciproque du fibre L X L
par l'application antidiagonale d->(d, Jd) de D dans D X D. Tout point
de la fibre de L ®jL au-dessus de d e D est un couple (ld, lJd) formé d'un
vecteur ld e Ld et d'un vecteur lJd e LJd (on désigne par Ld la fibre de L
au-dessus de d). Le fibre L' est défini comme quotient du fibre (L@jL) X I
de base D X I en identifiant (ld, lJd, t) et — lJd, —- ld, — t).

Les classes des points (d,t) et (ld,ljd,t) dans D1 et L1 seront désignées

par [d,t] et [ld,ljd,t] respectivement.
Définissons une immersion q> de D dans D' par q> (d) [d, X (d)]. D et

D' étant identifiées aux sections nulles de L et Lf, cp peut se prolonger
suivant une immersion 0 de L dans Lr définie par

0(*d) P*>O,A(cI)].

Les paires de points de L appliqués par 0 sur un même point de L' sont
les paires de points se correspondant par J de la sous-variété

Do A-MO) c D c L.
Les deux nappes de 0{L) qui se coupent le long de 0(DO) sont en position
générale comme on le vérifie immédiatement (en tenant compte du fait que
A n'a pas de points critiques sur Do).

3.2. Nous allons définir maintenant la déformation 0t.
Soit ii (d) une fonction sur D telle que

11 CMH vol. 37
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0 <fi(d)< X{d) +

et ju(d) 0 si A(d) < - 1/2

Une telle fonction existe; on peut prendre par exemple la fonction X{d) +
+ 1/2 et la multiplier par une fonction comprise entre 0 et 1, égale à 0

aux points d où X(d) < — 1/2 et à 1 où X(d) > 0.
L'application cpt (d) de D dans D' définie par

<Pt(d) [d, X{d) -tp(d)]
pour te[O, 1] est une homotopie régulière déformant rp ç>0 en un plonge-
ment <px. Il s'agit maintenant de la prolonger à L.

Réduisons le groupe structural de L au groupe orthogonal de façon à

définir une métrique euclidienne dans les fibres de i. La longueur du vecteur
ld e Ld sera notée | ld |. Soit a (x) une fonction paire d'une variable x,
comprise entre 0 et 1 et telle que oc(O) 1 et oc(x) 0 pour | x \ > e > 0.

Définissons

*t(h) lh,0, W) - "(\h\)tf*(d)].
0t est une homotopie régulière, égale à 0 pour t 0 et qui est un plonge-
ment pour t — 1. De plus 0J est fixe en dehors d'un compact. (Comparer ces

constructions avec celles de Shapiro [6], § 5 et 6.)

4. Démonstration du théorème 2, a) lorsque F n5a pas de bord

Les restrictions de dimensions exigées à chaque pas de la démonstration
seront signalées par un astérisque dans la marge.

Nous utiliserons les notations suivantes. Le fibre des vecteurs tangents à une
variété F sera noté T(V). Si D est une sous-variété de F, alors T(V;D)
sera la restriction à D de T(V), c'est-à-dire l'ensemble des vecteurs de F
dont l'origine appartient à D. Le fibre tangent à D s'identifie à un sous-
fibré de T(V; D); le fibre normal à D sera par définition le fibre quotient

D) T(V;D)/T(D).

4.1. Soit / une immersion de F dans V. Nous pouvons supposer que /
est générique: en tout point vf /(%) f(v2), v± ^ v2, l'espace tangent à
V1 est engendré par les images par df des espaces tangents à F en vx et v2

(autrement dit, f2 est transverse à la sous-variété Ay, en tout point de
F2 — Ay). De plus / n'a pas de point triple, ce qui est possible génériquement
si 2n' > Zn (cf. [2]).

Soit Ht l'homotopie équivariante reliant /2 à une application isovariante
Hx et telle que Ay soit ouvert dans Hf1(Av,). Nous pouvons étendre la
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définition de Ht à l'intervalle [— 1, + 1] / et, par une légère modification,
obtenir une homotopie équivariante, encore notée Ht, qui vérifie en plus des

hypothèses du th. 2, a) les 3 propriétés:
1) L'application H : F2 X / -> F'2 définie par H(vl9 v2,t) Ht{vx, v2) est

transversale à Ay, en dehors de Ay X /. Alors

A =H-1(AV>) ~ Ay X I
est une sous-variété fermée de F X F X /.

2) La projection ^ de V X V X I sur le premier facteur F, restreinte
à A, est un plongement ^ de A dans F. Il en sera alors de même pour la
projection p2 sur le deuxième facteur.

3) La restriction à A de la projection t de V X V X I sur / est une
fonction qui n'a pas de valeur critique sur [ — 1,0].

Pour que 1) et 3) soient vérifiés, aucune restriction de dimension n'est nécessaire.

Pour 1), on utilise le théorème de transversalité de Thom (cf. [8]).
Si l'on suppose que 2 dim A < dira F (ce qui est certainement le cas si

2nf >3(n + 1)), une adaptation simple des techniques de Whitney permet
de réaliser la condition 2) (cf. [12], Chap. IV).

4.2. Comme au paragraphe 3, nous construisons un modèle & : L->L' à

partir des 3 éléments suivants :

1) La variété D px A p2 A munie de l'involution J p2tyî1.
2) La fonction À, composé de Sfiî1 avec la projection t.
3) Le fibre L N(V; D), le fibre normal à D dans F.
Remarquons que Do /l~1(0) est la sous-variété de F formée des paires

de points distincts de F qui ont même image par /.

4.3. On se propose de construire des difféomorphismes

W:Le->V et Wf:L'9-+V,
où Le (resp. L'e) est un s-voisinage tubulaire de D dans L (resp. de D1

dans L1), tels que

a) fV=W& sur Le,
b) W(L''e) contient tous les points doubles de /,
c) /(F -WLe)r,W'L'e 0

Ceci fait l'homotopie ft définie par

_ W'QtW-1 sur W(Le)
'*~~ / en dehors de W(Le)

sera une homotopie régulière reliant / à un plongement fx.
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4.4. Nous allons d'abord construire des plongements

y : D -> F et y>': Df-> V
tels que:

1) fw xp'<p,

2) /(F ~-ipD)r,y)tDl 0
3) y/(D') est transverse à /(F) le long de /(D)
Cette dernière condition signifie que pour tout point d € D, les images par /

et par ipr des plans tangents à F en tp(d) et à D1 en <p(d) resp. se coupent
suivant l'image par ftp du plan tangent à Z> en d.

2?x et p2 désignent toujours les projections de F X F X / sur le premier et
le second facteur resp.; de même soient p[ et pf2 les projections de V X V
sur le premier et le second facteur resp.

Le plongement ip sera simplement l'inclusion de D dans F. Quant à \p\ sa
restriction rp'o à <pD est définie par la relation 1). Soit A l'ensemble des

points de D' de la forme [d, t], avec t compris entre 0 et X(d). En posant,
pour tout point [d, t] de A

on définit une extension continue de ^ à i. Comme D' peut se rétracter
sur A, on obtient finalement une application continue ipf de D' dans V
qui prolonge ^ •

D'autre part, il est possible de construire une extension y>[ de xpfQ à un
petit voisinage U de q>D dans D' de sorte que xp[ soit un plongement et

que yfi(U) coupe transversalement /(F) le long de f(D) (cf. Shapiro [6],
* lemma 5.2; on utilise le fait que dim D <nf — n En appliquant finalement
* le théorème de plongement de Whitney (cf. [10]), comme 2 dim Dr < dim F',

on peut obtenir un plongement ip' de D' dans F' homotope à ^', qui
coincide avec ip[ au voisinage de D (la condition 3 est ainsi satisfaite) et qui
ne rencontre pas / F en dehors de q> D. Cette dernière condition est possible

* car dim D' + dim F < dim V. La condition 2) est donc aussi vérifiée.

4.5. Désignons par I)' l'image de D! par ip1. La différentielle de / qui
applique T(V) dans T(Vl) est notée, comme toujours, df.

Le pas suivant est la construction de représentations (cf. 7.2) d'espaces
fibres

ip' : L1 -
qui prolongent y et xp', telles que

df-tp tp'-0,

\p(L) et y>'(Lf) étant complémentaires à T(D) et T(D^) resp.
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La représentation tp sera un relèvement de L N(V; D) dans T(V;D);
un tel relèvement est complètement déterminé par un champ de sous-espaces
linéaires, le long de D, complémentaires à T(D). Nous identifierons dorénavant

N(V;D) à son image par y), donc à un sous-fibré de T(V;D).
De même nous identifierons N(V; Dr) à un sous-fibré de T(V') par un

relèvement de la projection naturelle de T(V; -D') sur N(Vf; -D;), ce sous-
fibré contenant l'image par df de N(V;D). Ceci revient à construire le long
de D' (cf. appendice, 7.3) un champ de sous-espaces linéaires complémentaires

à T(D!) contenant df(N(V',D)); ce champ est complètement déterminé

par ces conditions sur f(D0); on l'étend ensuite le long de f{D), en
tenant compte de la condition 3) de 4.4, et enfin sur 1)'.

Construction de ip'. Soit f l'application d->y)'[d9O] de D dans V'.
Remarquons que £ £«/.

4.6. Lemme: II existe une représentation | du fibre N(V; D) ©j N(V; D)
dans T(V) qui se projette sur f, telle que £(ld, lJd) — î(Zjd, ld), et telle

que pour d € Do, on ait £(ld9 lJd) df(ld) — df(lJd).
Démonstration: Soient ^ et ^52 les restrictions de 2?i et p2 à zl. Comme ^2

est un plongement de A dans F, le fibre iV^F2 X /, A) est canoniquement
isomorphe à la somme directe du fibre tangent à F restreint à px A D,
du fibre normal à p2 A D dans F et d'un fibre linéaire trivial T. Ainsi

tf(F2 x /, A) ^f1 # (F; D) © «Pr1 ^(F; D) 0 gJf1 r(c) © y;
il existe donc un isomorphisme

^(F2 x /, A) ->N(V; D) ®j N(V; D)@ T(D) ® T

se projetant sur ^.
D'autre part H est transversal à Ay, sur A; donc JV(F2 X /, A) est

canoniquement isomorphe à l'image inverse par H restreint à A du fibre
iV(F/2; Ay,) p'{~x T(V') restreint à Ay,. Vu l'isomorphisme ci-dessus, il
existe une représentation

S:N(V;D)®jN(V;D)@T{D)®T-»T{V')
se projetant sur faH S$x.

Soit a l'involution du fibre N(V; D) ®j N{V; D) © T(D) © T définie par
c(h> hd> h y e) (hd> h> ha> e)> où h et ha sont des vecteurs normaux à

D en d et Jd td un vecteur tangent à D en d et tJd son image par la différentielle

de J.
Comme Ht est équivariante, on a S a — *5\

Enfin 2 sur #(F; D) ©j #(F; D) © 0, restreint à Do, se réduit à

df®j{- df)®0.
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D'après la construction de \p! (cf. 4.3), il existe une homotopie reliant
p[ HSfiî1 à l'application | de D dans V', invariante par J et fixe sur Do. Il
en résulte que S est homotope à une représentation S' se projetant sur £

telle que S! a — — S', et égale à S sur Do.

Pour obtenir l'application | cherchée, il suffit d'appliquer le lemme 7.4
en prenant pour Ex le quotient de T(D)@T par la symétrie

pour JE72 le quotient de N(F; D) 0 j N(F; D) par la symétrie

ce sont des fibres de base D/J (cf. 3.1). Quant à E[ et Ef2, ce seront les

images réciproques par ilJ:D/J->Df des fibres T{U) et N{V';D').
* Le lemme peut s'appliquer car dim D < 2(n — dim D).

4.7. Pour construire yjf, on remarque que L' est le quotient du fibre
(L©j L) X [0, 1] de base D x [0, 1] par la relation d'équivalence qui identifie

(ld, lJd, 0) et (— lJd, — ld, 0). Il suffira donc de construire une
représentation

X:(L®jL) x[0,l]-»N(V';D')
telle que

1. x se projette sur FappKcation (d, t) ->ipf[d, t]
2. x î sur (L ©ji)xO
3. a) z(Zd, 0, X{d)) d/(Zd) pour A(d) > 0

b) z(0, - ld, - A(d)) - d/(y pour K(d) < 0

On construira d'abord la restriction %i ^e X au premier facteur

(L@j0) X [0, 1],

Les conditions 2 et 3, a) définissent déjà Xi sur ^ X W e^ sur les points
(d, X(d)), où A(d) > 0. Les obstructions pour prolonger Xi & -D X [0, 1]

sont à valeur dans ^(Fn/_à'mi)/}n_to2)) pour i < dim D (cf. appendice,
7.2). Ces groupes sont tous nuls si

* dim D <nr — dim D' — n + dim D

c'est-à-dire 3n + 2 < 2n'

Enfin on prolongera #x en # en tenant compte des conditions 2 et 3,b).
Ceci ne présente aucune difficulté car D X [0, 1] peut se rétracter par
déformation sur l'union de D X [0] et des points (d, X{d)), où X(d) < 0.
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On définira donc \pf [ld, lJd, t]= di 7Jd "
4.8. Construction de W et W. On construit d'abord ï7 sur Le, pour

e assez petit, de sorte que W soit tangent à y) le long de D (en utilisant une
métrique riemannienne par exemple). Pour chaque point d' e D', il existe une
application Wd dans V d'un voisinage de d! dans 27 de sorte que Wd

soit tangent à lpr le long de Z> et que fW=xFd0 aux points où les deux
membres sont définis. Ceci résulte de ce que l'application / peut s'exprimer
comme une application linéaire (ou un couple d'applications linéaires) dans des

systèmes de coordonnées convenables en vertu du théorème des fonctions
implicites. Utilisant la proposition 1.3, p. 59 de [2], il est enfin possible de
construire une application différentiable W', d'un voisinage de Dr dans L',
telle que W soit tangent à ip' le long de D' et que fW=Wr0. Si e est
assez petit, W sera défini sur L' e et sera un difféomorphisme.

4.9. Il reste à vérifier que le plongement ft obtenu est tel que Hx et ft2

sont reliés par une homotopie isovariante. Plus précisément:
Proposition. Il est possible de construire Vhomotopie ft de sorte qu'il existe une

homotopie équivariante Pt>T: F2-> F/2 dépendant des paramètres t, Te[0, 1]
telle que a) Pi0 Ht

'
b) PM ft2 c) PQ>T f2 d) Plr est une

homotopie isovariante.
Démonstration. Les conditions a), b) et c) définissent déjà PttT pour t 0

et 1 et pour t 1.
Posons P(xly x2, t, r) PT(#l5 x2, t) Pt,T(xi> ^)> où (xly x2) e F2.

Désignons par a l'involution de V2, V2 X I ou F2 X I2, suivant les cas, échangeant

les deux premiers facteurs et soit a' celle qui échange les facteurs de
F/2. Une application de V2, V2 X I ou F2 X I2 dans F/2 sera dite
équivariante si elle commute avec a et ar. On désigne par / le segment [0, 1].

Soit v(d) la fonction définie aux points de D où X(d) > 0, égale à la
valeur de t pour laquelle (pt(d) cpt(Jd). On a v(d) v{Jd). Soit AT la
sous-variété de F2 X / formée des triples (d, Jd,(l — r) X(d) — rv(d)),
avec K{d) > 0. Remarquons que

AQ Pq1(Av) — Av X I et A1 P^iAv) — Av X I.
D'après la construction même de | (cf. 4.6), il existe une homotopie,

dépendant du paramètre t, de représentations de

iV(F2 X /, Ax) dans iV(F/2, Ay.),

se réduisant pour t 0 et 1 aux représentations induites par Pt 0 et Ptl
et commutant avec les involutions induites par a et a1.
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Soit A% la sous-variété de F2 X I2 réunion des sous-espaces AT X {r}.
Il résulte de ce qui précède que l'application P déjà définie sur une partie de
F2 X I2 par les conditions a), b) et c) peut s'étendre au voisinage de A*
suivant une application équivariante, transverse à Av, sur A^

D'autre part soit A l'ensemble des points de F2 X I2 de la forme

(d9Jd,t,r),
où d € D est tel que X(d) > 0 et où t est compris entre 0 et (1 — r) A (d) —

— rv(d). D'après la construction de y)'( cf. 4.4), l'application P, déjà
construite sur la frontière de A, peut s'étendre à A d'une manière
équivariante. De plus, comme P est transverse à Ay, sur A* et que

dim A < codim JF? — n',

on peut s'arranger pour que P(A — A*) ne rencontre pas Av,.
Finalement, on pourra définir l'application équivariante P sur un voisinage

U du compact K, union de F2 X / X {0}, de F2 X / X {1}, de F2 X {0} X /
et de A de sorte que P~1(Av) soit l'union de A^ et de (Av X I X I) ^ U.
Or F2 X I2 peut se rétracter par déformation sur un voisinage de K contenu
dans U, chaque point se déplaçant sur un segment de la forme (xx, x2ft, I).
Cette rétraction, composée avec l'application P déjà définie de U dans F/2,
donne une application équivariante, encore notée P, de F2 X /2 dans F/2

telle que P~1(Ay) soit l'union de A^ et de Av X /2. Alors P restreint à
F2 X {1} X / est l'homotopie isovariante cherchée qui relie H1 à /x2.

4.10. Démonstration du complément (cf. 1.5). Supposons que / soit une
immersion propre de F dans V dont la restriction au fermé A est un plon-
gement, et que Ht soit fixe sur A2, Alors D r\ A ne rencontre pas J(D rs A).
On peut construire la déformation &t: L->L' dans le modèle (cf. 3.2) de

sorte qu'elle soit fixe sur un voisinage de D ^ A. Pour e assez petit, la
déformation ft (cf. 4.3) sera aussi fixe au voisinage de A.

Si de plus Ht({V — A) x A) r> Av 0 alors D^ A 0 Donc pour
e assez petit, W(Le) rs A 0 Ainsi ft(A)r\ ft(V — A) — 0 Dans ce
dernier cas, la démonstration est inchangée si F a un bord contenu dans A.

4.11. Un cas particulier. La variété F n'est pas nécessairement connexe,
et la démonstration précédente n'exclut pas le cas où les composantes connexes
de F sont de dimensions différentes; il faut alors préciser que n est le maximum

des dimensions des composantes connexes de F. Comme la dimension
de la variété des points doubles de / peut être inférieure à 2n — n', il est parfois

possible d'affaiblir les inégalités sur les dimensions, comme dans le cas

suivant.
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Théorème. Soient Vt,i 1,2 des variétés compactes de dimension nt et soit

At un fermé de Vt contenant d Vt. Soient ft des plongements de Vt dans V
tels que /^(F^ ^ /2(^42) /i(^i) ^ h(V^ 0 Supposons qu'il existe une homo-

topie Ht:V1 X V2->V'2 telle que H1{V1 X F2) ^ Ay, 0 etf ^e
^((Fi x ^2) U (A1 x F2)) - Ay. 0

Alors si nt -\- n2 + max (wl5 w2) + 3 < 2nf, il existe une isotopie gt de fx g0,

fixe sur Al9 et telle que ^(FJ ^ /2(F2) 0 et que gt(V^) ^ f2(A2) 0
Il suffit dans la démonstration précédente de remplacer F par l'union

disjointe de V1 et F2, / par la réunion de fx et /2 et de remarquer que
dim D nx + n2 — n' + 1.

5. Comment la démonstration du th. 29 b) (isotopie) se déduit de celle
du th. 2, a).

Nous reprenons la démonstration du paragraphe précédent en indiquant à

chaque pas les modifications nécessaires. Les numérotations des paragraphes se

correspondent.
Soit Io le segment [0, 1], Pour obtenir le th. 2, b), on applique en gros la

démonstration du paragraphe 4 au cas où F est remplacé par F X /0 et V
par V! X Io et / par l'application / : F X /0-> V X Io définie par f{xix)

(fT{x)9 r), où r e/0. Les restrictions de dimensions du th. 1, a) deviennent

alors 2(n' + 1) > 3(n + 2), c'est-à-dire 2n' > 3(n + 1).

5.1. On suppose aussi que / est une immersion générique. Soit

H: F2 X Io X /->F'2

l'application définie par H(xx, x2, t, t) HTt(x1, x2). Comme dans 4.1, /
désigne le segment [— 1, -f- 1] et l'on suppose H convenablement modifié
de sorte que les conditions 1) et 3) de 4.1 soient vérifiées, 2) étant remplacé
par la condition 2') : la projection p1 : F2 X /0 X / -> F X Io définie par
p1(x1, x2, r, t) (x1, r) restreinte à A H~1{Ayt) — Ay X /0 X / est un
plongement; de plus le champ de vecteurs djd r défini sur F2 X Io X / n'est
jamais tangent à A. Ceci revient à dire que la sous-variété p1(A) D de

F X Io est transverse au champ de vecteurs 9/9 r de F X Io. Cette dernière
condition peut être réalisée car

dim D < codim D

5.2 et 5.3. On construit comme en 4.2 un modèle et il s'agit de définir des

difïéomorphismes
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vérifiant les conditions a), b) c) de 4.3 et de plus
d) T'¥f[ld,0,t] T'V(ld)

où r désigne les projections naturelles de V X Io et V X Io sur /0.

5.4. On construit d'abord les plongements

^:2>->Fx/0 et tp': Dr-> V X Io

vérifiant 1), 2), 3) de 4.4 et de plus

4) T-V'[d,f\ T-y>(d).

y) est l'injection de D dans V X Io. Une application continue ~ïp' de A
(cf. 4.4) dans V X /0 vérifiant / %p lpf <p et 4) est définie par
tpf [dyt] (p[H [oc(d), ot(Jd), r(d), À (d) — t], r (d)) où oc est la projection
naturelle de V X Io sur F.

Ensuite "\p! est étendu à D1 et est approché par un plongement xpr de

sorte que les conditions 1) à 4) soient vérifiées. Les modifications à apporter
à 4.4 pour tenir compte de 4) ne présentent pas de difficultés particulières.

5.5. On doit construire ensuite, comme en 4.5, des représentations

y:L->T{V X IQ) et ip' :L'-*T(V X Io)

vérifiant, en plus des conditions énoncées en 4.5,
d r-xp' [ld, 0, t] dx'\p{ld)

îp sera un relèvement de L N(V X Io] D) dans T(V X Io; D) tel que
l'image de y) contienne la restriction à D du champ de vecteurs djd r (on
utilise la condition 2) de 5.1). On identifie N(V X Io; D) à son image par ip.
Ceci donne une décomposition en somme directe : N(V X Io; D) N0@T0,
où No est l'ensemble des vecteurs où dr s'armulle et où To est le fibre linéaire
trivial engendré par le champ djd x restreint à D.

N(V X I0;D') est aussi identifié à un sous-fibré de T(V X I0;Dr) par
un relèvement contenant le champ djd r restreint à Dr et l'image par df de

N(V X Iq)D). Cette identification donne, comme plus haut, une
décomposition :

N(V' xIo;D') N'o@T'o

où N'o est l'ensemble des vecteurs sur lesquels dr s'annulle et où T'o est
engendré par djd r restreint à D'.

5.6. Le lemme 4.6 est remplacé par le suivant :

Lemme. Il existe une représentation | de No ®j No © To dans N'Q qui se

projette sur |, telle que ê(ld,lJd, SjdT(d)) - £(lJa, ld, djdT(Jd)) et telle que

pour d c Do, on ait

Hh, ha, 3/arW) df(ld + djdr{d)) ~ df(lJd + djdT(Jd))
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Dans cet énoncé, d/dT(d) désigne le vecteur du champ d/dt au point d. La
démonstration est si proche de celle du lemme 4.6 que nous la laissons au
lecteur.

5.7. Construisons le long de Z)' un champ de vecteur qui associe à tout
point (d, t) eD X [0, 1] un vecteur v(d, t) d'origine ip'\d,(\, contenu dans

N(V X I0,D'), tel que

v(d, 0) v(Jd,0)

et pour d eD0, v(d, 0) dfidT{d) + df/dT(Jd)
(où df/dT(d) est l'image par df du vecteur d/dT(d)).

On construit ensuite une représentation

Z:(N0®jN0®T0) x [0,l]->^
telle que

1. % se projette sur l'application (d, t) -> y [d, t] de D x [0, 1] sur D'

2. x k sur (N0®jN0@T0) X {0}.
3. x (h, 0, a dldT{d), X(d)) df(ld + 2a d/dT(d)) - a v(d, X(d))

pour X(d) > 0

et x (0, ~h, -ci d/dT(d), - X{d)) df(ld + 2a d/9r{d)) - av(d, - X(d))

pour X(d) < 0

Comme dans 4.7, on construit d'abord la restriction ^ de % à

(N0®j0@T0) X[0,l].
On définit enfin y' par la formule

wl \ld -f- a dldr(d), lJd -\- b dldT(Jd), t] y (ld, lJd, d[dT(d), t) -f-
2

a — b

5.8. Les difïéomorphismes ÎP" et ï7^ sont construits comme dans 4.8.
Pour que la condition d) de 4.3 soit vérifiée, on remplace W par l'application
faisant correspondre à [ld, lJd, t], où ld,lJde N(V X Io, D), le point

où a:r est la projection sur V de ï77^, Zjd, *] et rf r(d) + r
— t *P{ljd). Cette application est encore un difïéomorphisme pour e assez

petit, car elle est tangente à W le long de Df et elle jouit de toutes les

propriétés requises.
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6. Démonstration du théorème 2, a) dans le cas d'une variété à bord

6.1. La démonstration du paragraphe 4 s'applique sans changement dans
le cas où / est déjà un plongement au voisinage du bord 3 V de F, où Ht
est fixe sur (3 Vf et où Ht((F - 3 F) X 3 F) ^ Ay, 0 En effet ces

hypothèses entraînent que la variété D ne rencontre pas 3 F et donc que
toutes les déformations peuvent être fixes sur un voisinage de 3 F (cf. 4.10).

6.2. Considérons ensuite le cas où / est un plongement au voisinage de
d V et où Ht est fixe sur (3 F)2. Nous allons effectuer successivement deux
déformations. La première ft, fixe sur un voisinage de 3 F, déformera / — /0

en une application fx telle que /X(F — 3 F) ^ /(3 F) — 0 La seconde gu,
fixe sur un voisinage de d V, sera telle que gu(V — 3 F) ^ /(3 F) 0 et

que g1 soit un plongement.
Première déformation. Dans la démonstration du paragraphe 4, remplaçons

F2 par (F - d F) X d F et Ht par la restriction H°t de Ht à

(F - dV) X dV.

On peut supposer au départ que l'immersion / est générique, de sorte qu'en
particulier l'ensemble F des paires de points distincts de F — d V qui ont
même image par / est une sous-variété fermée dont la dimension est 2n — n'.
Ainsi dans les conditions imposées à A dans 4.1, on pourra exiger encore que
l'image de A (H^)-1 Ay, par la projection

A : (F - dV) X dV->V - dV

ne rencontre pas F. Les constructions de 4 donnent alors une déformation
régulière ft de / restreint à V — d V, fixe sur un voisinage de d V et telle

que A(F - a F) ^ f(d F) 0 Alors /,(#) /?(#) pour # £ a F et /(»)
pour # € 9 F est une homotopie régulière.

Pour construire la deuxième déformation gu, il nous faut une homotopie
équivariante convenable reliant (/J2 à Hx. Pour cela, définissons une
application P d'une partie de F2 X I2 dans F/2 en posant

P(x1,x2,t,u)
Ht(xly x2) sur F2 X / X 0

(ftxi>ftx2) sur F2 X / X 1

sur F2 X 0 x / et sur (dV2) X P

D'après 4.9, il est possible de construire ft de sorte que l'application P
soit aussi définie sur [(F — 3 F X d V) ^ (F X F — 3 F)] X I2, équivariante
et telle que P(x1} x2, 0, u) $ Ay, pour (a^, #2) € (F — 3 F) X d F et tout w.

L'application P ainsi définie sur une partie K de F2 X I2 peut se prolonger
suivant une application équivariante dans F/2 d'un voisinage U de i£\ Or
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il existe une rétraction R de F2 X I2 sur un voisinage arbitrairement petit
de K et telle que R(xx, x2, t, u) (xx, x2, tr, u). Alors PB restreint à
F2 X 1 X / donne une homotopie équivariante Hu reliant (ft)2 à H1, fixe
sur (d F)2, telle que Hu ((F - d F) X d F) ^ Ay, 0 et que Av soit
ouvert dans Hu"1(Av)-

Nous sommes ainsi ramenés au premier cas.

6.3. Cas général. On considère la restriction de Ht à (d F)2. Ceci permet
de construire une homotopie régulière convenable f°t déformant f \ d V en
un plongement f\. L'homotopie ft peut s'étendre suivant une homotopie
régulière ft de / (cf. Thom [9]). On se ramène au cas précédent 6.2 en
construisant comme ci-dessus une homotopie équivariante Hu : F2 -> F/2, fixe
sur (d F)2 (ou dont la restriction à (9 F)2 est isovariante) et telle que

HU(V ~ dV X dV)r,Av, 0

6.4. Affaiblissement des restrictions de dimensions pour les variétés à bord.

Théorème. Lorsque V est une variété à bord qui peut être construite par
adjonction d'anses d'indices < p (cf. Smale [7]), alors

dans le th. 2, a), on peut supposer 2n' > Z(p + 1)

2,b), 2n!> 3(p+ 1)

1, a), 2nf > 2n + p + 1

1, b), 2nl > 2n + p + 1

lorsque p (n.
Le passage du th. 2 au th. 1 se fait comme dans 2 en tenant compte de la

remarque p. 240 de [3].
La raison de cette amélioration pour le th. 2 est que l'on est ramené

essentiellement à séparer ou à plonger des disques de dimension au plus p.

6.5. L'idée de la démonstration est en gros la suivante.
Soit Dk le disque de rayon unité dans Rk. Une anse d'indice k est le

produit hk Dk X Dn~k. Supposons que F h0 ^ hç^ ^ ^ h£ soit obtenu

par adjonctions successives d'anses d'indices pk<p. Posons Vk Vk_x ^ hpk;
on entend par là que la variété Ffc est obtenue en collant l'anse hvk à la
variété Ffc_x par un difféomorphisme de DVk X Dn~Vk dans d Vk_x.

On suppose par récurrence qu'il existe une immersion fk_x de F dans V
dont la restriction à Vk_x est un plongement et une homotopie équivariante
flk-i Y2-+ V'2, fixe sur (F^)2, reliant f\_x à une application isovariante
H\~ly Av étant ouvert dans (H^1)'1 Av,.

Posons A* DVi X {0}, l'âme de Fanse h9V et soit g la restriction de

fk_1 à Ak. En utilisant la restriction de Hkt~x à Vk_x X Aki on construit
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comme dans 6.2 une homctopie régulière gt de g, fixe sur un voisinage de
d Ak de sorte que gt(Ak) évite successivement

et enfin /^_i(Ffc_1) par dilatation (pour séparer g{Ak) de /fc_1(J[*), on doit
supposer pk + pt + max (pk, pt) < 2 n\ cf. 4.11). Ensuite on déforme
l'immersion obtenue en un plongement gx de ^4& dans V tel que

(il faudra supposer ici 3(pk + 1) < 2nr). On étend enfin l'homotopie
régulière faisant passer de g à gx en une homotopie régulière de /fc_1? fixe sur
Vk_1. On obtient ainsi une immersion fk dont la restriction à Vk est un
plongement et Ton construit une homotopie équivariante vérifiant les mêmes
propriétés que H10^1, Je — 1 étant remplacé par h.

7. APPENDICE. Rappel sur les fibres vectoriels.

7.1. Un fibre vectoriel E -> B est un fibre localement trivial de base B,
de fibre un espace vectoriel et de groupe structural le groupe linéaire des auto-
morphismes de cet espace vectoriel; la dimension de la fibre peut varier d'une
composante connexe de B à l'autre. Le rang de E est le maximum des

dimensions des fibres de E et le rang de E en un point b e B, noté rang bE,
est la dimension de la fibre Eb de E au-dessus de b.

7.2. Une représentation / d'un fibre vectoriel E ~> B dans un fibre
vectoriel E' -> B', se projetant sur une application /0 de B dans B', est une
application fibrée f de E dans Ef dont la restriction à chaque fibre Eb est

une application linéaire injective dans Efob.

Il y a correspondance biunivoque entre les représentations de E dans E'
se projetant sur /0 et les représentations de E dans fo1 Er (image réciproque
de E' par /0) se projetant sur l'identité de B. On peut donc se borner au cas
où E' est un fibre de base B et où les représentations considérées se projettent

sur l'identité de B.
Les applications linéaires injectives des fibres Eb de E dans les fibres E'b

de E1 forment un espace fibre L(E,E') de base B. Sa fibre au-dessus de
b est la variété de Stiefel Vrang E>irang e, où Vmn est l'espace des

7i-repères dans Rm. Les représentations de E dans E' correspondent biuni-
voquement aux sections de L(E, Ef). Les classes d'homotopie de représentations

de E dans E' correspondent biunivoquement aux classes d'homotopie

de sections de L(E, E1).
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i i
7.3. Soit 0->Ef ->E -+E" ->0 une suite exacte de fibres vectoriels. Un

relèvement de la projection j est une représentation r de En dans E telle
que j-r soit l'identité. Un tel relèvement revient à se donner une section du
fibre dont la fibre au-dessus de b est l'espace affine formé des sous-espaces
linéaires de Eh complémentaires à E\. Ainsi, si B est un complexe et A
un sous-complexe de B, tout relèvement de j déjà défini au-dessus de A
peut s'étendre sur B.

7.4. Lemme de factorisation. Soit B un complexe et A un sous-complexe
de B. Soient E E1@E2 et Ef E[® Ef2 deux fibres sommes directes de

fibres vectoriels, de base B. Soit a un isomorphisme de E sur E' dont la
restriction à A est somme directe o\ © o% de deux isomorphismes

a\:Ex\ A->E[ \A et a°2 : E2 \ A ->Er2 \ A

Supposons que a\ puisse s'étendre suivant un isomorphisme o1 de Ex sur E[
et que dimbB < mngbE2 pour tout beB. Alors il existe une représentation a2

de E1 sur E[ prolongeant o\ et une homotopie de représentations, fixe sur A,
reliant g à o1@a2.

Démonstration. Soient L(E, E'), L(E1, E!) et L(El9 E[) les fibres sur B
définis comme en 7.2; L(E1, E[) est considéré comme un sous-fibré de

L(Et, E')\ par restriction à El9 on a une application fibrée q> : L(E, E')->
-+L(E19E').

La représentation a définit une section a de L(E, E')\ sa projection
(p(o) dans L{E1,E'), restreinte à A, peut s'étendre suivant une section

Oi de L(E1,Ef1). Comme la fibre de L(E1,E') au-dessus de b est une variété
de Stiefel acyclique en dimensions inférieures à rangb2£2 (cf. 7.2), il existe
une homotopie, fixe sur A, qui déforme cp {a) en ax. Cette homotopie peut
se relever dans L(E,E') et déforme a en une section cr0 égale à a sur A,
et qui se projette sur ox. Cette section a0 correspond à une représentation de

E dans E' dont la restriction à E2, composée avec la projection de E' sur
Ef2 est l'isomorphisme o2 cherché.
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