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Plongements différentiables dans le domaine stable

par ANDRE HAEFLIGER, Genéve
En hommage @ ARNOLD SHAPIRO

L’idée que les obstructions au plongement d’un polyédre fini K dans ’espace
euclidien se trouvent dans la cohomologie du carré symétrique réduit de K,
remonte & VAN KAMPEN [5]. Cette idée a été reprise avec une grande extension
par Wu WEN Tsun [13] et ARNoLD SHAPIRO [6] indépendamment. Ces deux
auteurs ont notamment comblé une lacune dans la démonstration de Vanx
KamreN [5] de la suffisance d’une condition nécessaire pour pouvoir plonger
un complexe de dimension n dans R?". Tous deux s’appuyent essentiellement
sur le procédé fondamental imaginé par WHITNEY [11] pour éliminer les paires
de points doubles isolés de signes opposés, dans le cas différentiable.

Wu WeN Tsun a étudié dans [13] la cohomologie du produit symétrique
réduit d’un complexe et d'une variété et il a défini des classes obstructions au
plongement liées étroitement aux classes caractéristiques. Il a été d’autre part
Pinitiateur dans 1’étude des isotopies [14], [15], [16]. De son c6té ARNOLD
SHAPIRO a suggéré dans [6] une méthode, pour I’étude des obstructions d’ordre
supérieur, qu’il a développée dans des travaux non publiés, et il a donné une idée
précise de ce qu’est le domaine stable.

Suivant le point de vue de VAN KaMPEN, SHAPIRO 6t WU, nous nous bornons
a considérer ici exclusivement le cas différentiable. Cependant tous les théorémes
de cet article sont probablement aussi vrai pour les plongements de polyédres
finis dans une variété combinatoire. En revanche, les restrictions sur les dimen-
sions (domaine stable) sont essentielles pour chacun des théorémes énoncés ici,
aussi bien dans le cas combinatoire que différentiable.

Au § 1, nous énongons les théorémes généraux, nous proposant d’en tirer les
conséquences (méme les plus immédiates) dans une publication ultérieure'). Leur
démonstration comprend deux parties distinctes, et suit le méme plan que
Particle [11] de H. WHITNEY consacré au plongement d’une variété de dimen-
sion » dans R?. Le but de la premiére partie (§ 2) est la construction d’une
immersion convenable; elle utilise la classification des immersions de SMALE-
HirscH (§ 4) et se trouve essentiellement dans HArrLiGER-HIrscH (§ 3). La
seconde partie (§ 3 et § 4) consiste & déformer cette immersion en un plongement
par une homotopie réguliére d’immersions. Notre méthode est fortement
influencée par celle qu’utilise A.SHAPIRO dans le cas de la premiére obstruction
(§ 6); nous avons d’ailleurs grandement profité d’une conversation en mars
1960 avec ARNOLD SHAPIRO qui nous avait indiqué les principales idées géo-
métriques de sa généralisation aux obstructions d’ordre supérieur.

1) Voir mon exposé au séminaire Bourbaki, décembre 1962.
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Les techniques du § 4 sont étendues pour couvrir le cas des isotopies (§ 5)
et des variétés & bord (§ 6) ol les restrictions de dimensions peuvent étre
affaiblies.

La lecture de cet article est indépendante de celle de [2]. C’est la théorie des
immersions qui permet d’éviter ici la considération des singularités. La plupart
des résultats de [2] peuvent s’obtenir comme conséquence des théorémes de ce
travail.

1. Enoncés des résultats

1.1. Etant donné un espace topologique X, on désigne par X2 le pro-
duit topologique X X X et par Ax la diagonale de X2, c’est-a-dire I’en-
semble des couples (z, ), o xeX.

Si Y est un autre espace topologique, une application équivariante

F:.X2—> Y?
est une application continue qui commute avec les symétries qui échangent les
facteurs de X2 et Y2: si F(x,, %) = (41, ¥s), alors F(x,, z,) = (%2, ¥1)-

Une application F:X2— Y2 est une application isovariante si elle est
équivariante et si de plus F1(4y) = A x.

Une homotopie équivariante (resp. isovartante) F,: X2 — Y2 est une homo-
topie qui, pour chaque valeur du parameétre ¢, est une application équivariante
(resp. isovariante).

Toute application continue f: X — Y détermine une application équi-
variante, a savoir f2: X2— Y2, Si de plus f est biunivoque, alors f2 est iso-
variante.

Si f,: X — Y est une homotopie, alors f> est une homotopie équivariante.
Si f, est une isotopie, c’est-a-dire, si pour tout ¢, f, est biunivoque, alors f
est une homotopie isovariante.

Si ’'application f est homotope & une application biunivoque, alors il existe
une homotopie équivariante de X2 dans Y? reliant f* & une application
isovariante.

Les théorémes suivants montrent que la réciproque est vraie dans le cas
différentiable et avec d’importantes restrictions de dimensions (domaine stable).

1.2. Sauf mention explicite du contraire, toutes les variétés, applications
et plongements sont indéfiniment différentiables. Rappelons qu’un plongement
différentiable (dans notre terminologie un plongement) d’une variété ¥V dans
une variété ¥V’ est une application différentiable f biunivoque de ¥V dans
V' qui est, en tout point de ¥, de rang égal a la dimension de V en ce
point.

Deux plongements f, et f, de V dans V' sont isotopes s’il existe une
homotopie f, différentiable (c’est-a-dire que l'application F de V x [0, 1]
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dans V' définie par F(x,t) = f,(x) est différentiable) reliant f, & f, et
qui est un plongement pour tout ¢. Siles applications f, et f, sont propres
(c’est-a-dire si I'image inverse par f, et f; de tout compact de V' est un
compact de V) et si f, est indépendant de ¢ en dehors d’un compact de ¥,
cette définition équivaut a la suivante (cf. THOM [9]): il existe une isotopie
h; de V' sur V', fixe en dehors d’'un compact de V, telle que k, soit ’appli-
cation identique de V' et que f, = b, f,.

Une homotopie %,, 7 € [0, 1], reliant deux applications f, et f; de V dans
M est homotope 4 une homotopie %, reliant f, & f, ¢’il existe une application
bt V—>M,7v,te[0,1],telle que h, g ="h, b,y =h, by ,=fret by ;= f.

1. 3. Théoréme 1. Soient V wune variété compacte (avec ou sans bord) de
dimension n et V' wune variété de dimension n'.

a) Supposons 2n' > 3(n + 1). Une application continue f de V dans V'
est homotope & un plongement f, si et seulement s’il existe une homotopie équi-
variante continue H,: V22— V2 reliant f* & une application isovariante H,.
De plus on peut construire f, de sorte que f2 et H, soient reliés par une homo-
topie isovariante.

b) Supposons 2n' > 3(n + 1). Une homotopie f, reliant deux plongements
fo €t f, de V dans V' est homotope a une isotopie reliant f, a f, st et seulement
8’1l existe une homotopie équivariante continue H, ,: V2—TV'2, 7, t[0,1],
telle que H, o= >, Hy,=fo,H, ,= [, et que H,_, soit une homotopie iso-
variante.

1.4. Rappelons qu’une immersion f d’une variété V dans une variété ¥’
est une application différentiable dont le rang en tout point de V est égal a
la dimension de ¥ en ce point. Deux immersions f, et f, sont réguliérement
homotopes 8’il existe une homotopie différentiable f, (appelée homotopie
réguliére) reliant f, & f, et qui est une immersion pour chaque valeur de z.
Remarquons que si f: V— V' est une immersion, 1’application équivariante
f2: V2—> V2 est telle que Ay est ouvert dans (f2)~1(4y.).

Théoréme 2. Soit V wune variété compacte (avec ou sans bord) de dimension n
et soit V' une variété de dimension n'.

a) Supposons 2n' > 3(n + 1). Une immersion f de V dans V' est régu-
lrérement homotope a un plongement f, si et seulement 8’il existe une homotopie
équivariante continue H,: V2 — V'2 reliant f* a une application isovariante H,
et telle que Ay soit ouvert dans H,”'(Ay.) pour tout t. De plus on peut construire
fi de sorte que {2 et H, soient reliés par une homotopie isovariante.

b) Supposons 2n' > 3(n + 1). Une homotopie réguliére f, reliant deux
plongements f, et f, de V dans V' est réguliérement homotope a une isotopie
reliant f, & f, st et seulement 8’il existe une homotopie équivariante continue
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H,,:V*>7V? telle que H, o= [}, H, ,=f3, H, ,=f:, que H,, soit une
homotopie isovariante et que Ay soit ouvert dans H, ,”' (dy.) pour tout <,¢.

1.5. Compléments aux énoncés des théorémes 1 et 2. Pour ne pas surcharger
les énoncés des théorémes précédents, nous ajoutons séparément ci-dessous
quelques précisions.

Dans les théorémes 1, a) et 2, a), on peut supposer que V n’est pas forcément
compacte, mais alors que f est une application propre dont la restriction & un
voisinage d’un fermé 4 de V est déja un plongement, le complémentaire de
A dans V étant relativement compact. St en plus des hypothéses du th. 1, a) ou
du th. 2, b) on suppose que

o) H, est fixe sur A2, alors U'homotopie f, reliant f a f, pourra étre sup-
posée fizxe sur A.

B) Si de plus H((V — A) X A) ~ Ay, = & pour tout t, on pourra alors
supposer de plus que f,(A)~f(V — A)=g&.

Dans les théorémes 1, b) et 2, b), on a des précisions analogues en supposant
que I’homotopie f, est une application propre dont la restriction & un voisinage
de A est un plongement indépendant de 7, et que les conditions «) et f)
sont vérifiées pour H, ,. Nous laissons au lecteur le soin de les énoncer com-
plétement.

1.6. Cas ot la varidté V' est Uespace numérique R™.

Les théorémes 1 et 2 sont alors équivalents aux théorémes suivants (cf. [1]).

Une application F de V2 — Ay (produit ¥V X V privé de sa diagonale)
dans Sm-1 (sphére unité dans R™) sera dite équivariante si F(xz,, x,) =
= — F (x5, z,).

Théoréme 1'. Soit V wune variété compacte de dimension n. La correspondance
qut associe a tout plongement f de V dans R™ [application éguivariante
7 ove 1 Jtins ry _ H@) — f(=2y)
f:V2— Adp—>8 définie par f(z,, ) (@) — f(zp)]
cation de Uensemble des classes d’isotopie des plongements de V dans R™ dans
Pensemble des classes d’homotopie équivariante de V: — Ay dans S™1.

Ceite correspondance est surjective st 2m > 3(n + 1); elle est bijective st
2m > 3(n + 1).

Pour toute immersion f de ¥V dans Rm™, il existe un voisinage U de
Ay dans V2 tel quesi (z;, ;) e U — Ay, alors f(x;) 5% f(x;). L’application

(g, %) = (%) — () /] f(21) — f(2s) | est ainsi définie sur U — Ay.
Théoréme 2'. Soit V wune variété compacte de dimension n.

a) Supposons 2m > 3(n + 1). Une immersion f: V — R™ est réguliérement
homotope & un plongement f, 81 et seulement si Papplication équivariante

induit une appli-




Plongements différentiables dans le domaine stable 159

f: U — Ay —>8m1 (o0 U est un voisinage convenable de Ay) peut 8’étendre
sutvant une application équivariante F: V2 — Ay — 8m-1, Le plongement f,
peut étre construit de sorte que 71 soit relié a F' par une homotoprie équivariante.

b) Supposons 2m > 3(n 4+ 1). Une homotopie réguliére f, reliant les plon-
gements f, et f, de V dans R™ est réguliérement homotope & une isotopie reliant
fo @ f, st Uhomotopie équivariante f_,: U— Ay - 8™ (ou U est un voistnage
assez petit de Ay) peut 8'étendre suivant une homotopie équivarianie H, de
V2 — Ay dans 8™ telle que Ho-—=f; et Hl————--ﬁ.

Nous laissons au lecteur le soin de formuler dans ce cas le complément 1.5.

1.7. Remarques. 1. L’espace quotient du produit (V2 — Ay) X 8m-1 obtenu
en identifiant (x,, z,,8) et (2, 2,, — 8), ou =z, Z,¢e V, 8e S™1, est un
fibré E en sphéres 8™-! dont la base V* est le carré symétrique réduit de ¥V
(obtenu en identifiant dans V2 — Ay les couples (z;, ;) et (x,, z,)).

Les applications équivariantes de V% — Ay dans 8™ correspondent ca-
noniquement aux sections du fibré &, et les classes d’homotopie d’applications
équivariantes aux classes d’homotopie des sections de E. Ainsi par le théo-
réme 1’, le probléme de la classification des plongements de ¥V dans R™ est
ramené, dans le domaine stable, & un probléme classique de topologie algé-
brique, & savoir celui de la classification des classes d’homotopie des sections
du fibré K.

On peut remarquer que dans le probléme de l’existence d’un plongement
d’une variété compacte ¥V dans R™, les obstructions sont des éléments de
Hi (V*; a,(8m1)); pour l'existence d’une isotopie reliant deux plongements
de V dans R™, les obstructions se trouvent dans H*(V*; =,(S™1)).

Remarquons enfin que les obstructions a construire un plongement régu-
lisrement homotope & une immersion donnée sont des éléments du groupe de
cohomologie & support compact H'%!(V*; m,(S™-1)).

2. 11 serait facile d’obtenir le théoréme d’approximation de [2] (et méme
pour le cas des variétés & bord) & partir des démonstrations du présent travail
et du théoréme d’approximation des immersions de M. HirscH (cf. [4], § 5).

2. Comment le théoréme 1 se déduit du théoréme 2.

2.1. Le pas essentiel de cette réduction utilise les résultats de HAEFLIGER-
HirscH [3]. Pour montrer que le théoréme 2 a) entraine le théoréme 1 a), nous
utiliserons le fait suivant (loc.cit.4.3,a)):

Soient V et V' des variétés de dimension n et n' resp. telles que 2n' > 3n -+ 1.
Soit h: U(dy) — V'® une application isovariante d’un voisinage U (Adv)
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de Ay dans V'3, c’est-a-dire que st h(x,, x;) = (y;,Ys), alors h(z,, z;) =
= (Y5, ¥:) et que h(x,, x,) e Ay seulement 8t x, = x,. Il existe alors une im-
mersion | de V dans V' et une homotopie isovariante reliant les restrictions de

f*> et b a un voisinage assez petit de Ay et qui couvre une homotopie donnée
relvant f>| Ay o h| Ay.

2.2. D’apreés ce résultat, en se plagant dans les hypothéses du théoréme 1,a),
on peut remplacer f par une immersion, encore notée f, telle que les restric-
tions de f? et H, a un voisinage de Ay soient reliées par une homotopie iso-
variante.

Introduisons sur V et V' des métriques riemanniennes, et sur V2 et V'2
les métriques produits. Soit 6 une fonction strictement positive définie sur
Ay. Un é-voisinage tubulaire Ug de Ay est 'ensemble des extrémités des
géodésiques dans V? issues des points x de Ay, normales & Ay et de lon-
gueur < d(x). Si J est assez petit, deux telles géodésiques issues de deux
points distinets de Ay ne se rencontrent pas.

Soit, pour & assez petit, une homotopie isovariante H$: Ug— V'2 telle
que, au voisinage de ¢ =0 et ¢ =1, H} soit la restriction de H, & Uj et
que H=H, sur 4y.

Soit A(f) une fonction définie sur l'intervalle [0,1], valant 1 pour ¢ =0
et t=1, et telle que 0 < A(f) <1 pour 0 <it<1.

Définissons une nouvelle homotopie équivariante H, en posant H, = H,
en dehors de Ug, H, = H} sur U)s. Pour un point z de Uz — U,s situé
sur une géodésique normale & Ay en = et coupant 9U,s et 9 Us en 2, et
2, Tesp., H,(z) sera sur le segment géodésique dans V'2 joignant les points
Hi(z) et H,(z,) (si 6 est assez petit, ce segment géodésique existe et dépend
continuement de ses extrémités) et partagera ce segment dans le méme rapport
que z partage le segment géodésique d’origine et d’extrémité z, et z,.

L’homotopie H, ainsi définie est équivariante; elle coincide avec f* pour
t=0 et avec H, pour t= 1. De plus Ay est ouvert dans H,(4y.).
Ainsi toutes les hypothéses du théoréme 2,a) sont vérifiées, de sorte qu’il
entraine le théoréme 1,a).

On voit d’une maniére analogue, en utilisant le théoréme 4.3, b) de [3], que
le théoréme 1, b) est une conséquence du th. 1, a).

Les légéres modifications a apporter & la démonstration précédente pour
obtenir le complément 1.5 sont laissées au lecteur.
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3. Construction d’un modéle de déformation éliminant des points doubles

Nous allons construire une immersion @ d’une variété L dans une variété
L' et une déformation @, de cette immersion éliminant les points doubles de
@. Ceci nous servira de modéle dans la démonstration du théoréme 2.

3.1. Le modéle @: L - L' sera construit a partir de 3 éléments:

1) Une variété compacte D (qui peut avoir un bord @ D) munie d’une
involution J sans point fixe: pour tout point d e D, Jd £d et J*d =d.

2) Une fonction A définie sur D, invariante par J (c.-a-d. iJ = A),
telle que — 1 <A(d)<1l, A1 (—1)=0D et que A n’ait pas de valeur
critique sur [ — 1, 0]

3) Un fibré vectoriel L de base D.

Les dimensions des composantes connexes de D et des fibres de L peuvent
varier.

Soit I lintervalle [— 1, 4 1] et soit D’ le quotient de D X I par la
relation d’équivalence qui identifie les points (d,?) et (Jd, — ). Cest un
espace fibré de fibre I et de base D/J, le quotient de D obtenu en iden-
tifiant les points d et Jd.

Nous allons construire un fibré vectoriel L' sur D' de la maniére suivante.
Considérons d’abord le fibré L@ ;L sur D image réciproque du fibré L X L
par I’application antidiagonale d — (d, Jd) de D dans D x D. Tout point
de la fibre de L @®;L au-dessus de d ¢ D est un couple (I;,1;;) formé d'un
vecteur l;e L, et d'un vecteur l;; e Ly, (on désigne par L, la fibre de L
au-dessus de d). Le fibré L’ est défini comme quotient du fibré (L @, L) X I
de base D X I en identifiant (I;,l;;,t) et (— lyq, — g, — 2).

Les classes des points (d,t) et (I;,1;4,t) dans D' et L' seront désignées
par [d,t] et [1;,1;4,t] respectivement.

Définissons une immersion ¢ de D dans D' par ¢(d) =[d,A(d)]. D et
D’ étant identifiées aux sections nulles de L et L', ¢ peut se prolonger
suivant une immersion @ de L dans L' définie par

D(lg) = [l4, 0, A(d)].
Les paires de points de L appliqués par @ sur un méme point de L’ sont
les paires de points se correspondant par J de la sous-variété
Dy=410)cDclL.
Les deux nappes de @(L) qui se coupent le long de @(D,) sont en position

générale comme on le vérifie immédiatement (en tenant compte du fait que
A n’a pas de points critiques sur D).

3.2. Nous allons définir maintenant la déformation @,.
Soit u(d) une fonction sur D telle que

11 CMH vol. 37
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0 <pud<id) +1
(@) + u(Jd) > 2 4(d)
et u(d) =0 s A(d) < —1/2.

Une telle fonction existe; on peut prendre par exemple la fonction A(d) +
+ 1/2 et la multiplier par une fonction comprise entre 0 et 1, égale 4 0
aux points d ou A(d) < —1/2 et a 1 ou A(d) > 0.

L’application ¢,(d) de D dans D' définie par

p:(d) = [d, A{d) — t u(d)]

pour ¢e[0, 1] est une homotopie réguliere déformant ¢ = ¢, en un plonge-
ment ¢,. Il s’agit maintenant de la prolonger & L.

Réduisons le groupe structural de L au groupe orthogonal de facon a
définir une métrique euclidienne dans les fibres de L. La longueur du vecteur
l; e L; seranotée |l;|. Soit «(x) une fonction paire d'une variable z, com-
prise entre 0 et 1 et telle que «(0) =1 et a(x) =0 pour |z| > e> 0.

Définissons

Dy(ly) = [lg, 0, A(d) — (| 1z ]) t p(d)].

P, est une homotopie réguliere, égale a @ pour ¢t = 0 et qui est un plonge-
ment pour ¢ = 1. De plus @, est fixe en dehors d’un compact. (Comparer ces
constructions avec celles de SHAPIRO [6], § 5 et 6.)

4. Démonstration du théoréme 2, a) lorsque 7 n’a pas de bord

Les restrictions de dimensions exigées a chaque pas de la démonstration
seront signalées par un astérisque dans la marge.

Nous utiliserons les notations suivantes. Le fibré des vecteurs tangents a une
variété V seranoté T(V). Si D est une sous-variété de V, alors 7'(V; D)
sera la restriction &4 D de 7T (V), c’est-a-dire ’ensemble des vecteurs de V
dont D’origine appartient & D. Le fibré tangent & D s’identifie & un sous-
fibré de T (V; D); le fibré normal a D sera par définition le fibré quotient
N(V;D)=T(V; D)/T(D). ~

4.1. Soit f une immersion de V dans V'. Nous pouvons supposer que f
est générique: en tout point v’ = f(v;) = f(v,), vy # v,, l'espace tangent &
V' est engendré par les images par df des espaces tangentsa V en v, et v,
(autrement dit, f2 est transverse a la sous-variété Ay, en tout point de
V2 — Ay). De plus f n’a pas de point triple, ce qui est possible génériquement
si 2n' > 3n (cf. [2]).

Soit H, I’homotopie équivariante reliant f2 a une application isovariante
H, et telle que Ay soit ouvert dans H,*(4y.). Nous pouvons étendre la
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définition de H, a lintervalle [— 1, + 1] = I et, par une légére modification,
obtenir une homotopie équivariante, encore notée H,, qui vérifie en plus des
hypothéses du th. 2, a) les 3 propriétés:

1) L’application H: V2 X I — V'2 définie par H (v, v,,t) = H,(v,, v,) est
transversale & Ay, en dehors de Ay X I. Alors

4= H_I(AV,) — AV x I

est une sous-variété ferméede V x V x I.

2) La projection p; de V X V X I sur le premier facteur ¥V, restreinte
a A, est un plongement B, de 4 dans V. Il en sera alors de méme pour la
projection p, sur le deuxieme facteur.

3) La restriction a A de la projection ¢ de V X V X I sur I est une
fonction qui n’a pas de valeur critique sur [— 1, 0].

Pour que 1) et 3) soient vérifiés, aucune restriction de dimension n’est néces-
saire. Pour 1), on utilise le théoréme de transversalité de Trom (cf. [8]).

*  Si l'on suppose que 2dim 4 <dim V (ce qui est certainement le cas si
2n' > 3(n + 1)), une adaptation simple des techniques de WHITNEY permet
de réaliser la condition 2) (cf. [12], Chap. IV).

o

4.2. Comme au paragraphe 3, nous construisons un modele @: L~ L' &
partir des 3 éléments suivants:

1) La variété D = p, 4 = p, A munie de U'involution J = p, P .

2) La fonction A, composé de P7' avec la projection t.

3) Le fibré L = N(V; D), le fibré normal & D dans V.

Remarquons que D, = A7'(0) est la sous-variété de V formée des paires
de points distincts de ¥V qui ont méme image par f.

4.3. On se propose de construire des difféomorphismes
Y:L,—~V e ¥:L -V,

o L, (resp. L)) est un e-voisinage tubulaire de D dans L (resp. de D’
dans L'), tels que

a) fP=¥"& sur L,
b) Y(L',) contient tous les points doubles de f,
e) f(V—-¥YL)~V'L,=3.

Ceci fait I'homotopie f, définie par

_\Po, 1 swr V(L)
fe= f en dehors de ¥(L,)

sera une homotopie réguliére reliant f & un plongement f;.
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4.4. Nous allons d’abord construire des plongements
p:D—>V et v :D =V
tels que:

) fy=9v'9,

2) f(V —yD)rnyp'D' =2,

3) v'(D’) est transverse & f(V) le long de f(D).

Cette derniére condition signifie que pour tout point d e D, les images par f
et par ¢’ des plans tangentsa V en p(d) et & D' en ¢(d) resp. se coupent
suivant I'image par fy du plan tangent 4 D en d.

p, et p, désignent toujours les projectionsde ¥V X V X I sur le premier et
le second facteur resp.; de méme soient p; et pj les projections de V' x V'
sur le premier et le second facteur resp.

Le plongement y sera simplement 'inclusion de D dans V. Quant & o, sa
restriction y, & @D est définie par la relation 1). Soit A4 I’ensemble des
points de D' de la forme [d,?], avec ¢ compris entre 0 et A(d). En posant,
pour tout point [d,?] de 4

yi(d, t]=p HA,Jd, A(d) — 1),

on définit une extension continue de y, & A. Comme D’ peut se rétracter
sur 4, on obtient finalement une application continue y’' de D’ dans ¥V’
qui prolonge 1.

D’autre part, il est possible de construire une extension u; de p, & un
petit voisinage U de @D dans D’ de sorte que v; soit un plongement et
que v;(U) coupe transversalement f(V) le long de f(D) (cf. SHAPIRO [6],

* lemma 5.2; on utilise le fait que dim D <%’ — n ). En appliquant finalement

* le théoréme de plongement de WHITNEY (cf. [10]), comme 2 dim D’ < dim V',
on peut obtenir un plongement y’ de D’ dans V' homotope & »', qui
coincide avec ) au voisinage de D (la condition 3 est ainsi satisfaite) et qui
ne rencontre pas fV en dehors de ¢ D. Cette derniére condition est possible
car dim D' + dim V < dim V’. La condition 2) est donc aussi vérifiée.

4.5. Désignons par D’ l'image de D’ par y'. La différentielle de f qui
applique 7'(V) dans T'(V’') est notée, comme toujours, df.
Le pas suivant est la construction de représentations (cf. 7.2) d’espaces

fibrés
v:L>T(V) o :L =TV

qui prolongent p et ', telles que
df-p = 9"+ @,
p(L) et '(L') étant complémentaires & 7'(D) et T'(D') resp.
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La représentation y sera un relévement de L = N(V; D) dans 7' (V; D);
un tel relévement est complétement déterminé par un champ de sous-espaces
linéaires, le long de D, complémentaires & 7'(D). Nous identifierons doréna-
vant N (V; D) & son image par 9, donc & un sous-fibré de 7'(V; D).

De méme nous identifierons N (V’; D’) a un sous-fibré de T'(V’) par un
relévement de la projection naturelle de T'(V’; D') sur N(V'; D'), ce sous-
fibré contenant Pimage par df de N(V; D). Ceci revient & construire le long
de D' (cf. appendice, 7.3) un champ de sous-espaces linéaires complémen-
taires a T'(D') contenant df (N (V;D)); ce champ est completement déter-
miné par ces conditions sur f(D,); on l’étend ensuite le long de f(D), en
tenant compte de la condition 3) de 4.4, et enfin sur D'.

Construction de w'. Soit & Dapplication d—>y'[d,0] de D dans V’.
Remarquons que & =& J.

4.6. Lemme: Il existe une représentation E du fibré N(V; D)@, N(V; D)
dans T (V') qui se projette sur &, telle que E(lz, lyq) = — E(lyq, ls), et telle
que pour d € D,, on ail é(ld, lya) = df(ly) — df(lyq)-

Démonstration: Soient P, et P, les restrictions de p, et p, & 4. Comme P,
est un plongement de 4 dans V, le fibré N (V% X I, A) est canoniquement

isomorphe & la somme directe du fibré tangent & V restreint a p, 4 = D,
du fibré normal & p, 4 = D dans V et d’un fibré linéaire trivial 7'. Ainsi

NV:XI, =P 'NV; D)@ P N(V; D)@ P ' TD)®T;
il existe donc un isomorphisme
NVEXI, A)—>NV;D)D; NV;D)eTD)dT
se projetant sur P, .

D’autre part H est transversal a Ay, sur 4; donec N(V2 X I,A4) est
canoniquement isomorphe & 'image inverse par H restreint a A4 du fibré
N(V'2 Ay)) = pi 2 T (V') restreint & Ay,. Vu lisomorphisme ci-dessus, il
existe une représentation

E:N(V;D)®; N(V;D)@TD)®T =T (V")

se projetant sur p, H B, .

Soit ¢ l’involution du fibré N(V; D)@, N(V; D)@ T(D)® T définie par
o(la, Lygsta, €) = (Lyas las tya, €), ol 1; et 1y, sont des vecteurs normaux a
Dend et Jd,t; un vecteur tangent & D en d et ¢;, son image par la différen-
tielle de J.

Comme H, est équivariante, on a S0 = — Z.

Enfin £ sur N(V;D)®; N(V;D)@®O0, restreint & D,, se réduit a
df ®;(— df) @ 0.
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D’aprés la construction de v’ (cf. 4.3), il existe une homotopie reliant
p; H P! & Papplication & de D dans V', invariante par J et fixe sur D,. Il
en résulte que & est homotope & une représentation =’ se projetant sur &

=~

telle que &' ¢ = — F', et égale &4 & sur D,.
Pour obtenir lapplication & cherchée, il suffit d’appliquer le lemme 7.4
en prenant pour E,; le quotient de 7'(D) @ T par la symétrie

(ta, €) > (— tya, — €),
pour E, le quotient de N(V; D)@ ; N(V; D) par la symétrie

(ld7 le) - (— le, — 1g);

ce sont des fibrés de base D/J (cf.3.1). Quant & E; et E,, ce seront les
images réciproques par &/J:D/J D' des fibrés T (D) et N(V'; D).
Le lemme peut s’appliquer car dim D < 2(n — dim D).

4.7. Pour construire @', on remarque que L' est le quotient du fibré
(L&®y L) X [0,1] de base D X [0, 1] par la relation d’équivalence qui iden-
tifie (I5,1;4,0) et (— l;4, — 14, 0). Il suffira donc de construire une repré-
sentation

2: (L®DysL) X [0,1]->N(V'; D)
telle que

1. ¥ se projette sur 'application (d,t) - y'(d, {]

2. y=£&sur (LD, L) X0

3. a) 1(ls, 0, 4(@d) = df(l)  pour A(d) =0

b) 2(0, —l; — A(d)) = df(l;) pour A(d) <O.

On construira d’abord la restriction y, de y au premier facteur

(L®y0) X [0, 1].
Les conditions 2 et 3,a) définissent déja y, sur D X {0} et sur les points
(d, A(d)), ou A(d) > 0. Les obstructions pour prolonger y, a D X [0, 1]
sont & valeur dans 7,(V . _gimp’. n-gimp) PoOUr ¢« < dim D (cf. appendice,
7.2). Ces groupes sont tous nuls si
dmD<n' —dimD —n + dim D

c¢’est-a-dire 3n+2<2n.

Enfin on prolongera y, en x en tenant compte des conditions 2 et 3,b).

Ceci ne présente aucune difficulté car D X [0, 1] peut se rétracter par défor-
mation sur 'union de D X [0] et des points (d, A(d)), ou A(d) <O.
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2 . " x(ld’l.foht) tZO

On définira donc ' [1,;, 1;4,t] = (= Lo — 1y — 1) £ <0
4.8. Construction de ¥ et ¥'. On construit d’abord ¥ sur L,, pour
¢ assez petit, de sorte que ¥ soit tangent &4  le long de D (en utilisant une
métrique riemannienne par exemple). Pour chaque point d' ¢ D', il existe une
application ¥; dans V' d’un voisinage de d’' dans L' de sorte que ¥,
soit tangent & o' le long de D et que f¥ = ¥, ® aux points ol les deux
membres sont définis. Ceci résulte de ce que 'application f peut s’exprimer
comme une application linéaire (ou un couple d’applications linéaires) dans des
systémes de coordonnées convenables en vertu du théoréme des fonctions
implicites. Utilisant la proposition 1.3, p.59 de [2], il est enfin possible de
construire une application différentiable ¥’, d’un voisinage de D’ dans L',
telle que ¥’ soit tangent & ' lelong de D' et que f¥ =P/ @. Si ¢ est

assez petit, ¥ sera défini sur L', et sera un difféomorphisme.

4.9. Il reste a vérifier que le plongement f, obtenu est tel que H, et f?2
sont reliés par une homotopie isovariante. Plus précisément:

Proposition. Il est possible de construire I’homotopie f, de sorte qu’il existe une
homotopie équivariante P, .: V?— V'* dépendant des paramétres t, v [0, 1]
telle que a) P, o, =H, b) P,;=1[} c) Py, =1/ d) P, estune
homotopie isovariante.

Démonstration. Les conditions a), b) et ¢) définissent déja P, . pour 7 =0
et 1 et pour ¢ =1.

Posons P(x,, x;,¢t, 1) = P, (%, %y, t) = P, (21, %,), ou (x,, x,) € V2. Dési-
gnons par ¢ linvolution de V2%, V2 X I ou V2% X I%, suivant les cas, échan-
geant les deux premiers facteurs et soit ¢’ celle qui échange les facteurs de
V2. Une application de V2, V2 X I ou V2 x I? dans V’? sera dite équi-
variante si elle commute avec o et ¢'. On désigne par I le segment [0, 1].

Soit »(d) la fonction définie aux points de D ou A(d) > 0, égale a la
valeur de ¢ pour laquelle ¢,(d) = @,(Jd). On a »(d) = v»(Jd). Soit 4, la
sous-variété de V2 X I formée des triples (d,Jd,(1 — 7) A(d) — tv(d)),
avec A(d) > 0. Remarquons que

Ay = Pyl (dy,)) — Ay X I et 4, = P7*(4v,) — Ay X I.

D’apres la construction méme de £ (cf. 4.6), il existe une homotopie, dé-
pendant du paramétre v, de représentations de

N(VEx I,4,) dans N(V, dy.),

se réduisant pour v = 0 et 1 aux représentations induites par P,, et P,,
et commutant avec les involutions induites par o et o'.
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Soit A4, la sous-variété de V2 x I? réunion des sous-espaces A4, X {7}.
Il résulte de ce qui précéde que 'application P déja définie sur une partie de
V2 X I* par les conditions a), b) et c¢) peut s’étendre au voisinage de 4,
suivant une application équivariante, transverse a 4,, sur 4.

D’autre part soit 4 I’ensemble des points de 72 x I2 de la forme
d,Jd,t, 1),

ou d eD esttel que A(d) > 0 et ou ¢ est comprisentre 0 et (1 — 7) A (d) —
— vv(d). D’aprés la construction de v'(cf.4.4), Papplication P, déja
construite sur la frontiére de j, peut s’étendre a A d’une maniére équi-
variante. De plus, comme P est transverse a Ay, sur 4, et que

dim A < codim 4,% = 7',

on peut s’arranger pour que P(Zl — A4,) ne rencontre pas A4,..

Finalement, on pourra définir I’application équivariante P sur un voisinage
U du compact K, unionde V2 X I x {0}, de V2 x I x {1},de V2 X {0} x[1
et de A4 de sorte que P-1(4y.) soit 'unionde A, etde (dy X I X I)~ U.
Or V2 X I? peut se rétracter par déformation sur un voisinage de K contenu
dans U, chaque point se déplagant sur un segment de la forme (x,, z,, ¢, I).
Cette rétraction, composée avec 'application P déja définie de U dans V2,
donne une application équivariante, encore notée P, de V2 x I? dans V2
telle que P-'(A4y.) soit 'union de A4, et de Ay x I2. Alors P restreint a
V2 x {1} x I est ’homotopie isovariante cherchée qui relie H, a f,2.

4.10. Démonstration du complément (cf. 1.5). Supposons que f soit une im-
mersion propre de V dans V' dont la restriction au fermé A4 est un plon-
gement, et que H, soit fixe sur 42%. Alors D ~ 4 ne rencontre pas J(D ~ 4).
On peut construire la déformation @,: L — L' dans le modéle (cf. 3.2) de
sorte qu’elle soit fixe sur un voisinage de D ~ A. Pour ¢ assez petit, la défor-
mation f, (cf. 4.3) sera aussi fixe au voisinage de 4.

Si de plus H,((V — 4) X A) ~ 4y, = &, alors D~ A = g. Donc pour
¢ assez petit, ¥(L,)~ A = @. Ainsi f,(4)~ f,(V — 4A) = . Dans ce der-
nier cas, la démonstration est inchangée si ¥V a un bord contenu dans 4.

4.11. Un cas particulier. La variété ¥V n’est pas nécessairement connexe,
et la démonstration précédente n’exclut pas le cas ol les composantes connexes
de ¥V sont de dimensions différentes; il faut alors préciser que » est le maxi-
mum des dimensions des composantes connexes de V. Comme la dimension
de la variété des points doubles de f peut étre inférieure & 2n — n’, il est par-
fois possible d’affaiblir les inégalités sur les dimensions, comme dans le cas
suivant.
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Théoréme. Sotent V,,t = 1, 2 des variétés compactes de dimension n; et soit
A; un ferméde V, contenant 0 V,. Soient f;, des plongements de V, dans V'
tels que f, (V) ~ fo(4s) = fi(4,) ~ fo(Vy) = @ . Supposons qu’il existe une homo-
topre H,: V, X Vo= V'2 telle que H(V, X Vo)~ Ay, = & et que

Ht((V1 X Az) U (Al X Vz)) ~dy, =& .

Alors si n; + n, + max (n;, ny,) + 3 < 2%/, il existe une isotopie g, de f; = g,,
fize sur A, et telle que g,(V,) ~ fo(Vy) = o et que g,(Vy)~ fo(4s) = 2.

Il suffit dans la démonstration précédente de remplacer ¥V par 'union
disjointe de V, et V,, f par la réunion de f; et f, et de remarquer que
dim D =n, +n, — n' 4+ 1.

5. Comment la démonstration du th. 2, b) (isotopie) se déduit de celle
du th. 2, a).

Nous reprenons la démonstration du paragraphe précédent en indiquant &
chaque pas les modifications nécessaires. Les numérotations des paragraphes se
correspondent.

Soit I, le segment [0, 1]. Pour obtenir le th. 2, b), on applique en gros la
démonstration du paragraphe 4 au cas ot V est remplacé par V X I, et V’
par V' X I, et f parl’application f: V X I,— V' X I, définie par f(x, 7) =
= (f,(x), 7), ou 7el,. Les restrictions de dimensions du th. 1, a) devien-
nent alors 2(n' + 1) > 3(n + 2), c’est-a-dire 2n' > 3(n + 1).

5.1. On suppose aussi que f est une immersion générique. Soit
H:V2x1I,x1I->V"?

l'application définie par H(x,, x,, 7v,t) = H, (%, ;). Comme dans 4.1, I
désigne le segment [— 1, + 1] et 'on suppose H convenablement modifié
de sorte que les conditions 1) et 3) de 4.1 soient vérifiées, 2) étant remplacé
par la condition 2’): la projection p,: V2 X I, Xx I -V X I, définie par
Py (%, x5, T,t) = (2,, T) restreinte a A = H1(dy,) — Av X I, X I est un
plongement; de plus le champ de vecteurs 9/ v défini sur V% X I, X I n’est
jamais tangent a 4. Ceci revient a dire que la sous-variété p,(4) =D de
V x 1, est transverse au champ de vecteurs @/d = de V X I,. Cette derniere
condition peut étre réalisée car

dim D < codim D .

5.2 et 5.3. On construit comme en 4.2 un modéle et il s’agit de définir des

difféomorphismes
Y:L,—>V v:L, =V
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vérifiant les conditions a), b) ¢) de 4.3 et de plus
d) 7-¥'[l;,0,t] = v ¥y
ou 7t désigne les projections naturellesde V X I, et V' x I, sur I,.

5.4. On construit d’abord les plongements
v: D>V X1, et v :D =V x I

vérifiant 1), 2), 3) de 4.4 et de plus

4) v-y'[d,t] = v-p(d).

p est l'injection de D dans V X I,. Une application continue 3y’ de 4
(cf. 4.4) dans V' x I, vérifiant fv = v’ @ et 4) est définie par
v [d,t] = (pH [x(d), x(Jd), T(d), A(d) —t],7(d)) ol & est la projection na-
turellede V x I, sur V.

Ensuite 9’ est étendu & D’ et est approché par un plongement o' de

sorte que les conditions 1) a 4) soient vérifiées. Les modifications & apporter
a 4.4 pour tenir compte de 4) ne présentent pas de difficultés particuliéres.

5.5. On doit construire ensuite, comme en 4.5, des représentations
p: LTV xI)) et o :L —=T(V' X I
vérifiant, en plus des conditions énoncées en 4.5,
dr g [l,0,8]=d v p(ly).

w sera un relévement de L = N(V X I,; D) dans T(V x I,; D) tel que
I'image de v contienne la restriction & D du champ de vecteurs 9/ T (on
utilise la condition 2) de 5.1). On identifie N (V X I,; D) a son image par .
Ceci donne une décomposition en somme directe : N(V X Iy; D) = No@ T,,
ol N, est’ensemble des vecteurs ou dr s’annulle et o 7, est le fibré linéaire
trivial engendré par le champ /0 v restreint & D.

N(V' x Iy; D') est aussi identifié a un sous-fibré de T'(V' X I,; D') par
un relévement contenant le champ 9/0 v restreint & D’ et 'image par df de
N(V x I,; D). Cette identification donne, comme plus haut, une décom-
position:

N(V' x I; D) = No@ T}
oit N, est 'ensemble des vecteurs sur lesquels dv s’annulle et ot 7', est en-
gendré par 0/0 v restreint & D'.

5.6. Le lemme 4.6 est remplacé par le suivant:

Lemme. I1 existe une représentation £ de No®; N® T, dans N, qui se
projette sur &, telle que é:(ld, lya, 9/5,(d) = — é(le, li, 0/3.(Jd)) et telle que
pour d e D,, on ait

E(lay Uyar 0)0r (@) = df (g + 8/5,(d)) — &f (bya + 3/5,(J D))
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Dans cet énoncé, 9/,.(d) désigne le vecteur du champ d/dr au point d. La
démonstration est si proche de celle du lemme 4.6 que nous la laissons au
lecteur.

5.7. Construisons le long de D’ un champ de vecteur qui associe & tout
point (d,t) e D X [0, 1] un vecteur »(d,t) d’origine y'[d,¢], contenu dans
N(V' x I,, D'), tel que

(dr,v(d,t) > =2
v(d, 0) =v(Jd, 0)

et pour deDy, v(d,0) = 09f/5,(d) + 9f/5.(/d)
(ou 9f/;,(d) est I'image par df du vecteur 9/,.(d)).
On construit ensuite une représentation

2 No@y No@Ty) X [0, 1] N,
telle que
1. x se projette sur Papplication (d,t) —v'[d,t] de D x [0, 1] sur D’
2. X:é sur (Ny @y No®@ T) X {0}.

3. x (g, 0,a9/5,(d), A(d)) = df(ls + 2a 9/;,(d)) — av(d, A(d))
pour A(d) >0

et 2 (0, —la; — a9/5,(d), — A(d)) = df (s + 2a 9/5,(d)) — ar(d, — A(d))
pour A(d) <O.
Comme dans 4.7, on construit d’abord la restriction y, de yx a
(No @y 0D 7o) X [0, 1].

On définit enfin p’ par la formule

; a -+ b
v [l + a0y, (d), Iy + b0/5,(Jd), 8] = x (la> Lyas o 0/5:(d), t) +

a—2>b
2

-+ v(d, 1) .

5.8. Les difféomorphismes ¥ et ¥’ sont construits comme dans 4.8.
Pour que la condition d) de 4.3 soit vérifiée, on remplace ¥ par I’application
faisant correspondre & [l;,1;4,t], ol 1;,1l;5¢ N(V X I, D), le point

(z',7") e V' X I,

ou z' est la projection sur V' de ¥'[l;, 14, 8] et 7' =v(d) + v ¥(;) —
— v ¥(l;,). Cette application est encore un difféomorphisme pour & assez
petit, car elle est tangente & ¥’ le long de D’ et elle jouit de toutes les pro-
priétés requises.
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6. Démonstration du théoréme 2, a) dans le cas d’une variété a bord

6.1. La démonstration du paragraphe 4 s’applique sans changement dans
le cas ou f est déja un plongement au voisinage du bord @ V de ¥V, ou H,
est fixe sur (@0 V)? et ou H,((V —0V) X 2V)n~ Ay, = . En effet ces
hypothéses entrainent que la variété D ne rencontre pas 9 V et donc que
toutes les déformations peuvent étre fixes sur un voisinage de 0 V (cf. 4.10).

6.2. Considérons ensuite le cas ol f est un plongement au voisinage de
0V et ou H, est fixe sur (@ V)2. Nous allons effectuer successivement deux
déformations. La premiére f,, fixe sur un voisinage de @ V, déformera f = f,
en une application f, telle que f,(V — 0 V)~ f(0 V) = g . La seconde g,,
fixe sur un voisinage de 9 V, sera telle que ¢, (V — V)~ f(dV)=2 et
que g, soit un plongement.

Premiére déformation. Dans la démonstration du paragraphe 4, remplagons
V2 par (V —0V) x @V et H, par la restriction H} de H, &

(V—-29oV)yxaeV.

On peut supposer au départ que I'immersion f est générique, de sorte qu’en
particulier I’ensemble F des paires de points distincts de ¥V — 9 V qui ont
méme image par f est une sous-variété fermée dont la dimension est 2n — »n'.
Ainsi dans les conditions imposées a 4 dans 4.1, on pourra exiger encore que
l'image de 4 = (HY%) Ay, par la projection

p:(V—-—0V)yxoV—->V -0V

ne rencontre pas F. Les constructions de 4 donnent alors une déformation
réguliére f de f restreint 4 V — 9 V, fixe sur un voisinage de 9 V et telle
que f{(V—-0V)~nf(@dV)= . Alors f,(x) = fi(x) pour x¢ 0V et = f(=x)
pour zed V est une homotopie réguliére.

Pour construire la deuxieme déformation g,, il nous faut une homotopie

équivariante convenable reliant (f,)*? & H,. Pour cela, définissons une appli-
cation P d’une partie de V2 X I?2 dans V'? en posant

H,(z,, z,) sur V22X I X0
P(z,, 23, t,u) = (fszy, fos) sur V2 x I X1
(fx,, fs) sur V2 x 0 x I etsur (dV2) X I%.

D’aprés 4.9, il est possible de construire f, de sorte que l'application P
soit aussi définiesur [(V — 9V X d V)~ (V X V — @ V)] X I2, équivariante
et telle que P(x,, x,, 0, u) ¢ Ay, pour (x,, z,) e(V — V) X 0 V et tout ».
L’application P ainsi définie sur une partie K de V2 X I? peut se prolonger
suivant une application équivariante dans V’? d’un voisinage U de K. Or
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il existe une rétraction R de V2 X I? sur un voisinage arbitrairement petit
de K et telle que R(z,, x;,t, u) = (2, %,t',u). Alors P-R restreint &
V2 X 1 X I donne une homotopie équivariante H, reliant (f,)? & H,, fixe
sur (0 V)%, telle que H,((V — V)X 0V)~ndy. =2 et que Ay soit
ouvert dans H,1(4y.).

Nous sommes ainsi ramenés au premier cas.

6.3. Cas général. On considére la restriction de H, a (@ V)2. Ceci permet
de construire une homotopie réguliére convenable f} déformant f|d V en
un plongement f). L’homotopie f} peut s’étendre suivant une homotopie
réguliere f, de f (cf. THom [9]). On se rameéne au cas précédent 6.2 en cons-
truisant comme ci-dessus une homotopie équivariante H, : V2— V'2, fixe
sur (9 V)? (ou dont la restriction a (0 V)? est isovariante) et telle que

H(V-0VXoV)ndy. =3 .
6.4. Affaiblissement des restrictions de dvmensions pour les variétés a bord.

Théoréme. Lorsque V est une variété a bord qui peut étre construite par
adjonction. d’anses d’indices << p (cf. SMALE [7]), alors

dans le th. 2, a), on peut supposer 2n' > 3(p + 1)

2, b), 2n' > 3(p + 1)
1, a), 20’ >2n +p+ 1
1, b), 20" > 2n 4+ p + 1

lorsque p<m.

Le passage du th. 2 au th. 1 se fait comme dans 2 en tenant compte de la
remarque p. 240 de [3].

La raison de cette amélioration pour le th. 2 est que ’'on est ramené essen-
tiellement & séparer ou & plonger des disques de dimension au plus p.

6.5. L’idée de la démonstration est en gros la suivante.

Soit D¥ le disque de rayon unité dans R*. Une anse d’indice k est le pro-
duit A, = D¥ X D"*. Supposons que V = hyvhgv ... vhj soit obtenu
par adjonctions successives d’anses d’indices p, < p. Posons V;, = V;_; v h, ;
on entend par la que la variété V, est obtenue en collant I'anse 4, a la
variété V,_, par un difféomorphisme de D?* x D*-?* dans 0 V,_,.

On suppose par récurrence qu’il existe une immersion f, , de V dans V'
dont la restriction a ¥,_; est un plongement et une homotopie équivariante
HY1:. V25 V2 fixe sur (V,_,)?, reliant fi_, & une application isovariante
H*! Ay étant ouvert dans (H: ™)1 Ay, .

Posons 4! = D x {0}, I'ame de l’anse by, et soit g la restriction de
fr_i & A¥. En utilisant la restriction de H%™' & V,_, X A4, on construit
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comme dans 6.2 une homctopie réguliéere g, de g, fixe sur un vcisinage de
0 A* de sorte que g,(A4*) évite successivement

f52(A4%, fo—1(Vo), foea (AY), fra (V1) s+ oo vy fra (AFTY)

et enfin f,_,(V,_,) par dilatation (pour séparer g(4*) de f,_,(A?), on doit
supposer p; -+ p, + max (p,, p;) < 2n', cf. 4.11). Ensuite on déforme I'im-
mersion obtenue en un plongement g, de A* dans V'’ tel que

g(Ak — 0 AF)~ fi (Vi) = @

(il faudra supposer ici 3(p, + 1) <2n'). On étend enfin ’homotopie ré-
guliére faisant passer de g & ¢, en une homotopie réguliere de f,_,, fixe sur
V1. On obtient ainsi une immersion f, dont la restriction & V, est un plon-
gement et ’on construit une homotopie équivariante vérifiant les mémes pro-
priétés que H*7', k — 1 étant remplagé par k.

7. APPENDICE. Rappel sur les fibrés vectoriels.

7.1. Un fibré vectoriel E — B est un fibré localement trivial de base B,
de fibre un espace vectoriel et de groupe structural le groupe linéaire des auto-
morphismes de cet espace vectoriel; la dimension de la fibre peut varier d’une
composante connexe de B a l'autre. Le rang de E est le maximum des
dimensions des fibres de E et le rang de E en un point b ¢ B, notérang ,E,
est la dimension de la fibre K, de E au-dessus de b.

7.2. Une représentation f d’un fibré vectoriel £ — B dans un fibré vec-
toriel K’ — B’, se projetant sur une application f, de B dans B’, est une
application fibrée f de E dans E’ dont la restriction a chaque fibre E, est
une application lindaire injective dans K, ,.

Il y a correspondance biunivoque entre les représentations de E dans £’
se projetant sur f, et les représentations de E dans fy' E’' (image réciproque
de E' par f,) se projetant sur I'identité de B. On peut donec se borner au cas
ou E' est un fibré de base B et ou les représentations considérées se projet-
tent sur I’identité de B.

Les applications linéaires injectives des fibres E, de E dans les fibres E
de E’' forment un espace fibré L(E, E') de base B. Sa fibre au-dessus de
b est la variété de STIBFEL V4 g sang,z> OU Vi, est l'espace des
n-repéres dans R™. Les représentations de £ dans E’ correspondent biuni-
voquement aux sections de L(E, E'). Les classes d’homotopie de représen-
tations de E dans E’ correspondent biunivoquement aux classes d’homo-
topie de sections de L(&, E').
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7.3. Soit 0> K —E —9>E” — 0 une suite exacte de fibrés vectoriels. Un
relévement de la projection j est une représentation r de E'’ dans E telle
que j-r soit I'identité. Un tel relévement revient a se donner une section du
fibré dont la fibre au-dessus de b est 'espace affine formé des sous-espaces
linéaires de E, complémentaires a E',. Ainsi, si B est un complexe et A4
un sous-complexe de B, tout relévement de j déja défini au-dessus de A
peut s’étendre sur B.

7.4. Lemme de factorisation. Soit B un complexe et A un sous-complexe
de B. Soient E =E, ®FE, e¢ E' = E,® E, deux fibrés sommes directes de
fibrés vectoriels, de base B. Soit o wun tsomorphisme de E sur E' dont la
restriction & A est somme directe ¢ @ o de deux isomorphismes

oV B |A—>E[|A et oS :E,|A—E;| A.

Supposons que o’ puisse s'étendre suivant un isomorphisme o, de E, sur E;
et que dim,B < rang,E, pour tout b e B. Alors il existe une représentation o,
de E, sur E; prolongeant o3 et une homotopie de représentations, fixe sur A,
reliant ¢ & o, @ 0,.

Démonstration. Soient L(E,E'), L(E,, E') et L(E,, E]) les fibrés sur B
définis comme en 7.2; L(E,, E}) est considéré comme un sous-fibré de
L(E,, E'); par restriction & E,, on a une application fibrée ¢ : L(¥, E') —
—~L(E,, B').

La représentation ¢ définit une section ¢ de L(Z, E'); sa projection
(o) dans L(H,, E'), restreinte & A, peut s’étendre suivant une section
o, de L(E,, E). Comme la fibre de L(E,, E') au-dessus de b est une variété
de STIEFEL acyclique en dimensions inférieures & rang,F, (cf. 7.2), il existe
une homotopie, fixe sur A, qui déforme ¢(s) en o,. Cette homotopie peut
se relever dans L(E, E') et déforme ¢ en une section o, égale a ¢ sur 4,
et qui se projette sur ;. Cette section ¢, correspond & une représentation de
E dans E’ dont la restriction & E,, composée avec la projection de E' sur
E’, est I'isomorphisme o, cherché.
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