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The équivalence of two définitions of
quasiconformal mappings1)

by Lepman Bers

We give hère a new proof to the known fact (cf. Mori [7], Bers [3], Ytijobo
[12], Pfluger [11]) that the so-called analytic and géométrie définitions of
quasiconformality are équivalent. The proof uses a minimum of real variable
techniques; no mention is made of absolute continuity in the sensé of Tonelu.
We rely instead on the theory of Beltrami's équations as exposed in Ahlfors-
Bers [2] and on a theorem of Betjrling-Ahlfors [5].

Let z-^w(z) u(x, y) + iv(x, y) be an orientation preserving homeo-

morphism of a plane domain D onto another. If the partial derivatives of w,
in the sensé of distribution theory, are locally square integrable functions, we
dénote by Ka(D,w) the smallest constant K>1 such that the inequality

dw
dx

2

+
dw

dy

holds a.e. in D. If there is no such number, or if w does not hâve locally
square integrable generalized derivatives, we set Ka(D, w) oo. If

JTa(Z>,t0)<oo,

w is said to be JST-quasiconformal according to the analytic définition [4, 6, 9].
A topological rectangle B is a conformai image of a closed rectangle

0 <f <m, 0 <rj < 1,

the images of the vertices being distinguished. We write m mod R. For
B c D, w(B) is also a topological rectangle, in view of Riemann's mapping
theorem. We set

It is immédiate that Kg(D, w) Kg(w(D), w-1) Mappings with

Kg(D,w)<oo

are called ^-quasiconformal according to the géométrie définition [1, 8, 10].

x) Work supported by Contract Number DA-30-069-ORD-2153 (Army Research Office).
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Theorem. Ka(D, w) Kg(D,w).
The proof requires several lemmas. The crux of the argument is contained in

Lemma 8 below.

If Ka(D,w)<K<oG, then w(z) satisfies a Beltrami équation

dw dw
to (3)

with a measurable coefficient // (z) satisfying

Indeed, inequality (1) may be written as

dw

K+l
dw

~dz

Thus the theory exposed in [2] is applicable. In particular

if <p and tp are conformai.
Nowlet D and w(D) be Jordan domains, z0 a point in D and <p and \p

conformai mappings of D and w(D) onto the unit dise with

V(*o) ?(«"&)) ° •

Then W tp o w o y-1 is a self-mapping of the unit dise with W(Q) 0.
If K(D, w) < K < oo, W is a solution of a Beltrami équation with a
coefficient satisfying (4). Using [2] we obtain

Lemma 1. // Ka(D, w) < oo, D and w(D) are Jordan domains and
zO€ D, then w hasauniform modulus of œntinuity depending only on Ka(Dy w),
D, w(D), z0 and w(z0).

Let R be a topological rectangle, [a{z) ze R, a measurable function
satisfying (4) for some K > 1, w and wx two homeomorphisms of D satisfying
(3). Then w o w"1 is a conformai mapping so that mod w(R) mod w^R).
Hence we may define: mod (R, //) mod w(R).

Lemma 2. Let R be a topological rectangle and {/^(z)} a séquence of
measurable functions in R such that \ p^z) \ < h < 1 and /^(z) ->//(z) a.e. Then
mod (R, ps) ~>mod (R, p).

Proof. We may assume that R is the unit dise made into a topological
rectangle by choosing four "vertices" Ci, 1%, £3, C4 on the boundary. Let TfV
be the homeomorphism of | z \ < 1 onto itself with W^(0) 0, Tf^(l) 1
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and dW^ldz fA^dW^/dz and let W be defined similarly. By [2],
p. 399, Wi -> W uniformly in the closed unit dise. Since mod (R, fa)

mod W**i(R) is a continuous function of the cross-ratio of the points
i 1,2,3,4, and similarly for mod (R, /*), the conclusion follows.

Lemma 3. Let R be a topological rectangle, fi(z), zeR, a measurable function
satisfying (4). Then mod (R,ja) <K mod R.

Proof. If /jl(z) is smooth, every homeomorphic solution of (3) is smooth and
has a positive jacobian (cf. [2], p. 391). In tins case the desired inequality
follows by Geotzsch's classical argument [7]. The gênerai case is reduced to
this spécial one by Lemma 2, since it is easy to find a séquence of smooth fa
satisfying (4) and converging a.e. to p.

Lemma 4. Kg(D, w) <Ka(D,w).
This is an immédiate corollary of Lemma 3.

Lemma 6. // Ka(D, w) <oo, then Kg(D,w) Ka(D,w).
Proof. Set Ka(D, w) K and assume that 1 < K < oo. (Otherwise there

is nothing to prove.) In view of Lemma 4 it suffices to show that for every
S, 0 < ô < K — 1, there exists a séquence of squares Qi c D with

Km mod w(Qi) > K - ô (5)

Set ju,(z) (dwjdz)l(dwldz) for dwjdz^ 0, fi(z) 0 for dwjdz 0; then
w satisfies (4) and ess. sup | fi(z) | (K — l)/(K + !)• Let zl dénote the
annulus

K - d - 1 J5T — 1

in the /j-plane; then ^^(zl) cD has positive measure. Let €s ^ 0 be a given
séquence. We can find a séquence of measurable sets Ai such that

AM c Ai c A diam zl,. < c^, mes ^^(J^) > 0

Indeed, if A is subdivided into finitely many measurable sets of diameter not
exceeding elf atleastoneofthem, say At must be such that mes/*~1(zl) > 0.
If Ax is subdivided into finitely many measurable sets of diameter not exceeding

e2, at least one of them, say A2, is such that mes ^(A^) > 0, etc.
Let (x0 | fo I c<a be the intersection of the closures of the Av For each ; let
Zj e D be a point at which the set ^(A^ has metric density one; such points
exist by Lebesgfe's theorem. Each zi is the center of a square Qt with one
side parallel to the ray z re*"12, 0 < r < oo, and such that

mes Qf m? < eit mes [Q* n /i""1^*)] > (1 — «*) w5
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Hence
mes {z\z€Qj9 \ f*(z) - < c, m)

Let Q be the square obtained from Q* by the mapping z->{z — z,)/%.
For zeQ set ^(z) /li(z4 + m4z). Then fa(z)->/u0 in measure. Selecting if
need be a subsequence we may assume that /*/ (z) -> /% a. e. in Q. By Lemma 2

mod (Q, mod (Q, /*0) | j

1 I A*o I

Noting that mod w(Q4) mod (Q, ju4) we obtain (5).

> Z -

Lemma 6. // wj ->w uniformly in D and Ka(D,Wj) < K < oo, then

Ka(D,w)<K.
Proof. Set w u + iv, wj ui + i^. Let Z)o be a relatively compact

subdomain of D. It suffices to show that Ka(D0) w) <K. By [2] Theorem 5,
and the hypothesis

fp mes ws{D0) 0(1)

Since (1) holds for each wi9

um
This shows that the partial derivatives of wi are square-integrable functions
in Do and that we may assume, selecting if need be a subsequence, that

~Jx~
dw du)* dw

7 v weakly in L2(D0).dx ' dy dy

Next, let co be a smooth function with compact support in DQ. Then

/ / Oyll.V) il OiCO.Ili)
I Ie0 s/ [ dxdy I Iv4~~ ^-dxdy,J J d(x,y) * J J j d{x,y) *9

(6)

ifDo

d(u,v) j
J J °\x>

u)
(7)

dxdy

If w and Wj are smooth, this foliows by intégration by parts. In the gênerai
case one approximates w (or wt) together with its first derivatives, in the
mean, by smooth functions. If œ is also non-négative, then

IM dw4

dx
dw4

dy
œJ

Do
d(x,y) dxdy. (8)
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But by (6)

dw
dxdy < liminf I I col

dy
dxdy

and by (6) and (7)

so that by (8)

co

Do

d(ui9vf) f f d(u,v)^\ J—— dx dy I I co -TTz dx dvuix ii\ il dix ij)

//-(|£
_

Do Do

A simple limiting argument shows that this holds also if œ is the charae-
teristie fonction of a rectangle in Do. This implies that (1) holds a.e.

We note now a corollary of the Beurling-Ahlfobs theorem [5].

Lemma 7. For every K > 1 there exista a number K* with the following
property. Let Kg(D, w) < K < oo and let Do be a relatively compact Jordan
subdomain of D. Then there exists a homeomorphism Q of the closure of Do
onto that of w(D0) with Ka(D, Q) < K* and w(z) Q(z) on the boundary

Do of Do.

Proof. Choose a point £ on Do and set Z — w(z). Let z->g?(z) and

Z->y)(Z) be conformai homeomorphisms, of Do and w(D0), respectively,

onto the half-plane £7 {C|ïmt>0} with <p( z) y>(Z) oo. Set

y(f) V ° w ° V^tè)* — oo < | < + oo

For a real | and an h > 0 make Do into a topological rectangle Rèh by
choosing as "vertices" the points q>~x(t; — h), ç?"1^), V^iS + h) and $.
Then modBçth 1. The "vertices" of îi^jR^) are the points

and Z, and mod ti;(iîf A) is a continuous fonction of the ratio

Since K-1 < modu;(JB|>A) < K, there exists a q > 0 depending only on K
such that

^ e• (9)
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Àccording to [5], condition (9) implies that

C^S + ifl ->F(C) \ [(1 + i) r(l + rrj) + (1 - i) y(f - rrj)] dx
o

is a homeomorphism of the closed upper half-plane onto itself with F(Ç)
and Ka(U,F) K*<oo, where JT* dépends only on K. Set Q

y>~x o F o (p ; this mapping has the required properties.

Lemma 8. // Kg(D, w) <oo, then Ka(D, w) <oo.
Proof. Set Kg(D,w) i£. We show that for every square Q czD,

Ka(Q,w)<K*,
the number in Lemma 7. For every integer j > 0 subdivide Q into 4* con-
gruent squares. Lemma 7 implies that there exists a homeomorphism wi of
Q suchthat Ka(q,wj) < K* foreaehofthe 4* small squares q and wi w
on the boundary of each small square. Hence wi is a homeomorphism of Q

onto w(Q) and K^Q^Wj) < jÈT*. By Lemma 1 the t^ are equicontinuous
and, by construction, wi-^w on a dense set. Hence wi-^w uniformly and,
by Lemma 6, Ka(Q9 w) <K*.

Combining Lemmas 5 and 8 we obtain the theorem.
Now set

K^D, w) inf mod w(R) for ail R czD and mod R 1

where R is a topological rectangle.
The argument used in proving Lemma 5 shows that KX(D, w) Ka(D, w)

whenever Ka(D,w)<oo. The argument used in proving Lemmas 7 and 8

shows that Ka(D,w) is finite whenever K^D^w) is. Thus

The géométrie définition can be given a local form by setting (cf. Pfluger
[9]).

K*(D,w)= sup iim *,(£,&),»)

/Sy(Zo) being the dise | z — z0 \ < r. We hâve that

K*(D,w) Kg(D9w);

the proof is immédiate via the équivalence theorem.

New York University
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