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The equivalence of two definitions of
quasiconformal mappings')

by LirmMaN BERS

We give here a new proof to the known fact (cf. Mor1 [7], Brs [3], Y0J0BO
[12], PrrLuGER [11]) that the so-called analytic and geometric definitions of
quasiconformality are equivalent. The proof uses a minimum of real variable
techniques; no mention is made of absolute continuity in the sense of ToNELLI.
We rely instead on the theory of BELTRAMI’s equations as exposed in AHLFORS-
BERrs [2] and on a theorem of BEURLING-AHLFORS [5].

Let z—>w(2) = u(x,y) + tv(x,y) be an orientation preserving homeo-
morphism of a plane domain D onto another. If the partial derivatives of w,
in the sense of distribution theory, are locally square integrable functions, we
denote by K,(D, w) the smallest constant K > 1 such that the inequality

o(u, v)

ow . 1
=S = x)en L
holds a.e. in D. If there is no such number, or if w does not have locally
square integrable generalized derivatives, we set K, (D, w) =oo. If
K,(D,w) <oco,

w is said to be K-quasiconformal according to the analytic definition [4, 6, 9].
A topological rectangle R is a conformal image of a closed rectangle

2 ow
+| oy

0<&<m, 0<7 <1,

the images of the vertices being distinguished. We write m = mod R. For
R < D, w(R) is also a topological rectangle, in view of RIEMANN’S mapping

theorem. We set
mod w(R)

K‘,(D,w)=sup( mod B ), RcD. (2)

It is immediate that K, (D, w) = K ,(w(D), w='). Mappings with
K,D,w)<oo

are called K-quasiconformal according to the geometric definition [1, 8, 10].

1) Work supported by Contract Number DA-30-069-ORD-2153 (Army Research Office).



LreMaN Bers The equivalence of two definitions of quasiconformal mappings 149

Theorem. K, (D,w) = K, (D, w).

The proof requires several lemmas. The crux of the argument is contained in
Lemma 8 below.

If K,(D,w) <K <oc, then w(z) satisfies a BELTRAMI equation

ow ow
o5 = k@) 5~ 3)
with a measurable coefficient u(z) satisfying

|4 | ST (4)

Indeed, inequality (1) may be written as

K_1
ST

Jw
dz

ow
0z

Thus the theory exposed in [2] is applicable. In particular
Ko(D, @ owoy) = Ky(yp(D), w)

if ¢ and p are conformal.
Now let D and w(D) be JORDAN domains, z, a pointin D and ¢ and w
conformal mappings of D and w(D) onto the unit disc with

®(2) = p(w(z)) = 0.

Then W =ypowogp™ is a self-mapping of the unit disec with W (0) = 0.
If K(D,w) <K <oo, W is a solution of a BELTRAMI equation with a coef-
ficient satisfying (4). Using [2] we obtain

Lemma 1. If K,(D,w)<oco, D and w(D) are Jorpan domains and
zo € D, then w has a uniform modulus of continuity depending only on K, (D, w),
D, w(D), z, and w(z,).

Let R be a topological rectangle, u(z), z ¢ R, a measurable function satis-
fying (4) for some K > 1, w and w, two homeomorphisms of D satisfying
(3). Then w o w;! is a conformal mapping so that mod w(R) = mod w, (R).
Hence we may define: mod (R, ) = mod w(R).

Lemma 2. Let R be a topological rectangle and {u,(z)} a sequence of mea-
surable functions in R such that | pu,(2) | <k <1 and p,(z) >p(z) a.e. Then
mod (R, u,) —mod (R, u).

Proof. We may assume that R is the unit disc made into a topological
rectangle by choosing four “‘vertices” {,, {3, {5, {4 on the boundary. Let W#i
be the homeomorphism of |z| < 1 onto itself with W*i(0) = 0, W*i(1) =1
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and 0 W*i/9z = u,(2)0W*i/dz and let W* be defined similarly. By [2],
p. 399, W¥ — W* uniformly in the closed unit disc. Since mod (R, u,) =
= mod W*i(R) is a continuous function of the cross-ratio of the points
W¥i(,), 1=1,2,3,4, and similarly for mod (R, x), the conclusion follows.

Lemma 3. Let R be atopological rectangle, u(z), z € R, a measurable function
satisfying (4). Then mod (R, u) < K mod R.

Proof. If u(z) is smooth, every homeomorphic solution of (3) is smooth and
has a positive jacobian (cf.[2], p. 391). In this case the desired inequality
follows by GroTzscH’s classical argument [7]. The general case is reduced to
this special one by Lemma 2, since it is easy to find a sequence of smooth u;,
satisfying (4) and converging a.e. to u.

Lemma 4. K,(D,w) < K, (D, w).
This is an immediate corollary of Lemma 3.

Lemma b. If K,(D,w) <oo, then K,(D,w) = K,(D,w).

Proof. Set K, (D, w) = K and assume that 1 < K <oco. (Otherwise there
i8 nothing to prove.) In view of Lemma 4 it suffices to show that for every
4, 0<d< K — 1, there exists a sequence of squares @, c D with

lim mod w(@;) > K — ¢ . (5)

Set u(z) = (dw/02)/(0w/dz) for dw/dz5£ 0, u(z) = 0 for dw/dz = 0; then
w satisfies (4) and ess.sup | u(z)| = (K — 1)/(K + 1). Let 4 denote the
annulus

K—-48-1 K -1

in the u-plane; then u~1(4) c D has positive measure. Let ¢, | 0 be a given
sequence. We can find a sequence of measurable sets 4; such that

Aj_‘_lCA’C:A ) d.iavm Aj SEj, mes,u’“l(A,)>0.

Indeed, if A is subdivided into finitely many measurable sets of diameter not
exceeding ¢,, at least one of them, say 4, must be such that mes y—1(4) > 0.
If A4, is subdivided into finitely many measurable sets of diameter not exceed-
ing e, at least one of them, say A4,, is such that mes u—(4,) > 0, etec.
Let uy = | o | €'* be the intersection of the closures of the 4;. For each j let
z;, € D be a point at which the set x—'(4,) has metric density one; such points
exist by LEBESGUE’s theorem. Each z; is the center of a square @, with one
side parallel to the ray z = re**?, 0 <r < oo, and such that

Q,cD, mesQ,=m;<e, mes[Q,Nu1(4,)]=>(1—¢)mi.
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Hence
mes {z|2eQ;, | 1(2) — po| > ¢} < ;mi
Let @ be the square obtained from @, by the mapping z—(z — 2,)/m;.
For zeQ set u;(z) = u(z; + m;z). Then u,(2) >y, in measure. Selecting if
need be a subsequence we may assume that u,(z) >y, a.e.in @. By Lemma 2

mod (@, 1) ~mod (@ o) = 2L > K — 0.
Noting that mod w(@,) = mod (@, u;) we obtain (5).

Lemma 6. If w;—>w uniformly in D and K,(D,w;) < K <oo, then
K,(D,w)<K.

Proof. Set w=u -+ v, w; = u; + iv;. Let D, be a relatively compact
subdomain of D. It suffices to show that K, (D,, w) < K. By [2] Theorem 5,
and the hypothesis

ffa(u”v)dxdy—mesw,( D) =0(Q).

Since (1) holds for each w;,

S

This shows that the pa,rtlal derivatives of w, are square-integrable functions
in D, and that we may assume, selecting if need be a subsequence, that

2 law,

)dwdy = 0(1).

dw; _ ow dw;  dw .
= - 5 W->—a~g}— weakly in L, (D,) . (6)

Next, let @ be a smooth function with compact support in D,. Then

J o o
ff aw)” ff a(w,;‘))“”'

If w and w, are smooth, this follows by mtegratlon by parts. In the general
case one approximates w (or w,) together with its first derivatives, in the
mean, by smooth functions. If « is also non-negative, then

f_[ ( )dxdy S(K-{-—Il{—)ffw%g%”—%)—dxdy. (8)
Do

(7)

dw, |?

l ow;



But by (6)

S (%

l- )dxdy<hm1nfff (,——-‘ ,awj
andby( ) and (7

hmff a"””f)dxd ff a"“’)dd

so that by (8)
[ (i )R

) dxdy

R

A simple limiting argument shows that this holds also if « is the charac-
teristic function of a rectangle in D,. This implies that (1) holds a.e.
We note now a corollary of the BEURLING-AHLFORS theorem [5].

Lemma 7. For every K > 1 there exists a number K* with the following
property. Let K, (D, w) < K <oco and let D, be a relatively compact JORDAN
subdomain of D. Then there exists a homeomorphism Q of the closure of D,
onto that of w(D,) with K,(D, 2) < K* and w(z) = Q(2) on the boundary
D, of D,.

Proof. Choose a point Z on D, and set Z = w(?). Let z—>g(z) and
Z —vy(Z) be conformal homeomorphisms, of D, and w(D,), respectively,

onto the half-plane U = {{|Im { > 0} with ¢(2) = 1/)(2) = oco. Set

p() =ypowogpl(f), —co<éE< +o00.

For a real £ and an k>0 make D, into a topological rectangle R, , by
choosing as ‘‘vertices” the points ¢=1(& — h), ¢~ 1(&), ¢~2(§ + k) and Z.
Then mod R, , = 1. The “vertices” of w(R, ;) are the points

vy E = h), v (&), v (v + h)

Fal
and Z, and mod w(R; ;) is a continuous function of the ratio

YE+h) —vE))/(E —yE—h).

Since K-! < mod w(R, ;) < K, there exists a ¢ > 0 depending only on K
such that
7’(5 +h) — ()

7@ —yE —h) = ®)

O<
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According to [5], condition (9) implies that

1
C=§+in—>F(C)=%OI[(1+’5)Y(~§+T77)+(1 — ) y(€ — n)ldv

is a homeomorphism of the closed upper half-plane onto itself with F (&) = g(§)
and K, (U,F)= K*<oo, where K* depends only on K. Set £ =
= 91 o F o ¢p; this mapping has the required properties.

Lemma 8. If K (D, w) <oo, then K, (D, w) <oo.
Proof. Set K, (D,w) = K. We show that for every square @ c D,

K,@,w) < K*,

the number in Lemma 7. For every integer j > 0 subdivide @ into 4/ con-
gruent squares. Lemma 7 implies that there exists a homeomorphism w; of
@ such that K,(q,w,) < K* for each of the 4/ small squares ¢ and w; = w
on the boundary of each small square. Hence w,; is a homeomorphism of ¢
onto w() and K, (@, w,) < K*. By Lemma 1 the w; are equicontinuous
and, by construction, w; —>w on a dense set. Hence w; —w uniformly and,
by Lemma 6, K,(Q, w) < K*.

Combining Lemmas 5 and 8 we obtain the theorem.

Now set

K, (D, w) = inf mod w(R) forall RcD and mod R =1

where R is a topological rectangle.

The argument used in proving Lemma 5 shows that K, (D, w) = K, (D, w)
whenever K,(D,w) <oo. The argument used in proving Lemmas 7 and 8
shows that K,(D,w) is finite whenever K,(D,w) is. Thus

K,(D,w) =K, (D, w).

The geometric definition can be given a local form by setting (cf. PFLUGER

[9]).
K*(D,w) = sup lim K, (S,(z),w)

2g€D r—>0

S,(z,) being the disc |z — z,| <7. We have that
K*(D,w) = K,(D, w) ;

the proof is immediate via the equivalence theorem.

New York University
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