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A Proof of Thom's Theorem1)

by A. L. Liflevicius, Chicago (111.)

§ 0. Introduction

The paper is designed to give a simple proof of a theorem of Thom (Théorème
II. 10 of [11]), which states that the cohomology of the stable Thom object
MO is a free module over the Steenrod algebra A over Z2.

The proof is divided into three parts : we first recall that the stable cohomology

is a coalgebra M over Z2i and show that the graded dual Jf* isapoly-
nomial algebra; we then prove that M* is an algebra over A* (the graded
dual of A); lastly we show that Jf* is isomorphic to a free comodule over A*.
As a corollary of the proof of the main theorem, we give a short proof of the
structure theorem for the unoriented cobordism ring ît*.

It seems possible to prove the theorems of Wall [12] on MSO in a similar
way.

The author wishes to thank D.B.A.Epstein for many chats about Hopf
algebras.

§ 1, Cohomology of the Thom Spectrum

Let 0 (n) be the w-dimensional real orthogonal group, Boin) the classifying
spacefor 0(n),yn the classifying w-plane bundle over B0{n) • Let rjn: E->2?o(n)

be the w-disk bundle associated with yn,rjn: dE ->Boin) the (n — l)-sphere
bundle associated with rjn. Let M0(n) be the space obtained from E by
collapsing dE to a point. MO {ri) is called the Thom space of 0(n) ([H], [7],
[3])-

The inclusion Q(n) X 1 c 0(n + 1) induces a map

M0(n)>&S1->M0(n+ 1) (1.1)

which yields isomorphisms of cohomology and homotopy in dimensions

n + k, Je <n
Thus a spectrum MO is obtained :

M0 (point, M0(l),M0(2),...,M0(k), M0(k + 1),...) (1.2)

The cohomology groups of MO are defined as follows (we will only consider
coefficients Z2):

x) The paper was written at The Institute for Advanced Study while the author held a National
Science Foundation post-doctoral fellowship.
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Hk (MO; Z2) H«+k (MO (n);Z2) k<n. (1.3)

We will write M for S Hk(MO ; Z2). The Steenrod algebra opérâtes on M.
le

The A -module structure of M is given by Thom's theorem :

Theorem 1. (Thom). The A -module M is a free ^4-module, with free gener-
ators u(œ) in one-to-one correspondence with partitions o> of integers into
integers, none of which hâve the form 2* — 1 for t > 0.

The theorem was first proved in [11]. A new proof will be given in § 3.

The additive structure of M is easily determined. Let s : BQ{n) ->E be the
zéro cross section of rjnf above. We still dénote by s the map induced by s

into MO(n) EjdE. Tt is well known [7] that 5* is a monomorphism, and
that Image s* wnH*(BQ{n)\ Z2), where wn is the top Stiefel-Whitney
class.

Since H*(Boin) ; Z2) Z2[wt,..., wn], we hâve the resuit that

Mç^Z^,... wk,...], (1.4)

as graded vector spaces, where grade (wk) Je.

It has been noted [9] that, although M does not hâve a natural algebra
structure, it does hâve a natural coalgebra [8] structure. Consider the usual
inclusion

0(m) X 0(n) c O(m + n); (1.5)
it induces a map

Qm%n : MO(m) % MO(n) ->MO(m + n) (1.6)

The maps qmn induce
(1.7)

which make M into a coalgebra over Z2 (the symbol ® of course stands
for <8>#), and the coproduct £* is consistent with the opération of A on M,
that is, the following diagram is commutative:

M® A® M
\n®n t1-8)

M - >M®M
where n: A® M -+M is the action of i on if, xp : A -*A®A is the co-

product [6] in A, and T is the twist map which interchanges factors.
We can describe the map g* very easily, because the following diagram is

commutative :



A Proof of Thom's Theorem 123

MO (m) >fr MO(n) >MO(m + n)

M (0(m) X 0(n))

where a is the Whitney direct sum map, induced from (1.5).
Under theisomorphism (1.4) q* corresponds to o*, but a* is well known

(as the Whitney direct sum theorem [5]) :

o*(wk) E w^w,. (1.10)

§ 2. Comodules over A*
Let J. * be the graded dual of the Steenrod algebra A over Z2. Let <p

be the product and tp the coproduct of A ; we will dénote by 99* the copro-
duct and y* the product of J.*. If we let e : A ->Z2 be the augmentation of
A and 72 : Z2 ~> J. the unit of A, then the dual maps e* and rç* are the
unit and augmentation of A*. According to [6], A* is the algebra of poly-
nomials Z2[ft,..., £n,... ], grade fw

2n — 1, with the coproduct given by

?*(&)= £ lli®^-. (2.1)

The notion of a comodule L over J.* is just the obvious dualization of the
notion of a module over A :

Définition. A Z2-module L is called a comodule over A* if there exists
a map

li\L->A*®L, (2.2)

called the coaction of A*, such that the following two diagrams are commu-
tative :

(2-3)

"**¦ (2.4)
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We immediately cite examples of J.*-comodules.
1. A* itself is a comodule over A* under 9?* as coaction.
2. If N is a graded module over A (suppose that N is finite dimensional

in each grading) with action

k:A®N-+N, (2.5)

then the graded dual iV* is a comodule over A* with coaction the dual
of A:

(2.6)

3. If F is a vector space over Z2, we can construct a free comodule
F A*®V byletting

fi:F ->A*®F (2.7)
be just ç?*® 1.

Free comodules hâve the expected properties: we just quote two, which we
will use in the proof of Theorem 1.

Proposition 1. Let F be a Z2-module and F A*<g)V a free A ^comodule

on F. Suppose we are given a comodule L over A* and a Z2-map

f:L-+V. (2.8)

Then there exists a unique ^4*-comodule map

g:L->F (2.9)

which makes the following diagram commutative :

(2.10)

The map g is said to be induced by /.
Proof. Define g (1<8>/)^. The following commutative diagram proves

that g is a map of A *-comodules :

1®/

Définition. Wesay that the Z2-vector space L is an algebra over A* if 1)

it is an J.*-comodule with coaction fx (2.2), and 2) it is a Z2-algebra with
multiplication



A Proof of Thom's Theorem 125

h: L®L->L (2.12)

such that the foliowing diagram is commutative :

h
L®L >L

(2.13)

Propositionâ. Let F bea Z2-algebra, F A*<&V thefree ^4*-comodule

on F. Then
i) F is an .4*-algebra under (y*®A') (10Î7® 1), where A':F(g)F->F

is the product in F,
ii) If JD is an .4*-algebra, and

f:L->V (2.14)

is a map of Z2-algebras, then the comodule map induced by /

g:L->F (2.15)
is a map of J.*-algebras.

Proof. Part i) is an immédiate conséquence of the fact that ^L* is a Hopf
algebra under ^*, 9?*. The reader is invited to draw the appropriate commutative

diagram.
We prove that g is a map of algebras by referring to the commutative

diagram (2.16):
h

A*®L<g>A*®L > A*®A*®L®L — A*®L

§ 3. Prool of Thom's Theorem

Let w be a fixed positive integer,

Z2[wly...,wn] (3.1)

a graded polynomial algebra on n indeterminates wiy i 1,..., n, with
grade (wh) fc. We make Rin) into a Hopf algebra by setting
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o*(wk) S w^Wf. (3.2)

Let
8™ Z%\y1,...,yn\, (3.3)

where grade (y{) 1, î l,...,n.
Suppose (o is a partition of a non-negative integer Je :

(3.4)

If ail of ix,... ,iQ are positive, we write

II «) ||= g, (3.5)
if k 0, weset || o || 0.

If II <*> || < w, we will dénote by 8(o)) the smallest symmetric polynomial
in 8in) containing the monomial y1^ y*« (see [7], for example).

Let us make 8{n) into a Hopf algebra by setting

(3.6)
then

cr*(«(<w)) S s(a>1)<S)s{co2) (3.7)

(compare [5]). We may thus consider Rin) as a Hopf subalgebra of 8{n), by
identifying ^t- with s ((1,..., 1)), (1,..., 1) € II(i). Under this identification,

a Z2-basis of R{n) is furnished by the set of éléments

fc> 0, || a) || < w} (3.8)

If we consider the normal inclusions R{n) c B{n+1), 8{n) c $(n+1), we see that
we can define Hopf algebra retractions /<n+1) : jR(fl+1> -> i2<n>, gi«+v : ig(ll+1) -> /S(n)

which make the following diagram commutative :

(3.9)

The maps are defined by:
(Wj) Wj if j < n

0 if j n + 1

g(«+i) (y^ ^ ^ if ?- < n (3.10)
0 if / n + 1

We remark that fin+1) is an isomorphism in gradings < n + 1. If we now
consider the Hopf algebra
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2î Z1[tf>l,...,t0»,...], (3.11)
where we set

a*(wt)= S wt®Wj, (3.12)

we can define Hopf algebra epimorphisms

*<»>:2Î-*2Î<»>
h(n) (Wj) Wj j<ny (3.13)
ft(n) (^) 0 y > n

Given <y c 77 (fc), we define

«(o>) A<w>-1 («(«)), n>ifc. (3.14)

The définition makes sensé, for h{n) is an isomorphism in gradings < n + 1,
and s(co) is independent of the choice of n> ky according to (3.9).

From (3.8) we see that the set of éléments

(s(co)\ co€ll(k), k>0} (3.15)
forms a Z2-basis of R.

Let J?* be the graded dual of R, Let J(a>)* be the dual basis to (3.15).
The éléments ï(co)* are characterized by :

Uj Ci) m

} ^^ (316)
Let

Proposition 3. As an algebra,

2î* Zf[a?1,..., »»,...]. (3.18)

Proof. Let î7 Z2[x1,..., ïfc,. ..], grade (ïfc) & Since 22 has com-
mutative, associative coproduct, 22* is a commutative, associative algebra,
therefore the assignment f(xk) xk defines an algebra map

/:T->22*. (3.19)

We claim that / is an epimorphism. To prove this, it is sufficient to show
that for each <x> e II(Je), k > 0 the élément s (co)* is in the image of /. This
follows from the

Lemma. If co lXl... q*9... ku (where AQ is the number of times q

occurs in co), then
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Prooî of Lemma. The resuit follows from the équation

ix\K..x\k, «(<*>')> fo®. ffft® ®xk® ®xk, cr(m)?(ft>')) (3.20)

K
'

Tk

where m — 2J Xi9 and c(m) dénotes the coproduct a* iterated m — 1 times.
i

The proof of Proposition 3 is now immédiate : since / préserves grading, and
T with R hâve the same dimension in each grading, we know that since / is

an epimorphism, it is also a monomorphism.

Corollary: As an algebra,

Jf* Z2[^,...,^,...], (3.21)
where xk 5 ((i))*, grade (xk) k

Proof. Proposition 3 and (1.4), (1.10).
For the next proposition, we hark back to the isomorphism

of A -modules for t < n (1.3). For what follows, we always suppose that n
was picked large. The éléments s(co) (3.14) satisfy

s*(s{o))) =wns(co) (3.22)

Proposition 4, Let & 2* — 1, ê e A, co ell(q)i grade & — k — q. Then

<xk9#s(œ)y =0 if co ^ (q), q 2* - 1

<«!-.» ^> ^ ï 2- - 1 (3.23)

Proof. Consider the J.-map h: A ->M defîned by h(l) s ((0)). This is
the well-known Cartan-Sebre représentation of A ([4], [10]), for

iïwn. (3.24)

If we identify ww with «(ln) yi-. .yw» we §et ([21> P- 43)

$wn Hvi.. • y») ^ «ix • • • f*», ^> yf1.. • yïn • (3.25)
«i....,<n>

To find ^ 5 (co), where co lXl... kXh, it is sufficient to take

and symmetrize the resuit. In particular, if co (2S — 1, we see that

W y*...yn) z <«ft, ...&„,#> 2/f1+Vf • • • yi*", (3.26)

which proves part of Proposition 4. Let us call a partition

œell(k), a> lXl...**»
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honest, if for at least one Xi we hâve 0 < A^ < h. It is then an immédiate
conséquence of (3.25) that if co is an honest partition, ê e A and & s(co)

Uc^s (a)f), c^, e Z2, then c^ ^ 0 implies co' is an honest partition. For
partitions o> (g), g=£ 2* — 1, we prove again using (3.25) that û H(co) is
in the subspace spanned by éléments H(co'), where g/ is an honest partition.

Proposition 5. Let //* : Jf* ->^1*® M* be the coaction of A* on Jkf*.
Then

Èl (3.27)

where we set x0 1.

Proof. Let ^(a?*) 27<xa)®âf(ct>)*. The term ^05(0))* occurs in [i*{xk)
with a non-zero coefficient if and only if for & e A, grade # grade (Xw we
hâve

<**,«î(a>)> <«„,#>. (3.28)

Proposition 4 complètes the proof.

Corollary. Let q: A* ->M* bea map of Z2-algebras, defined by

î(f*) »,*.!•
Then ^ is a monomorphism of J.*-algebras.

Proo/. (2.1) and (3.27).
Let H* £2I>2>...,%,...], ife # 2* - 1, any t > 0, grade (uk) fc.

Let
/:Jf*->5* (3.29)

be an epimorphism of algebras, defined by

f(xk) uk if Je ^ 2* - 1 for any t > 0 (3.30)
0 ifJfe 2'-l,$>0.

Consider the free J.*-comodule F J.*®iï*. According to Proposition 2,

F is an ^4*-algebra. Furthermore, Proposition 1 shows that there exists a
comodule map g induced by /; Proposition 2 asserts that g is a map of
algebras.

Let i/*(w) be the subalgebra of H* generated by I,f{x1))...,f(xm).
Lemma.

^(^J^lt®!, _
(3.31)

g(xk)= l®^mod ^*®JHr*^~1> (3.32)

if Je #: 2* - 1, ^ > 0

9 CMH vol. 37
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Proof. Formula (3.31) follows from (3.27). The assertion (3.26) follows from
the remark that p*(xk) l<g>xk mod -4*0 M*{k'x)9 where Jf*(*-i> is the
subalgebra generated by 1, xx,..., xk-1.

Proposition 6. The map
g: M*-+A*®H* (3.33)

induced by / (3.30) yields an isomorphism of algebras over A*.
Proof. Since Jf* and A*®H* are graded, hâve the same (finite) dimension

in each grading as i52-modules, and g is grading preserving, it is sufficient to
prove that g is an epimorphism. Let us prove this by showing that the image
of g contains J.*®jff*(w). This is true for m 1, for H*{1) {1}, and

|j®1 c Images, aceording to (3.31). Suppose Im(g) z> A*®!!*^-1"*. If
m 2* — 1 for some t> 0, then H*im) J^k^-d an(j we are done;
suppose, therefore, that m^ 2* — 1 for any £ > 0. Aceording to (3.32) and the

induction hypothesis, there is an élément zm € ^4*® jf *o»-i) such that

Since g is a map of algebras, this proves that J.*® M*(m) c Imgr.
Induction complètes the proof.

Prooî of Theorem 1.

Consider the dual map to g :

g*:A®H->M (3.34)

Since g* is an isomorphism of ^4*-algebras, g is an isomorphism of ^1-co-

algebras. A Z2-basis of H is given by the dual basis of the basis of H* con-
sisting of monomials in the uki k=£ 2* — 1, t > 0

This complètes the proof of Thom's Theorem. We cannot, however, restrain
ourselves from taking the argument one step further. Let 31* be the unoriented
cobordism ring [11]. Aceording to a fundamental theorem of Thom (Théorème
IV. 8 [11]), there is a naturally defined isomorphism

T:nn+k(MO(n))->9l*k k<n. (3.35)

Furthermore, the product in SR* corresponds under this isomorphism to the

map induced by (1.6) [9].
We can use the Adams spectral séquence [1] as in [7] to compute the homo-

topy of MO. It is sufficient to look at the Adams spectral séquence for p 2.
The 252-term is given by

{M,Z%). (3.36)
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Since M is a coalgebra over A with coproduct g*, Ext^' (M, Z%) is an
algebra; furthermore, the multiplication in the E^ terms corresponds to the
multiplication in homotopy induced by g)£c. However, since M is A®H
as an A -coalgebra, we hâve

Ext f*(M9 Z2) Ext°/(M, Z2) g* H* (3.37)

as an algebra. Thus E82yt 0 unless 5 0, hence the Adams spectral
séquence collapses in the nicest way imaginable —and we hâve the following
theorem, also first proved by Thom:

Theorem 2. The ring 91* is a polynomial ring over Z2 in generators uk,
where le 2,..., h ^ 2* — 1 for any t> 0

The University of Chicago and The Institute for Advanced Study
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