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A Proof of Thom’s Theorem?)
by A. L. Liurevicrus, Chicago (I11.)

§ 0. Introduction

The paper is designed to give a simple proof of a theorem of THoM (Théoréme
I1. 10 of [11]), which states that the cohomology of the stable THOM object
MO is a free module over the STEENROD algebra 4 over Z,.

The proof is divided into three parts: we first recall that the stable cohomol-
ogy is a coalgebra M over Z,, and show that the graded dual M* is a poly-
nomial algebra; we then prove that M* is an algebra over A* (the graded
dual of 4); lastly we show that M* isisomorphic to a free comodule over A4*.
As a corollary of the proof of the main theorem, we give a short proof of the
structure theorem for the unoriented cobordism ring N, .

It seems possible to prove the theorems of WALL [12] on MSO in a similar
way.

The author wishes to thank D.B.A.EpsTEIN for many chats about Horr
algebras.

§ 1. Cohomology of the Thom Spectrum

Let 0(n) be the nm-dimensional real orthogonal group, By, the classifying
space for 0(n), y, the classifying n-plane bundle over By, - Let %,: E— By,

be the n-disk bundle associated with y,, %, : 0 — By, the (n — 1)-sphere
bundle associated with #,. Let MO(n) be the space obtained from E by
collapsing 9E to a point. MO (n) is called the THOM space of 0(n) ([11], [7],

[3]).

The inclusion 0(n) X 1 < 0(n 4 1) induces a map
MO(n) % St —->MO(n + 1) (1.1)
which yields isomorphisms of cohomology and homotopy in dimensions
n+k, k<n.
Thus a spectrum MO is obtained:
MO = (point, MO(1), MO (2),..., MO(k), MO(k + 1),...) . (1.2)

The cohomology groups of MO are defined as follows (we will only consider
coefficients Z,):

1) The paper was written at The Institute for Advanced Study while the author held a National
Science Foundation post-doctoral fellowship.
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H*(MO; Z,) = H®* (MO (n); Z;) k<n. (1.3)
We will write M for X H*(MO; Z,). The STEENROD algebra operates on M .
The A-module structu:'e of M is given by THOM’s theorem:

Theorem 1. (THoM). The A-module M is a free A-module, with free gener-
ators u%(w) in one-to-one correspondence with partitions w of integers into
integers, none of which have the form 2! — 1 for > 0.

The theorem was first proved in [11]. A new proof will be given in § 3.

The additive structure of M is easily determined. Let s: By, —E be the
zero cross section of 7,, above. We still denote by s the map induced by s
into MO(n) = E/dE. Itis well known [7] that s* is a monomorphism, and
that Image s* = w,H*(By,; Z,), where w, is the top STIEFEL-WHITNEY
class.

Since H*(By,; Zs) = Zy[w,, ..., w,], we have the result that

M~ ZyJwy,... Wy,-..], (1.4)

as graded vector spaces, where grade (w,) = k.

It has been noted [9] that, although M does not have a natural algebra
structure, it does have a natural coalgebra [8] structure. Consider the usual
inclusion

0(m) X 0(n) < O(m + n); (1.5)
it induces a map
Om.n: MO(m) 3% MO(n) - MO(m + n) . (1.6)
The maps g, , induce
o¥ M -MQM, (1.7)

which make M into a coalgebra over Z, (the symbol ® of course stands
for ®;,), and the coproduct ¢* is consistent with the operation of 4 on M,
that is, the following diagram is commutative:

Tel
A®M!}—§g—>A®A®M®M O Ao Mo AR M
“l l’”g’” (1.8)
Q*
M M QM ,

where 7w: A® M — M is the action of 4 on M, 9: A —>AQ®A is the co-
product [6]in A4, and 7 is the twist map which interchanges factors.

We can describe the map p* very easily, because the following diagram is
commutative:
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MO (m) % MO(n) » MO (m + n)
Y
M (0(m) X 0(n)) 8 (1.9)
Ts
g
Bo(m)xo(n) > Do(m+n)»

where v is the WHITNEY direct sum map, induced from (1.5).
Under the isomorphism (1.4) po* corresponds to ¢*, but ¢* is well known
(as the WHITNEY direct sum theorem [5]):

o*¥(wy) = 2 w;Qw,. (1.10)
iti=k

§ 2. Comodules over A*

Let A* be the graded dual of the STEENROD algebra 4 over Z,. Let ¢
be the product and u the coproduct of 4; we will denote by ¢* the copro-
duct and y* the product of A*. If welet ¢: A — Z, be the augmentation of
A and 7:Z,—>A the unit of A4, then the dual maps &* and #n* are the
unit and augmentation of 4*. According to [6], A* is the algebra of poly-
nomials Z,[&,,...,&,,...], grade §, = 2® — 1, with the coproduct given by

P*(E) = 2 &6, (2.1)
i=0
The notion of a comodule L over A* is just the obvious dualization of the

notion of a module over A4 :

Definition. 4 Z,-module L is called a comodule over A* if there exists

a map
u:L—-A*QL, (2.2)

called the coaction of A*, such that the following two diagrams are commu-
tative:

L A*® L
”l e ll@u (2.3)
A*Q L A*QA*Q L,
LM axeL e
11 1"*®1
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We immediately cite examples of A *-comodules.
1. 4% itself is a comodule over 4* under ¢* as coaction.
2. If N is a graded module over A (suppose that N is finite dimensional
in each grading) with action
AtAQN - N | (2.5)

then the graded dual N* is a comodule over A* with coaction the dual
of 1:
A¥: N* > A*QN* . (2.6)
3. If V is a vector space over Z,, we can construct a free comodule
F=A4*Q®V by letting
puF—->A*xF (2.7)
be just ¢*®1.
Free comodules have the expected properties: we just quote two, which we
will use in the proof of Theorem 1.

Proposition 1. Let ¥V be a Z,-module and F = A*® V a free A4*-como-
dule on V. Suppose we are given a comodule L over 4* and a Z,-map

f:L—>7V. (2.8)
Then there exists a unique A *-comodule map
g:L—>F (2.9)

which makes the following diagram commutative:

r—7% .F
(2.10)
”l 1®f ll
A*QL A*QV .

The map ¢ is said to be induced by f.

Proof. Define ¢ = (1®f) u. The following commutative diagram proves
that g is a map of 4*-comodules:

1
I—" ,axeL O itV
. « (2.11)
| 1®pu |9 ®1 19107 17 %!
A*Q L A*@A*Q L A*Q A*Q V.

Definition. We say that the Z,-vector space L is an algebra over A* if 1)
it is an A*-comodule with coaction u (2.2), and 2) it is a Z,-algebra with
multiplication
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h:LQL —L (2.12)

such that the following diagram is commutative:

LQL > L
ﬂ®ul
A*QLRA*®QL u (2.13)
1 1
oT® l P*Qh
A*QA*Q LR L A*QL .

Proposition 2. Let V bea Z,-algebra, F = A*® V the free A*-comodule
on V. Then

i) F is an A*-algebra under (p*®~4') (1QT®1), where A': V@V -V
is the product in V,

iil) If L is an A*-algebra, and

f:L—>V (2.14)
is a map of Z,-algebras, then the comodule map induced by f

g:L—>F (2.15)
is a map of A*-algebras.

Proof. Part i) is an immediate consequence of the fact that 4* is a Hopr
algebra under y*, p*. The reader is invited to draw the appropriate commu-
tative diagram.

We prove that g is a map of algebras by referring to the commutative
diagram (2.16):

h
L®L > L
[vor f
T®1 *Qh
A*QLOA*QL —— O A*@A*QLOL o 4x gL (2:16)
1 1 1®1 1
iofe1ef | o Jreterer Lo |1e
A*QVQRA*QV —— > A*QA*QVRV A*QV .
§ 3. Proof of Thom’s Theorem
Let » be a fixed positive integer,
R™ = Z,[w,,...,w,] (3.1)
a graded polynomial algebra on 7 indeterminates w,,i=1,...,n, with

grade (w,) = k. We make R™ into a HopF algebra by setting
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o*(w,) = 2 w,Quw;. (3.2)
itj=k
Let
S =Z2[yl>"°’yn]’ (33)

where grade (y;,) =1,1=1,...,n.
Suppose « is a partition of a non-negative integer £ :

= (I1,...,1%), well(k). (3.4)
If all of 4,,..., ¢, are positive, we write

lwll=g¢, (3.5)
if k=0, weset || w]|| = 0.
If || w]|] <n, we will denote by s(w) the smallest symmetric polynomial
in 8™ containing the monomial y3... yi (see [7], for example).
Let us make S™ into a Hopr algebra by setting

o*(y:) = ¥:®1 + 1Qy;; (3.6)
then
FE@) = I s(0)8s(w (3.7)
(compare [5]). We may thus consider R™ as a Hopr subalgebra of S™, by
identifying w, with s((1,...,1)),(1,...,1)ell(¢). Under this identifi-
cation, a Z,-basis of R™ is furnished by the set of elements

(8(0) | 0 II(k), k>0, || || < n}. (3.8)

If we consider the normal inclusions R c R+ S = Sn+1)  we gee that
>
we can define Hopr algebra retractions f(»+): R(ntl) -5 R(®) g(ntl) ; §intd) 5 Sin)
which make the following diagram commutative:

j(n+1)
Rn+l) _____, R(n)
3.9
n l g(’n+1) l n ( )

S 2 gm),

The maps are defined by:
fort) (w)) = w; if j<n
=0 if j=n41
g (y,) =y; if j<mn (3.10)
= if 9=n+1.

We remark that f»+! is an isomorphism in gradings <= 4 1. If we now
consider the Hopr algebra



A Proof of Thom’s Theorem 127

R=22[u’1,...,wk,...], (3.11)
where we set

o¥(w,) = 2 w;Q@w;, (3.12)
iti=k

we can define Hopr algebra epimorphisms

h™: R — R™
B () =w, j<m, (3.13)
™ (w) =0 j>n.

Given e Il (k), we define
$(w) = h™-1(s(w)), n>k. (3.14)

The definition makes sense, for 2™ is an isomorphism in gradings <= + 1,
and s(w) is independent of the choice of n > k, according to (3.9).
From (3.8) we see that the set of elements

{3 (w0) | w eII(k), k > 0} (3.15)
forms a Z,-basis of R.
Let R* be the graded dual of R. Let §(w)* be the dual basis to (3.15).
The elements §(w)* are characterized by:

(8 (@)%, § (o)) = } (1) Z))': 2 (3.16)
Let
x, = 8 ((k))*. (3.17)

Proposition 3. As an algebra,
R* = Z,[2;, ..., 24,...]. (3.18)

Proof. Let T = Z,[%,,..., %,...], grade (Z,) = k. Since R has com-
mutative, associative coproduct, R* is a commutative, associative algebra,
therefore the assignment f(z,) = z, defines an algebra map

f: T —R*. (3.19)

We claim that f is an epimorphism. To prove this, it is sufficient to show
that for each w e JI(k), k£ > 0 the element §(w)* is in the image of f. This
follows from the

Lemma, If w = 1*...¢*.. . k* (where A, is the number of times ¢

occeurs in w), then

Ay

S(w)* = a1, ..M. .2}k,
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Proof of Lemma. The result follows from the equation

Mo 2, S () = ®...00R ... Q1R ... %, 0™3E (0)>, (3.20)
2’1 Ak
where m = 2 2;, and '™ denotes the coproduct o* iterated m — 1 times.
The proof :)f Proposition 3 is now immediate: since f preserves grading, and
T with R have the same dimension in each grading, we know that since f is
an epimorphism, it is also a monomorphism.

Corollary: As an algebra,

M* = Zy[z,, ..., 2,...], (3.21)
where x, = s ((k))*, grade (x,) =k

Proof. Proposition 3 and (1.4), (1.10).
For the next proposition, we hark back to the isomorphism

8*:Mt=wnH( 0(n) > 2)

of A-modules for ¢t <= (1.3). For what follows, we always suppose that =
was picked large. The elements §(w) (3.14) satisfy

s*(5(w)) = w,s(w) . (3.22)
Proposition 4. Let t =2 — 1, e 4, well(q), grade # =k — q. Then
(p,?S(0)> =0 if ws£(g),g =2°—1,

(X, @ S((Q))) = <&, 9 if g =2"—1. (3.23)

Proof. Consider the A-map h: A > M defined by k(1) = $((0)). This is
the well-known CARTAN-SERRE representation of 4 ([4], [l()]) for

s*h(9) = s*(9 5 ((0))) = 9 s*5((0)) = dw, . (3.24)

If we identify w, with s(1?) = y,...y,, we get ([2], p. 43)
dw, =0 ¥ = Z iy ®dyi gt (3.25)

(il,. e ,'an)

To find 9 5 (w), where w = 1%, .. k* it is sufficient to take

Fyr Y Y- )
and symmetrize the result. In particular, if o = (2° — 1, we see that
W Ya- o) = ZCERE, L DY T AT, (3.26)

which proves part of Proposition 4. Let us call a partition

well(k), = 1", k>
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honest, if for at least one A, we have 0 < A, <k. It is then an immediate
consequence of (3.25) that if w is an honest partition, 3 ¢ 4 and ¢ 3 (w) =
= 2c¢,$(w'), ¢, €Z,, then c,, # 0 implies ' is an honest partition. For
partitions w = (q), ¢ # 2° — 1, we prove again using (3.25) that & §(w) is
in the subspace spanned by elements 3(w’), where ' is an honest partition.

Proposition 5. Let u*: M* > A*® M* be the coaction of A* on M*.
Then

t
prEe) = 2 L@, (3.27)
8=
where we set z, = 1.

Proof. Let p*(x;) = X &, ®35(w)*. The term «,®3(w)* occursin u*(x,)
with a non-zero coefficient if and only if for ¢ ¢ A, grade & = grade«, we
have

(&, B () = {0, B> . (3.28)
Proposition 4 completes the proof.

Corollary. Let q: A* — M* be a map of Z,-algebras, defined by
Q(ék) = xzk_l *

Then ¢ is a monomorphism of A4 *-algebras.

Proof. (2.1) and (3.27).
Let H* = Z,[ts, ..., %p,...], k£ 2" — 1, any ¢>0, grade (u,) = k.
Let
f: M* > H* (3.29)
be an epimorphism of algebras, defined by

f(xy) = u, if k£ 28 — 1 forany ¢>0, (3.30)

=0 if bk=2"—-1,t1>0.
Consider the free A*-comodule F = A*Q@ H*. According to Proposition 2,
F is an A*-algebra. Furthermore, Proposition 1 shows that there exists a
comodule map ¢ induced by f; Proposition 2 asserts that g is a map of

algebras.
Let H*m Dbe the subalgebra of H* generated by 1, f(z,),...,f(x,).

Lemma.
g(z, ) = &®1, (3.31)
g(z,) = 1®u; mod A* @ H*te-1) (3.32)
if k£2t—1,6>0.

9 CMH vol. 37
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Proof. Formula (3.31) follows from (3.27). The assertion (3.26) follows from

the remark that u*(z,)= 1Q®z, mod A*® M*®-D  where M*®-1 ig the
subalgebra generated by 1, z,,..., 2;.

Proposition 6. The map
g: M* > A*QH* (3.33)

induced by f (3.30) yields an isomorphism of algebras over A*.

Proof. Since M* and A*® H* are graded, have the same (finite) dimension
in each grading as Z,-modules, and ¢ is grading preserving, it is sufficient to
prove that g is an epimorphism. Let us prove this by showing that the image
of g contains A*@H*™ , This is true for m = 1, for H*® = {1}, and
£;®1 eImageg, according to (3.31). Suppose Im(g) D A*Q H*m-1, If
m = 2* — 1 for some ¢{> 0, then H*m = H*m-1)  and we are done; sup-
pose, therefore, that m % 2¢ — 1 for any ¢> 0. According to (3.32) and the

induction hypothesis, there is an element z,, € A* ® M *m-1) guch that

9 (T + 2) = 1@y, .

Since g is a map of algebras, this proves that A*® M*™ c Img. In-
duction completes the proof.

Proof of Theorem 1.

Consider the dual map to g¢:
g¥*: AQH -~ M . (3.34)

Since g* is an isomorphism of A4 *-algebras, g is an isomorphism of A-co-
algebras. A4 Z,-basis of H is given by the dual basis of the basis of H* con-
sisting of monomials in the u,, k% 2t — 1, t>0.

This completes the proof of THoM’s Theorem. We cannot, however, restrain
ourselves from taking the argument one step further. Let i, be the unoriented
cobordism ring [11]. According to a fundamental theorem of THoM (Théoréme
IV. 8 [11]), there is a naturally defined isomorphism

T:1I ,(MO(n)) >Ry, k<n. (3.35)

Furthermore, the product in M* corresponds under this isomorphism to the
map induced by (1.6) [9].

We can use the Apams spectral sequence [1] as in [7] to compute the homo-
topy of MO. It is sufficient to look at the Apams spectral sequence for p = 2.
The E,-term is given by

B = Ext (M, Z,) . (3.36)
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Since M is a coalgebra over A with coproduct o*, Ext %' (M, Z,) is an
algebra; furthermore, the multiplication in the E, terms corresponds to the
multiplication in homotopy induced by pxk. However, since M is AQH
as an A-coalgebra, we have

Ext ¥*(M, Z,) = Ext%*(M, Z,) o H* (3.37)

as an algebra. Thus E$* = 0 unless s = 0, hence the ApAMS spectral se-
quence collapses in the nicest way imaginable —and we have the following
theorem, also first proved by TrOM:

Theorem 2. The ring M, is a polynomial ring over Z, in generators wu,,
where k= 2,..., k#£2* — 1 forany ¢t>0.

The University of Chicago and The Institute for Advanced Study

BIBLIOGRAPHY

[1] J.F.ApawmS, On the structure and applications of the STEENROD algebra, Commment, Math. Helv.,
32 (1958), 180-214.

[2] J.F.Apams, On the non-existence of elements of HOPF invariant one, Annals of Math. 72 (1960),
20-104.

[3] M.F.ArivAan, THOM complexes, Proc. London Math. Society 11 (1961), 291-310.

[4] H. CARTAN, Sur Uitération des opérations de STEENROD, Comment. Math. Helv. 29 (1955),
40-58.

[6] J. MILNOR, Lectures on characteristic classes, Princeton 1957.

[6] J. MiLNOR, The STEENROD algebra and its dual, Annals of Math., 67 (1968), 160-171.

[7] J. MILNOR, On the cobordism ring 2, and a complex analogue, Part I, Amer. Journ. of Math.
82 (1960), 505-521.

[8] J. MiLNoOR and J.C.MOORE, On the structure of HopF algebras (to appear).

[9] S.P.Novikov, Some problems in the topology of manifolds connected with the theory of Thom
spaces, (Russian) Doklady Akad. Nauk SSSR 132 (1960), 1031-1034 (English tr. in Soviet
Math. 1 (1961), 717-720).

[10] J.-P.SERRE, Cohomologie modulo 2 des complexes &’ EXLENBERG-MAcLANE, Comment. Math.
Helv. 27 (1953), 198-232.

[11] R. TrOM, Quelques propriétés globales des variétés differentiables, Comment. Math., Helv., 28
(1954), 17-86.

[12] C.T.C.WaA1LL, Determination of the cobordism ring, Annals of Math. 72 (1960), 292-311.

(Received March 10, 1962)



	A Proof of Thom's Theorem.

