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Espaces homogènes complexes compacts

par J. Tits, Bruxelles

1. Introduction

Les variétés complexes compactes simplement connexes (c.s.c) homogènes
ont été déterminées par H. C. Wang [11]. Parmi elles, celles dont la caractéristique

d'EuLER-PoiNCARÉ n'est pas nulle jouent un rôle particulier; ce sont
des variétés algébriques rationnelles [4], [6], [7] qui peuvent être interprétées
géométriquement comme des «espaces de drapeaux» [7], [8]; nous les appelons
ici D-espaces 1)2). Toute variété complexe c.s.c. homogène est fibrée en tores
au-dessus d'un D-espace.

Dans le présent article, nous retrouvons par une autre méthode les résultats
de H.C.Wang, et nous déterminons toutes les variétés complexes homogènes
(simplement connexes ou non) fibrées en tores au-dessus d'un D-espace. Si D
représente un D-espace donné, les variétés homogènes fibrées en tores au-dessus
de D sont obtenues comme quotients par certains groupes d'automorphismes
de produits V xD' où V est un espace vectoriel complexe et où D' est une
certaine variété algébrique ouverte homogène, dépendant seulement de D et
fibrée au-dessus de D avec C*8 comme fibre (où s est un entier donné).
Lorsque D est un espace projectif de dimension m, D' est un espace
vectoriel de dimension m -f- 1 privé de son origine, de sorte que notre construction
apparaît comme une généralisation de celle donnée par H. Hopf [5] pour munir
le produit S2m+1 X S1 d'une structure complexe.

A titre d'application, nous déterminons toutes les variétés compactes homogènes

de dimension (complexe) 23) et toutes les variétés compactes homogènes
non parallélisables de dimension 3.

Le théorème principal à la base de nos résultats est le suivant (théorème
4.1):

Soient G un groupe analytique complexe connexe et H un sous-groupe ana-

x) Ces espaces ont été appelés «jR-espaces» dans d'autres publications. «D» est ici l'initiale de

«drapeau».
2) Dans cette introduction, nous négligeons la distinction qui sera faite par la suite entre un

espace homogène O/H et la variété complexe sous-jacente. Bien que nos résultats concernent
essentiellement les espaces homogènes, nous utilisons ici de préférence le langage des variétés
complexes qui est en relation plus directe avec la littérature existante. Ce changement de point
de vue est justifié notamment par la proposition (2.1) de [11] et par le n° 5.2 ci-dessous.

8) La recherche, suggérée à l'auteur par A. Van de Ven, des espaces homogènes complexes
compacts de dimension 2, est à l'origine des résultats exposés dans cet article.
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lytique fermé. Si GjH est compact, le normalisateur N de la composante connexe
de Vêlement neutre de H est un sous-groupe parabolique, c'est-à-dire contient un
sous-groupe résoluble connexe maximal (sous-groupe de BorelJ de G; de plus,
si un sous-groupe parabolique de G contient H, il contient aussi N.

Notons une conséquence immédiate de ce théorème (corollaire 4.2):
Toute variété complexe compacte homogène possède une et une seule fibration en

fibres parallélisables au-dessus d'un D-espace*).

2. Préliminaires. Terminologie

2.1. Dans cet article, le terme espace désignera toujours un espace homogène

GjH (espace de classes latérales à droite), où G est un groupe analytique
complexe connexe et H un sous-groupe analytique fermé. Contrairement à un
usage répandu, nous ferons la distinction entre un espace et la variété analytique
complexe sous-jacente. Les résultats exposés relatifs aux espaces compacts ont
des conséquences immédiates concernant les variétés complexes compactes
homogènes, si on tient compte du fait qu'une telle variété, soit X, est
toujours sous-jacente à un espace compact GjH (cf. [11], (2.1)), et que toute
fibration holomorphe de X est invariante par G (cf. [0], proposition I. 1),
donc sous-jacente à une fibration de GjH au-dessus de G\HX, avec

H c H± c G

(cf. 2.2). La formulation des résultats en termes de variétés homogènes sera
généralement laissée au lecteur.

Si H est invariant dans G, la même notation G/H désignera tantôt un
espace homogène, tantôt un groupe quotient; le contexte indiquera toujours
la signification adoptée.

Si F est un sous-groupe fermé de H invariant dans G, nous ne ferons pas
de différence entre les espaces GjH et (GjF)l(HjF).

Nous dirons qu'un espace est parallélisable s'il en est ainsi de sa variété
sous-jacente. Les espaces compacts parallélisables sont les espaces compacts
G/H avec H discret (cf. [12]), ou, ce qui revient au même, les espaces
compacts GjH tels que la composante connexe de l'élément neutre de H soit
invariante dans G.

4) L'existence d'une telle fibration a été obtenue indépendamment par A. Borel et R. Rem-

mebt (Ûber kompakte homogène KÂHUERsehe Mannigfaltigkeiten, Math.Annalen, 145 (1962),
429-439). Leur démonstration, qui s'appuie sur une partie de notre théorème 4.1 (à savoir le
fait que N contient le radical de G) diffère par ailleurs assez sensiblement de celle donnée ici.
D'autre part, R. Remmert a obtenu, concernant les variétés fibrées en tores au-dessus d'un
D-espace, des résultats qui recouvrent partiellement les nôtres. Signalons ici que des conversations
avec R. Remmert nous ont permis d'améliorer le présent manuscrit sur plusieurs points; en
particulier, la seconde partie du corollaire 4.2 (unicité de la fibration en question) répond à une
question posée par lui.
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2. 2. Si H c Hx c nous dirons que GjH est fibre au-dessus de

avec HJH comme fibre. Si H est invariant dans H1, le groupe L HJH
opère librement sur G/H (par translations à gauche), les orbites étant les

fibres de G/H sur G/Hx ; dans ce cas, l'espace fibre sera dit principal, de

groupe L. Si L* est un sous-groupe analytique fermé de L et si H* désigne
l'image réciproque de L* dans Hl9 l'espace G/H* sera appelé le quotient de

G/H par L* (la variété sous-jacente de G/H* est effectivement la variété
des orbites de l'action de L* dans GjH).

2. 3. Un sous-groupe de Borel d'un groupe analytique complexe (connexe)
G est un sous-groupe résoluble connexe maximal; un sous-groupe parabolique
est un sous-groupe contenant un sous-groupe de Borel. Nous rappellerons ici
quelques faits connus (cf. notamment [7], [9], [10], [11]) concernant ces sous-

groupes, en supposant G semi-simple; cette restriction n'est pas essentielle

parce que les sous-groupes de Borel contiennent évidemment toujours le
radical connexe de G.

Soient © l'algèbre de Lie de 6r, (£ une sous-algèbre de Cartan, II
l'ensemble des racines, Z un système de racines simples, tn (n c II) un vecteur

propre correspondant à n et c^ [£„,£_*]. Pour toute partie 0 de Z, soit
S$0 la sous-algèbre de © linéairement engendrée par (£ et par les tn
correspondant à toutes les racines n qui sont soit combinaisons linéaires à
coefficients positifs des éléments de Z, soit combinaisons linéaires à coefficients
négatifs des éléments de Z qui n'appartiennent pas à 0. L'algèbre dérivée
tyf0 est engendrée par les mêmes tn et par les ca correspondant aux éléments a
de Z qui n'appartiennent pas à 0. Nous noterons encore P0 le sous-groupe
connexe de G engendré par S$0; son dérivé Pr0 est le sous-groupe connexe
de G engendré par <>$#, et on a PqJP'q C*s, où «5 désigne le nombre
d'éléments de 0.

Les sous-groupes P^ sont paraboliques et tout sous-groupe parabolique est

conjugué à un et un seul P0. Les sous-groupes de Borel sont les conjugués
de P^.

Les sous-groupes de Borel d'un groupe G quelconque (semi-simple ou non)
contiennent le centre de G.

2. 4. Un sous-groupe parabolique propre d'un groupe analytique complexe nfest

jamais unimodulaire.
En effet, soient ©x l'algèbre de Lie du groupe en question, S$ l'algèbre de

Lie du sous-groupe parabolique considéré, 91 le radical de ®i, ©i © + 91

une décomposition de Levi de ©x, et soient (E et Z définis comme au n° 2.3.
On peut, sans nuire à la généralité, supposer que ^5 ^ + 91, avec 0^0.
Soit ccï un élément tel que cr(c) soit réel et > 0 pour toute racine simple

8 CMH vol. 37
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a *S. La trace de la restriction ad^ c de ad c à 5R est nulle, parce que
adm c appartient à la restriction à 91 de ad ©, qui est une algèbre de Lie
linéaire semi-simple. Il s'ensuit que la trace de la restriction de ad c à $ est
égale à la trace de la restriction de ad c à S$0, or celle-ci, égale à la somme
des n(c) étendue à toutes les racines n telles que l_n$ ty0, est réelle et
> 0, ce qui démontre notre assertion.

3. D-espaces et D'-espaces

3. 1. Un espace G/H sera appelé un D-espace si H est un sous-groupe
parabolique de G. Lorsqu'on considère un D-espace G/H, ce n'est pas une
restriction de supposer que G est semi-simple (resp. simplement connexe),
puisque H contient le radical connexe (resp. le centre) de G. L'espace
D0 GjPq (avec les notations du n° 2.3) sera dit de rang s, si s est le
nombre d'éléments de 0. Les D-espaces sont compacts (cf. [7], [11]). Leurs
variétés sous-jacentes sont des variétés algébriques projectives rationnelles
(cf. [4], [6], [7]).

Un D-espace G/H peut être plongé analytiquement dans un espace pro-
jectif complexe de telle façon que les éléments de G, considérés comme
transformations de GjH, s'étendent en des projectivités de l'espace projectif
(cf. [6], [7]); un tel plongement sera brièvement appelé un plongement projectif
de G/H, et sera dit minimum si la dimension de l'espace projectif en question
est la plus petite possible. Le plongement projectif minimum d'un D-espace
donné est unique à une projectivité près (cf. [7]).

Rappelons le principe de la définition des D-espaces de rang s quelconque
comme espaces de drapeaux sur les D-espaces de rang 1 (cf. [7], [8]). Deux points
appartenant respectivement à D0 G/P0 et D0, G\P#, sont dits
incidents si les classes latérales de P0 et P0, qu'ils représentent ont une
intersection non vide. Soit 0 {^1?..., q8} et posons D{Q{) Dt. Alors, D0
peut être canoniquement identifié avec l'espace des «drapeaux d'espèce 0»,
c'est-à-dire des ensembles {x1,..., x8}, où x% c Dt et où les xt sont deux
à deux incidents.

3. 2. Soient G un groupe semi-simple simplement connexe et D GjH
un D-espace de rang s. L'espace D1 GjH' sera appelé le D'-espace associé
à D. D'après 2.3, c'est un espace fibre principal de base D et de fibre C*s.
On dira aussi que s est le rang de D'.

Si $=1,1)' a une interprétation géométrique particulièrement simple.
Considérons le plongement projectif minimum de D dans un espace projectif
E, identifions D à son image par ce plongement, soit F un espace vectoriel
ayant E comme espace projectif quotient et soit <p : V — {0} -> E la pro-
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jection canonique. Alors, la variété sous-jacente de Dr est le «cône» ^(D),
image réciproque de D dans F — {0}, et son groupe est formé des
transformations induites sur ce cône par des transformations linéaires de
déterminant 1 de F qui le conservent, et induisant sur l'espace D (par q>) des
transformations appartenant au groupe de celui-ci.

La considération des drapeaux permet à nouveau de ramener la description
d'un espace de rang quelconque à celle des espaces de rang 1. Soient D D^
et Dt définis comme au n° 3.1, et soient D' et D[ les D'-espace associés.

Alors, D' est l'espace des ensembles {x[,..., x[) où x[ e D$, et où les

projections des x{ dans les D'{ sont deux à deux incidentes.

3. 3. Exemples. Cas des groupes classiques

Soient F un espace vectoriel complexe à n dimensions, G SLn(C) le

groupe des transformations linéaires de déterminant 1 de F et p
{px,..., p8} un ensemble d'entiers tels que 1 < p1 < p2 < < p8 < n.

Un drapeau d'espèce p est un ensemble {Fl3..., FJ de sous-variétés
linéaires de F telles que Yx c F2 c c V8 et dim F, pt. L'espace
Dp des drapeaux d'espèce p sur lequel opère G est un D-espace de G et
tout Z>-espace de G est de ce type. Le D'-espace D'p associé à Dv est l'espace
des ensembles {Xt,..., Xs} où Xt est un pçvecteur et où les variétés
linéaires supports des Xt forment un drapeau. En particulier sip {!}, Dp
est l'espace projectif quotient de F et D'p V — {0}.

On obtient une description analogue des D-espaces des groupes orthogonaux
(ou spinoriels) et symplectiques en considérant les drapeaux formés de variétés
totalement isotropes (cf. [7]) (dans le cas orthogonal de dimension n 2m,
les deux espèces de variétés isotropes de dimension m doivent être envisagées
séparément). Les D'-espaces associés sont à nouveaux des espaces d'ensembles
de multivecteurs (totalement isotropes dans ce cas-ci) ou éventuellement - pour
certains D' -espaces de groupes spinoriels - des revêtements doubles de tels

Le D'-espace associé à un produit direct de D-espaces est le produit direct
des D'-espaces associés à ceux-ci.

4. Un théorème sur les espaces compacts

Théorème 4. 1. Si GjH est compact et si Ho est la composante connexe de

Vêlement neutre dans H, le normalisateur N(H0) de Ho dans G est un sous-

groupe parabolique de G. De plus, tout sous-groupe parabolique de G contenant

H contient N(H0).
Le groupe H étant contenu dans N(HQ), l'espace GjH est fibre au-dessus

de GIN(HQ) avec N(H0)/H comme fibre. On a donc le
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Corollaire 4. 2. Tout espace compact possède une et une seule fibration à fibre
parallélisable au-dessus d'un D-espace.

Si H est connexe, N(H0)IH N(H0)IH0 est un groupe compact, donc un
tore. On retrouve donc, en particulier, le résultat suivant de H.C.Wang [11]:

Corollaire 4. 3. Tout espace compact simplement connexe est fibre en tores au-
dessus d'un D-espace.

Démonstration du théorème 4.1. Soient © et § les algèbres de Lie de
G et H, h la dimension de H et E l'espace projectif quotient de l'espace
vectoriel A**©- Les sous-espaces vectoriels à h dimensions de © peuvent
être représentés de la façon bien connue par les points d'une sous-variété de E
(grassmannienne); soit peE le point représentant .£>. Le groupe G opère
sur ©, par la représentation adjointe, donc sur f\h ©, donc enfin sur E.
Le sous-groupe H conserve §, donc p. Il s'ensuit que l'orbite pG de p
sous l'action de G est une image analytique de G/H; par conséquent, pG
est une sous-variété analytique compacte, donc une sous-variété algébrique de

E (cf. [3]). Soit B un sous-groupe de Borel de G. En vertu de la proposition
15.5 de [1], B possède un point fixe dans pG (le groupe de projectivités de E
représentant B n'est pas nécessairement algébrique, mais il suffit de le
remplacer par son adhérence de Zariski pour pouvoir appliquer le théorème)5).
G étant transitif sur pG, il en résulte qu'un conjugué de B conserve p,
donc §, c'est-à-dire est contenu dans le normalisateur N(HQ) de Ho, et
N(H0) est donc un sous-groupe parabolique de G.

Soit P un sous-groupe parabolique de G contenant H. L'espace P/H
étant compact, il résulte de la partie du théorème déjà démontrée que
N (Ho) n> P est un sous-groupe parabolique de P, donc de G, donc aussi de

N(H0). Il s'ensuit que le groupe Px (N(H0) ^ P)/Ho est un sous-groupe
parabolique de N(H0)/H0. Mais Pt possède un sous-groupe discret H/Ho tel
que le quotient P1j(HjHq) soit compact. On en déduit immédiatement que
Px est unimodulaire, ce qui n'est possible, en vertu de 2.4, que si Px

N(H0)/H0, d'où N(H0) * P N(H0), d'où enfin P z> N(H0), c.q.f.d.

5. Espaces fibres en tores au-dessus d'un D-espace

Nous nous proposons à présent de déterminer tous les espaces fibres en tores
au-dessus d'un D-espace; d'après le corollaire 4.3 nous retrouverons ainsi, en

particulier, tous les espaces compacts simplement connexes.

6) Le recours aux théorèmes de Chow et de Borel, qui permet ici de simplifier l'exposé, n'est
cependant pas essentiel; il est facile de voir, en effet, que le même résultat peut s'établir de façon
plus élémentaire en utilisant seulement le théorème de Lie sur les groupes linéaires résolubles.
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L'espace homogène principal F/{0} d'un espace vectoriel F (espace affin
correspondant à F) sera noté F°.

Théorème 6.1. Soient D un D-espace de rang s et D' le D1-espace
associé, fibre principal de groupe C*s sur D. Tout espace compact fibre en tores au-
dessus de D est isomorphe au quotient Q d'un espace fibre principal D' X F°,
produit direct de DT et d'un espace affin F°, par un sous-groupe analytique
fermé L de C*s X F tel que (C*s X V)fL soit compact et dim (V ^ L) 0.
L'espace Q est simplement connexe si et seulement si L est connexe.

Démonstration. Soit GjH l'espace considéré, fibre au-dessus de G/N D.
Par hypothèse, H est invariant dans N et NjH est un tore, donc N' £ H.

Nous pouvons, sans nuire à la généralité, supposer que (i) G est simplement
connexe et que (ii) H ne contient aucun sous-groupe invariant connexe non
trivial de G. D'après (i), G est le produit semi-direct SE de son radical R
et d'un groupe semi-simple S. D'après (ii), R est commutatif (donc est un
espace vectoriel), puisque R' ç N' £ H.

Soient ©, §, 9t, 91 et S les algèbres de Lie de G, H, N, R et 8, SB une
sous-algèbre résoluble maximale de S contenue dans Jft, (£ une sous-algèbre de
Cartan de Q contenue dans © et oc la représentation linéaire de S dans 5R

définie par «(s) (r) [s, ï] (s e S, X e5?). On a S + 5R ç 91, donc

En particulier, [(£, 5R] Ç §. Ceci signifie que tout élément de 5R appartenant
à un poids non nul de <x est contenu dans §. De (*) on déduit alors que
l'espace de toute composante irréductible non triviale de oc est contenu dans

§, mais ceci implique, en vertu de (ii), que oc elle-même est triviale, c'est-
à-dire que © est la somme directe de 5R et Q, ou encore que G R X S.

Posons N1 N~8. On a N Ntx R, d'où N' N[ et D #/tf
#/#,,. Finalement, (?/# est le quotient de £/#' (Sx 5)/JV' =D'xF

où F désigne un espace vectoriel canoniquement isomorphe à jR, par le

groupe L HjN', et dim (L r\ V) dim (H ^ R) 0 en vertu de (ii).
La dernière assertion de l'énoncé est évidente, et le théorème est ainsi

démontré.

°

5. 2. Remarques

Appelons espace parfait (resp. réduit) un espace GjH tel que le groupe de
transformations de GjH induit par G - groupe isomorphe à un quotient de
G - soit la composante connexe de l'élément neutre du groupe de tous les

automorphismes de la variété sous-jacente de G/H (resp. ne possède aucun
sous-groupe analytique fermé propre transitif sur GjH). Les espaces compacts
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parfaits correspondent biunivoquement aux variétés complexes compactes
homogènes.

Reprenons les notations de la démonstration précédente. Soient R± la
projection de Ho (composante connexe de l'élément neutre de H) dans R, et
R2 un sous-espace vectoriel de R complémentaire de Rx. Le groupe S x R2

est transitif sur Q. En particulier, on voit que
Si Q est réduit, la composante connexe de Vêlement neutre de L est contenue

dans C**.6)
D'autre part,

Si Q est parfait, dim L s et la dimension des fibres de Q sur D est

égale à la dimension de V .6)

En effet, D est simplement connexe et la fibration en tores de Q sur D est
holomorphiquement localement triviale; il en résulte que la variété complexe
sous-jacente de Q possède un groupe analytique complexe d'automorphismes
conservant les fibres et simplement transitif sur elles. Ce groupe, qui est un tore
complexe, est nécessairement central dans la composante connexe de l'élément
neutre du groupe de tous les automorphismes de la variété sous-jacente de Q.
Si Q est parfait, il se relève en un groupe central de G (les hypothèses de la
démonstration précédente étant conservées), donc la dimension de R (centre
connexe de est au moins égale à la dimension des fibres de Q sur D, et
dim L > s.7) Mais on a toujours, par les conditions du théorème, dim L < s,
ce qui démontre notre assertion.

Des remarques précédentes, il résulte que si on s'intéresse seulement à la
variété sous-jacente de Q, on peut imposer au groupe L du théorème 5.1 Vune
quelconque des deux conditions supplémentaires suivantes:

la composante connexe de Vêlement neutre de L est contenue dans C*8;
dim L s.

•) Ces résultats peuvent être précisés comme suit :

Pour que Q soit parfait (resp, réduit) il faut et il suffit que D le soit, et que dim L s (resp. que
la composante connexe de Vélément neutre de L soit contenue dans C**^.

Signalons encore que les seules variétés rationnelles compactes homogènes telles que la
composante connexe de l'élément neutre du groupe de tous les automorphismes possède un
sous-groupe analytique propre transitif, c'est-à-dire les seules variétés qui sont sous-jacentes
à deux D-espaces distincts, sont celles qui possèdent un facteur direct isomorphe soit à un
espace projectif de dimension impaire > 1 (groupe projectif sympleetique), soit à une hyper-
quadrique de dimension 5 ou 6 (groupe des automorphismes de l'hyperquadrique conservant
un spineur ou un semi-spineur, selon le cas), soit à la variété représentant Tune des deux
familles irréducibiles de sous-variétés linéaires de dimension maximum d'une hyperquadrique
de dimension impaire > 6 (groupe des automorphismes de l'hyperquadrique conservant une
section hyperplane non dégénérée).

7) R. Remmert nous a fait observer que cette même remarque permet de donner une démonstration

plus élémentaire du théorème 5.1, n'utilisant pas la théorie des représentations linéaires.
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Lorsque Q est simplement connexe (espaces de Wang), c'est-à-dire lorsque L
est connexe, la première de ces conditions implique F {0}.

6. Exemples. Espaces compacts de dimension ^ 3.

Soient Vt (i 1,..., s) et F des espaces vectoriels complexes de dimensions

respectives mt + 1 et n, Vf Vt — {0} l'espace Vt «pointé»
considéré comme espace homogène de groupe SLmi+1(C), fibre principal homogène

dégroupe C* au-dessus d'un espace projectif E% de dimension mt, V°

— VIify l'espace homogène principal de groupe F (espace affin correspondant

à F), L un sous-groupe fermé de dimension l de C*s X F, tel que
(C*s X V)jL soit compact et dim(F^Iv) 0 (d'où Z<s). Le quotient
E de V* X F* X X F* X F° par L est un espace fibre en tores de
dimensions t — n + s — l ^ n au-dessus du produit Ex x E2 X X Es,
et tout espace fibre en tores au-dessus d'un produit d'espaces projectifs peut
être obtenu de cette façon, en vertu du théorème 5.1. Appelons espace de type
E(m1,.. ms' t) tout espace E, de dimension m1 + -f- m8 + t, défini
comme ci-dessus et irréductible, c'est-à-dire non isomorphe à un produit direct
d'espaces de dimensions inférieures.

Les variétés de Hopf ([5],n° 2 (d)) sont sous-jacentes à des espaces de type
E(m\ 1). Les variétés sous-jacentes des espaces simplement connexes de type
E(m, m'-, 1) sont les variétés de Calabi-Eckmann [2]. Si on s'intéresse seulement

aux variétés sous-jacentes, on peut, dans les deux cas, supposer que
F {0}.

Les propositions suivantes sont des conséquences immédiates du théorème

5.1, des résultats rappelés au n° 3.3 et du fait que l'unique groupe non com-
mutatif simplement connexe de dimension 2, soit G, ne possède pas de sous-

groupe discret H tel que le quotient G/H soit compact.

Proposition 6.1. Les seuls espaces compacts de dimension 1 sont la droite pro-
jective et les tores complexes.

Proposition 6. 2. Les seuls espaces compacts irréductibles de dimension 2 sont
le plan projectif, les espaces de type E(l; 1) et les tores irréductibles.

Proposition 6. 3. Les seuls espaces compacts irréductibles non parallélisables
de dimension 3 sont Vespace projectif, ce même espace dans lequel est donné un
système nul (i.e. considéré comme espace homogène de /Sp4(C)), Vhyperquadrique
de dimension 3, Vespace des drapeaux (paires formées d'une droite et d'un point
incident) d'un plan projectif, et les espaces des types E{2;1), i?(l, 1; 1) et
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