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Espaces homogénes complexes compacts

par J. Tits, Bruxelles

1. Introduction

Les variétés complexes compactes simplement connexes (c.s.c) homogénes
ont été déterminées par H.C.Wang [11]. Parmi elles, celles dont la caracté-
ristique d’EULER-POINCARE n’est pas nulle jouent un roéle particulier; ce sont
des variétés algébriques rationnelles [4], [6], [7] qui peuvent étre interprétées
géométriquement comme des «espaces de drapeaux» [7], [8]; nous les appelons
ici D-espaces ) 2). Toute variété complexe c.s.c. homogene est fibrée en tores
au-dessus d’un D-espace.

Dans le présent article, nous retrouvons par une autre méthode les résultats
de H.C.Wang, et nous déterminons toutes les variétés complexes homogenes
(simplement connexes ou non) fibrées en tores au-dessus d’un D-espace. Si D
représente un D-espace donné, les variétés homogenes fibrées en tores au-dessus
de D sont obtenues comme quotients par certains groupes d’automorphismes
de produits VXD’ olt V est un espace vectoriel complexe et ot D’ est une
certaine variété algébrique ouverte homogene, dépendant seulement de D et
fibrée au-dessus de D avec C€** comme fibre (ot s est un entier donné).
Lorsque D est un espace projectif de dimension m, D’ est un espace vec-
toriel de dimension m -+ 1 privé de son origine, de sorte que notre construction
apparait comme une généralisation de celle donnée par H. Hopr [5] pour munir
le produit 8*m+1 x §' d’une structure complexe.

A titre d’application, nous déterminons toutes les variétés compactes homo-
génes de dimension (complexe) 23) et toutes les variétés compactes homogénes
non parallélisables de dimension 3.

Le théoréme principal & la base de nos résultats est le suivant (théoréme
4.1):

Soient G un groupe analytique complexe connexe et H wun sous-groupe ana-

1) Ces espaces ont été appelés «R-espaces» dans d’autres publications. «D» est ici I'initiale de
«drapeau»,

2) Dans cette introduction, nous négligeons la distinction qui sera faite par la suite entre un
espace homogéne G/H et la variété complexe sous-jacente. Bien que nos résultats concernent
essentiellement les espaces homogénes, nous utilisons ici de préférence le langage des variétés
complexes qui est en relation plus directe avec la littérature existante. Ce changement de point
de vue est justifié notamment par la proposition (2.1) de [11] et par le n® 5.2 ci-dessous.

3) La recherche, suggérée & ’auteur par A. VAN pDE VEN, des espaces homogénes complexes
compacts de dimension 2, est & 1’origine des résultats exposés dans cet article.
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lytique fermé. Si G|H est compact, le normalisateur N de la composante connezxe
de Uélément neutre de H est un sous-groupe parabolique, c’est-a-dire contient un
sous-groupe résoluble connexe maximal (sous-groupe de BorEL) de G; de plus,
81 un sous-groupe parabolique de G contient H, il contient ausst N .

Notons une conséquence immédiate de ce théoréme (corollaire 4.2):

Toute variété complexe compacte homogéne posséde une et une seule fibration en
fibres parallélisables au-dessus d’un D-espace?).

2. Préliminaires. Terminologie

2.1. Dans cet article, le terme espace désignera toujours un espace homo-
géne G/H (espace de classes latérales a droite), ou G est un groupe analytique
complexe connexe et H un sous-groupe analytique fermé. Contrairement & un
usage répandu, nous ferons la distinction entre un espace et la variété analytique
complexe sous-jacente. Les résultats exposés relatifs aux espaces compacts ont
des conséquences immédiates concernant les variétés complexes compactes
homogeénes, si on tient compte du fait qu'une telle variété, soit X, est tou-
jours sous-jacente a un espace compact G/H (cf.[11], (2.1)), et que toute
fibration holomorphe de X est invariante par G (cf. [0], proposition I. 1),
donc sous-jacente & une fibration de G'/H au-dessus de G/H,, avec

HcH c@

(cf. 2.2). La formulation des résultats en termes de variétés homogénes sera
généralement laissée au lecteur.

Si H est invariant dans G, la méme notation G/H désignera tantot un
espace homogene, tant6t un groupe quotient; le contexte indiquera toujours
la signification adoptée.

Si F est un sous-groupe fermé de H invariant dans @, nous ne ferons pas
de différence entre les espaces G/H et (G/F)/(H|F).

Nous dirons qu’un espace est parallélisable s’il en est ainsi de sa variété
sous-jacente. Les espaces compacts parallélisables sont les espaces compacts
G/H avec H discret (cf. [12]), ou, ce qui revient au méme, les espaces com-
pacts G/H tels que la composante connexe de ’élément neutre de H soit
invariante dans G.

4) L’existence d’une telle fibration a été obtenue indépendamment par A. BoreL et R. REm-
MERT (Uber kompakte homogene KAurLERsche Mannigfaltigkeiten, Math. Annalen, 145 (1962),
429-439). Leur démonstration, qui s’appuie sur une partie de notre théordme 4.1 (& savoir le
fait que N contient le radical de @) différe par ailleurs assez sensiblement de celle donnée ici.
D’autre part, R. REMMERT a obtenu, concernant les variétés fibrées en tores au-dessus d’un
D-espace, des résultats qui recouvrent partiellement les ndtres. Signalons ici que des conversations
avec R. REMMERT nous ont permis d’améliorer le présent manuscrit sur plusieurs points; en
particulier, la seconde partie du corollaire 4.2 (unicité de la fibration en question) répond & une
question posée par lui.
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2.2. Si H c H, c GG, nous dirons que G/H est fibré au-dessus de G/H,
avec H,/H comme fibre. Si H est invariant dans H,, le groupe L = H,/H
opéere librement sur G/H (par translations a gauche), les orbites étant les
fibres de G/H sur G/H,; dans ce cas, ’espace fibré sera dit principal, de
groupe L. Si L* est un sous-groupe analytique fermé de L etsi H désigne
I'image réciproque de L* dans H,, ’espace G/H’ sera appelé le quotient de
G/H par L* (la variété sous-jacente de G/H} est effectivement la variété
des orbites de I’action de L* dans G/H).

2. 3. Un sous-groupe de BOREL d’un groupe analytique complexe (connexe)
G est un sous-groupe résoluble connexe maximal; un sous-groupe parabolique
est un sous-groupe contenant un sous-groupe de BorEL. Nous rappellerons ici
quelques faits connus (cf. notamment [7], [9], [10], [11]) concernant ces sous-
groupes, en supposant G semi-simple; cette restriction n’est pas essentielle
parce que les sous-groupes de BOREL contiennent évidemment toujours le
radical connexe de G.

Soient ® l'algébre de Lie de G, € une sous-algébre de CarTAN, I l’en-
semble des racines, 2 un systéme de racines simples, ¢, (w € /l) un vecteur
propre correspondant & = et ¢, = [e,, e_,]. Pour toute partie @ de 2, soit
P, la sous-algébre de & linéairement engendrée par § et par les e, cor-
respondant a toutes les racines z qui sont soit combinaisons linéaires a coef-
ficients positifs des éléments de X, soit combinaisons linéaires & coefficients
négatifs des éléments de X' qui n’appartiennent pas a @. L’algébre dérivée
P/, est engendrée par les mémes e, et par les ¢, correspondant aux éléments o
de 2 qui n’appartiennent pas a @. Nous noterons encore P, le sous-groupe
connexe de @ engendré par P,; son dérivé P, est le sous-groupe connexe
de G engendré par P, etona P,/P, = 0*°, out s désigne le nombre d’élé-
ments de .

Les sous-groupes P, sont paraboliques et tout sous-groupe parabolique est
conjugué & un et un seul P,. Les sous-groupes de BoREL sont les conjugués
de Pj.

Les sous-groupes de BorEL d’un groupe G quelconque (semi-simple ou non)
contiennent le centre de G.

2. 4. Un sous-groupe parabolique propre d’un growpe analytique complexe n’est
jamais unimodulaire.

En effet, soient &, 1’algébre de Lik du groupe en question, P l’algébre de
L1t du sous-groupe parabolique considéré, R le radical de ¢;, &, = ® + R
une décomposition de LEvide ®,, et soient € et X définis comme aun® 2.3.
On peut, sans nuire & la généralité, supposer que P =P, + R, avec D # o.
Soit ¢ €@ un élément tel que o(c) soit réel et > 0 pour toute racine simple

8 CMH vol. 37
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oce2. La trace de la restriction adg ¢ de adc & R est nulle, parce que
adg ¢ appartient a la restriction & R de ad ®, qui est une algébre de Lik
linéaire semi-simple. Il s’ensuit que la trace de la restriction de ad ¢ & P est
égale a la trace de la restriction de ad ¢ & P, or celle-ci, égale & la somme
des z(c) étendue & toutes les racines x telles que e_, ¢ P,, est réelle et
> 0, ce qui démontre notre assertion.

3. D-espaces et D’-espaces

3. 1. Un espace G/H sera appelé un D-espace si H est un sous-groupe
parabolique de G. Lorsqu’on considére un D-espace G/H, ce n’est pas une
restriction de supposer que G est semi-simple (resp. simplement connexe),
puisque H contient le radical connexe (resp. le centre) de G. L’espace
Dy = G/P, (avec les notations du n°® 2.3) sera dit de rang s, si s est le
nombre d’éléments de @. Les D-espaces sont compacts (cf. [7], [11]). Leurs
variétés sous-jacentes sont des variétés algébriques projectives rationnelles
(cf. [4], [6], [7]).

Un D-espace G/H peut étre plongé analytiquement dans un espace pro-
jectif complexe de telle fagon que les éléments de @, considérés comme trans-
formations de G/H, s’étendent en des projectivités de l’espace projectif
(cf. [6], [7]); un tel plongement sera briévement appelé un plongement projectif
de G/H, et sera dit minimum si la dimension de 1’espace projectif en question
est la plus petite possible. Le plongement projectif minimum d’un D-espace
donné est unique & une projectivité prés (cf. [7]).

Rappelons le principe de la définition des D-espaces de rang s quelconque
comme espaces de drapeaux sur les D-espaces de rang 1 (cf. [7], [8]). Deux points
appartenant respectivement a D, = G/P, et D, = G/P, sont dits in-
cidents si les classes latérales de P, et P, qu’ils représentent ont une inter-

section non vide. Soit @ = {g;,..., ¢,} et posons D, = D,. Alors, D,
peut étre canoniquement identifié avec I’espace des «drapeaux d’espéce @»,
c’est-a-dire des ensembles {z,,...,z,}, o x,eD, et ou les z, sont deux

a deux incidents.

3. 2. Soient G un groupe semi-simple simplement connexe et D = G/H
un D-espace de rang s. L’espace D' = G/H' sera appelé le D’-espace associé
a D. D’aprés 2.3, c’est un espace fibré principal de base D et de fibre C**.
On dira aussi que s est le rang de D'.

Si s=1, D' a une interprétation géométrique particuliérement simple.
Considérons le plongement projectif minimum de D dans un espace projectif
E, identifions D a son image par ce plongement, soit ¥ un espace vectoriel
ayant B comme espace projectif quotient et soit ¢: ¥V — {0} - E la pro-
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jection canonique. Alors, la variété sous-jacente de D’ est le «cone» ¢~1(D),
image réciproque de D dans V — {0}, et son groupe est formé des trans-
formations induites sur ce céne par des transformations linéaires de déter-
minant 1 de V qui le conservent, et induisant sur ’espace D (par ¢) des
transformations appartenant au groupe de celui-ci..

La considération des drapeaux permet & nouveau de ramener la description
d’un espace de rang quelconque a celle des espaces de rang 1. Soient D = D,
et D, définis comme au n° 3.1, et soient D' et D] les D’-espace associés.
Alors, D' est ’espace des ensembles {x;,..., .} ou z}e D}, et oit les pro-

. r 7 7/ [y . .
jections des z; dans les D; sont deux & deux incidentes.

3. 3. Exemples. Cas des groupes classiques

Soient ¥V un espace vectoriel complexe a n dimensions, G = SL,(C) le
groupe des transformations linéaires de déterminant 1 de V et p=
= {py,..., P,y un ensemble d’entiers tels que 1 <p <P < ... <p, <M.
Un drapeau d’espece p est un ensemble {V,,...,V,} de sous-variétés
linéaires de V telles que V,c Vo ... c V, et dim V, = p,. L’espace
D, des drapeaux d’espéce p sur lequel opére G est un D-espace de G et
tout D-espacede G est de ce type. Le D'-espace D), associé a D, est I’espace
des ensembles {X,,...,X,} ou X, est un p,-vecteur et ou les variétés li-
néaires supports des X, forment un drapeau. En particulier si p = {1}, D,
est I'espace projectif quotient de V et D, = V — {0}.

On obtient une description analogue des D-espaces des groupes orthogonaux
(ou spinoriels) et symplectiques en considérant les drapeaux formés de variétés
totalement isotropes (cf.[7]) (dans le cas orthogonal de dimension n = 2m,
les deux espeéces de variétés isotropes de dimension m doivent étre envisagées
séparément). Les D’-espaces associés sont a nouveaux des espaces d’ensembles
de multivecteurs (totalement isotropes dans ce cas-ci) ou éventuellement — pour
certains D’-espaces de groupes spinoriels — des revétements doubles de tels
espaces.

Le D’-espace associé a un produit direct de D-espaces est le produit direct
des D’-espaces associés a ceux-ci.

4. Un théoréme sur les espaces compacts

Théoréme 4. 1. St G/H est compact et st H, est la composante connexe de
Vélément neutre dans H, le normalisateur N (H,) de H, dans G est un sous-
groupe parabolique de G. De plus, tout sous-groupe parabolique de G contenant
H contient N (H,).

Le groupe H étant contenu dans N (H,), ’espace G/H est fibré au-dessus
de G/N(H,) avec N(H,)/H comme fibre. On a donc le
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Corollaire 4. 2. Tout espace compact posséde une et une seule fibration & fibre
parallélisable au-dessus d’un D-espace.

Si H est connexe, N (H,)/H = N (H,)/H, est un groupe compact, donc un
tore. On retrouve donc, en particulier, le résultat suivant de H.C. Wane [11]:

Corollaire 4. 3. Tout espace compact simplement connexe est fibré en tores au-
dessus d’un D-espace.

Démonstration du théoréme 4.1. Soient ® et § les algébres de Lie de
G et H, h la dimension de H et E l’espace projectif quotient de I’espace
vectoriel A®* . Les sous-espaces vectoriels & » dimensions de & peuvent
étre représentés de la fagon bien connue par les points d’une sous-variété de E
(grassmannienne); soit p e & le point représentant $. Le groupe G opére
sur ®, par la représentation adjointe, donc sur A’ &, donc enfin sur E.
Le sous-groupe H conserve §), donc p. Il s’ensuit que Porbite p@ de p
sous l'action de G est une image analytique de G/H; par conséquent, pG
est une sous-variété analytique compacte, donc une sous-variété algébrique de
E (cf.[3]). Soit B un sous-groupe de BoreL de G'. En vertu de la proposition
15.5de [1], B posséde un point fixe dans pG (le groupe de projectivités de E
représentant B n’est pas nécessairement algébrique, mais il suffit de le rem-
placer par son adhérence de ZARISKI pour pouvoir appliquer le théoréme)3).
G étant transitif sur pQ@, il en résulte qu'un conjugué de B conserve p,
donc §, c’est-a-dire est contenu dans le normalisateur N (H,) de H,, et
N (H,) est donc un sous-groupe parabolique de G.

Soit P un sous-groupe parabolique de G contenant H. L’espace P/H
étant compact, il résulte de la partie du théoréme déja démontrée que
N (H,) ~ P est un sous-groupe parabolique de P, donc de @, donc aussi de
N (H,). Il s’ensuit que le groupe P, = (N(H,) ~ P)/H, est un sous-groupe
parabolique de N (H,y)/H,. Mais P, posséde un sous-groupe discret H/H, tel
que le quotient P,/(H/H,) soit compact. On en déduit immédiatement que
P, est unimodulaire, ce qui n’est possible, en vertu de 2.4, que si P, =
= N(H,)/H,, d’ou N(H,)) ~ P = N(H,), Aot enfin P o N(H,), c.q.f.d.

5. Espaces fibrés en tores au-dessus d’un D-espace

Nous nous proposons & présent de déterminer tous les espaces fibrés en tores
au-dessus d’'un D-espace; d’apreés le corollaire 4.3 nous retrouverons ainsi, en
particulier, tous les espaces compacts simplement connexes.

5) Le recours aux théorémes de CHOW et de BOREL, qui permet ici de simplifier I’exposé, n’est
cependant pas essentiel; il est facile de voir, en effet, que le méme résultat peut s’établir de fagon
plus élémentaire en utilisant seulement le théoréme de L1k sur les groupes linéaires résolubles.
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L’espace homogéne principal V/{0} d’un espace vectoriel V (espace affin
correspondant & V) sera noté V°.

Théoréme b.1. Soient D wun D-espace de rang s et D' le D’-espace as-
socié, fibré principal de groupe C** sur D. Tout espace compact fibré en tores au-
dessus de D est isomorphe au quotient @ d’un espace fibré principal D' X V°,
produit direct de D' et d’un espace affin V°, par un sous-groupe analytique
fermé L de C* X V tel que (C** X V)/L soit compact et dim (V ~ L) = 0.
L’espace @ est simplement connexe st et seulement si L est connexe.

Démonstration. Soit G/H l’espace considéré, fibré au-dessus de G/N = D,
Par hypothése, H est invariant dans N et N/H est un tore, donc N’' < H.

Nous pouvons, sans nuire & la généralité, supposer que (i) G est simplement
connexe et que (ii) H ne contient aucun sous-groupe invariant connexe non
trivial de G'. D’aprés (i), G est le produit semi-direct SE de son radical R
et d’un groupe semi-simple S. D’aprés (ii), B est commutatif (donc est un
espace vectoriel), puisque R'c N' < H.

Soient &, H, N, R et S les algébresde Liede G, H, N, R et S, B une
sous-algébre résoluble maximale de & contenue dans 9, € une sous-algébre de
CarTAN de S contenue dans B et « la représentation linéaire de S dans R
définie par «(s) (t) =[5,1r](5¢S, teR). Ona B + R < N, donc

(*) B, RN <H.

En particulier, [€, R] < 9. Ceci signifie que tout élément de R appartenant
4 un poids non nul de « est contenu dans . De (*) on déduit alors que
Pespace de toute composante irréductible non triviale de x est contenu dans
9, mais ceci implique, en vertu de (il), que « elle-méme est triviale, c’est-
a-dire que ® est la somme directe de R et S, ouencoreque G =R X 8.

Posons Ny =N~ S. Ona N=N, X R, doit N' = NJ| et D =GN =
= §/N,. Finalement, G/H estle quotientde G/N' = (S X R)/N' =D' X V°
ou V désigne un espace vectoriel canoniquement isomorphe 4 R, par le
groupe L = H/N', et dim (L~ V) = dim (H ~ R) = 0 en vertu de (ii).

La derniére assertion de I’énoncé est évidente, et le théoréme est ainsi
démontré.

b. 2. Remarques

Appelons espace parfait (resp. réduit) un espace G/H tel que le groupe de
transformations de G/H induit par @ - groupe isomorphe & un quotient de
G - soit la composante connexe de I’élément neutre du groupe de tous les
automorphismes de la variété sous-jacente de G/H (resp. ne posséde aucun
sous-groupe analytique fermé propre transitif sur G/H). Les espaces compacts
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parfaits correspondent biunivoquement aux variétés complexes compactes
homogénes.

Reprenons les notations de la démonstration précédente. Soient R, la pro-
jection de H, (composante connexe de 1’élément neutre de H) dans R, et
R, un sous-espace vectoriel de B complémentaire de R,. Le groupe S X R,
est transitif sur . En particulier, on voit que

Si Q est réduit, la composante connexe de I’élément neutre de L est contenue
dans C**.9)

D’autre part,

St Q est parfait, dim L = 8 et la dimension des fibres de @ sur D est

égale a la dimension de V .8)
En effet, D est simplement connexe et la fibration en tores de @ sur D est
holomorphiquement localement triviale; il en résulte que la variété complexe
sous-jacente de @ posséde un groupe analytique complexe d’automorphismes
conservant les fibres et simplement transitif sur elles. Ce groupe, qui est un tore
complexe, est nécessairement central dans la composante connexe de 1’élément,
neutre du groupe de tous les automorphismes de la variété sous-jacente de Q.
Si @ est parfait, il se reléve en un groupe central de G (les hypothéses de la
démonstration précédente étant conservées), donc la dimension de R (centre
connexe de @) est au moins égale a la dimension des fibres de @ sur D, et
dim L > s.7) Mais on a toujours, par les conditions du théoréme, dim L < s,
ce qui démontre notre assertion.

Des remarques précédentes, il résulte que si on s’intéresse seulement a la
variété sous-jacente de @, on peut imposer au groupe L du théoréme 5.1 Pune
quelconque des deux conditions supplémentaires suivantes:

la composante connexe de I'élément neutre de L est contenue dans C*3;
dim L = s.

8) Ces résultats peuvent étre précisés comme suit :

Pour que Q soit parfait (resp. réduit) il faut et il suffit que D le soit, et que dim L = s (resp. que
la composante connexe de l'élément neutre de L soit contenue dans C*s).

Signalons encore que les seules variétés rationnelles compactes homogénes telles que la
composante connexe de I'élément neutre du groupe de tous les automorphismes posséde un
sous-groupe analytique propre transitif, c’est-a-dire les seules variétés qui sont sous-jacentes
& deux D-espaces distincts, sont celles qui possédent un facteur direct isomorphe soit & un
espace projectif de dimension impaire > 1 (groupe projectif symplectique), soit & une hyper-
quadrique de dimension 5 ou 6 (groupe des automorphismes de I’hyperquadrique conservant
un spineur ou un semi-spineur, selon le cas), soit & la variété représentant 1’'une des deux
familles irréducibiles de sous-variétés linéaires de dimension maximum d’une hyperquadrique
de dimension impaire > 6 (groupe des automorphismes de I’hyperquadrique conservant une
section hyperplane non dégénérée).

) R. REMMERT nous a fait observer que cette méme remarque permet de donner une démons-
tration plus élémentaire du théoréme 5.1, n’utilisant pas la théorie des représentations linéaires.
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Lorsque @ est simplement connexe (espaces de WANG), ¢’est-a-dire lorsque L
est connexe, la premiére de ces conditions implique ¥V = {0}.

6. Exemples. Espaces compacts de dimension << 3.

Soient V,(+ =1,...,8) et V des espaces vectoriels complexes de dimen-
sions respectives m; + 1 et n, V] = V, — {0} 'espace V, «pointé» con-
sidéré comme espace homogéne de groupe SL,,  ,(C), fibré principal homo-
géne de groupe C* au-dessus d’un espace projectif £, de dimension m,, V° =
= V/{0} l’espace homogéne principal de groupe V (espace affin correspon-
dant & V), L un sous-groupe fermé de dimension I de C** X V, tel que
(C** X V)/L soit compact et dim (V~ L)=10 (dou I <s). Le quotient
E de V¥ X Vfx ... xV}Fx V° par L est un espace fibré en tores de
dimensions t =n + 8 — [ > n au-dessus du produit £, X E, X ... X K,
et tout espace fibré en tores au-dessus d’'un produit d’espaces projectifs peut
étre obtenu de cette facon, en vertu du théoréeme 5.1. Appelons espace de type
E(m,,...,m,t) tout espace K, de dimension m; + ... + m, + ¢, défini
comme ci-dessus et irréductible, c’est-a-dire non isomorphe & un produit direct
d’espaces de dimensions inférieures.

Les variétés de Hopr ([5],n° 2 (d)) sont sous-jacentes a des espaces de type
E (m; 1). Les variétés sous-jacentes des espaces simplement connexes de type
E(m,m'; 1) sont les variétés de CALABI-ECKMANN [2]. Si on s’intéresse seule-
ment aux variétés sous-jacentes, on peut, dans les deux cas, supposer que
V = {0}.

Les propositions suivantes sont des conséquences immédiates du théoréme
5.1, des résultats rappelés au n° 3.3 et du fait que 'unique groupe non com-
mutatif simplement connexe de dimension 2, soit G, ne posséde pas de sous-
groupe discret H tel que le quotient G//H soit compact.

Proposition 6. 1. Les seuls espaces compacts de dimension 1 sont la droite pro-
jective et les tores complexes.

Proposition 6. 2. Les seuls espaces compacts irréductibles de dimension 2 sont
le plan projectif, les espaces de type E(1; 1) et les tores irréductibles.

Proposition 6. 3. Les seuls espaces compacts irréductibles non parallélisables
de dimension 3 sont U'espace projectif, ce méme espace dans lequel est donné un
systeme nul (i.e. considéré comme espace homogéne de Spy(C)), Uhyperquadrique
de dimension 3, Uespace des drapeaux (paires formées d’une droite et d’un point
incident) d'un plan projectif, et les espaces des types E(2;1), H(l,1;1) et
E(1; 2).
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