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On the Lattice Space Forms

by JosepH A. WoLr?), Princeton (N.J.)

1. Introduection

In a recent paper [1] we gave a global classification for homogeneous pseudo-
RiemANNian manifolds of constant nonzero curvature. We described certain
families of such manifolds,and proved [1, Theorem 12] that a complete connected
homogeneous pseudo-RIEMANNian manifold of constant positive curvature is
isometric to an element of one of those families; for negative curvature, one
replaces the metric by its negative. The most complicated of those families are
the families .0, .03, £y, L and Ly, the families of so-called lattice space
forms. The purpose of this note is to improve their description, examine their
interrelations, and correct a minor error in their enumeration.

We first give a criterion (Theorem 3.1) for two manifolds, each isometric to
an element of .£ or to an element of an .C,,, to be isometric to each other,
i.e., to be equal as elements of .£ or .£,,. We then decompose .£ into a
disjoint union of subsets £(+,hk,n), £L(—,h,n) and L(+,h,n), and
decompose .£,, into a disjoint union of subsets £, (h, n); here (h,n) refers

h n

to the dimension n and the signature of metric ds? = — X'da? + X da? of
1 h+1

the manifolds under consideration. Our first main result (Theorem 4) is that

L(+,h,n), L(+,k,n) and L,(h, n) are each in one to one correspondence
in a natural fashion with the quotient of the upper half plane by the modular
group, and that .£(—, k, =) isin one to one correspondence with the quotient
of the upper half plane by a maximal parabolic (= unipotent) (mod 2) subgroup
of the modular group. The other main result (Theorem 5.2) is that Ly(k, n),
Lg(h,n) and Lg(h,n) each has just one element.

2. Preliminaries

2.1. Let R}*! bean (n + 1)-dimensional real vectorspace with a symmetric
bilinear form @ of signature (b — ‘s, (n — b 4 1) +'s), and let O*(n 4 1)
denote the orthogonal group of @. An orthonormal basis of R7+! is an ordered
basis {v;,...,v,,;} such that Q(v;,v,)=6;; if ¢>h, = — 6, if ¢ Zh.
A skew basis of RIt! is,if 2h =n 4+ 1, an ordered basis

{fisee oo fos Vrgaro s Va5 €5 n e, €4}

1) The author was supported by a National Science Foundation fellowship while preparing
this paper.
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where k=n—h+1, Qf;, ) =26;=—2Q(v;, v;) and Q(f;, f)) =
= Q(e;, ¢;) =Q(f;, v,) =Q(v,, ¢) = 0. A similar definition holds if
2h<n -+ 1. There is a one to one correspondence between orthonormal
bases and skew bases which sends an orthonormal basis {»,} to

{Onir — V1o s Vngr — Vi3 Vpgas e -5 Uns Ungr T+ Vs s Ungre + Vi)
when 2Ah=n 4+ 1.
If A is a linear transformation of R}*! and B is a basis of R}+!, then A

will denote the matrix of 4 relative to §. J, will denote the matrix ( (1) 3) ’

Je
and, if p is even, J, will denote the matrix " ) of order p. I will
Js

denote the identity transformation, and I, will denote the identity matrix of
order ¢. Finally, if p is even, R (), will denote the rotation matrix

cos (270) I, 4 sin (270) J .

2.2. Now suppose that 2A>n and k=n+ 1 —h =0 (mod 4), and
choose a skew basis # of R}™!. Given an antisymmetric nonsingular k X k

I,0 2d
matrix d, we have t(d) ¢ 0*(n -+ 1) defined by ¢(d)g = (O I, . 0 \) Now
00 I
suppose that dJ, 4+ J,d = 0; this requires k£ = 0 (mod 4). We identify the
complex number field ¢ with the matrices (al, + bJ,) by a + V — 1b —
(al, + bJ,), and observe that ud is an antisymmetric nonsingular matrix
for every 0 %~ u € C. Let ¢ be one of the signs -+ or — or 4-. Given % € C,
u ¢ R, we define 8(u, ¢) to be the subgroup of 0%*n + 1) generated by t(d)
and et(ud).

Now suppose, in addition, that % is even, i.e., that A — &k is even. For
every nonzero integer m, we have r(m)eO"*n -+ 1) defined by r(m)g =
= R(1/m),,;. Given ueC, u¢R, let L(u) be the additive lattice {1, u}
in C. If m=3,4,6 or 8, and if exp(4nV — 1/m) L(u) = L(u), then we
define £,,(%) to be the subgroup of 0%(n + 1) generated by r(m), t(d) and
t(ud).

In [1, §§ 9.3-9.4], it was stated but not proved that 2(u,e) and L, (u)
are well defined, up to conjugacy in 0*(n + 1). This will follow from § 2.4.

2.3. 87 is the quadric Q(z,x) =1 in R}*!, together with the induced
structure as a pseudo-RiEMANNian manifold with metric of signature

h n
dst = — Xda? + X dal.
1

h+1
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0*(n 4 1) is the full group of isometries of 8%, and acts transitively on the
points of S;. S3 is thus homogeneous, and it has constant sectional curvature
+ 1. We refer to [1, § 4] for details.

We have proved [1, §§ 9.3-9.4] that S;/Q(u, ¢) and S}/8,,(%) inherit from
S7 the structure of homogeneous pseudo-RiEmMannian manifold of constant
curvature -+ 1. The manifolds S3/Q(u, ¢) form a family .£, where we iden-
tify isometric manifolds. The manifolds S%/8,, (%) form a family .C,, again
identifying isometric manifolds. .£ and .£,, are the families of lattice space
forms.

To study the lattice space forms, we must know when elements of the fam-
ilies .£ and .0, areisometric. An element of one family cannot be isometric
to an element of another family, so we may study the families separately. As
0*(n 4 1) is the full group of isometries of S}, it is easily seen that a manifold
S*/8(u, ) is isometric to S%/Q(u’,¢’) if and only if n =«', h =%’ and
L(u, &) is conjugate to L(u',¢') in O*(n + 1), and that S}/8,(w) is iso-
metric to 8%,/8,,(u') ifand only if » = 2', h = &' and L, (u) is conjugate to
L,w) in 0*(n + 1).

2.4. In order to study conjugacy of groups L(u,e) and £,(u), we will
need

Lemma 2. 4. Let d and d' be antisymmetric nonsingular real k X k matrices
which anticommute with J,. Then there is a real nonsingular k X k matriz ¢,
which commutes with J,, and such that g,d‘g, = d'.

Proof. Let y = {s,...,8;} bean orthonormal basis of ¥V = R¥ and let J
be given by J,=J;. V carries the structure of a complex vectorspace of

dimension k/2 where J is scalar multiplication by V — 1; now

V, = {81, 83, e e sy Sk_l}

isa C-basis for V. We define a real-linear transformation n of V by #%(s;) =
= (— 1)i+ls;. Now %, d and d' each anticommutes with J; thus dn and
d'n commute with J, i.e., dyn and d'y are C-linear. Let @' be the sym-
metric C-bilinear form on V defined by @'(sy;yy, S2j;1) = ;55 it is easily
checked that Q' (z,dny) + @ (dnz,y) =0=Q' (x,d ny) + Q' (d'nx, y) for eve-
ry x,y e V; thus (dy), and (d'%),. are nonsingular antisymmetric complex
matrices. If follows that there is a nonsingular complex matrix A, of order k/2
such that h,(dn),.*h; = (d'7),.. If b is defined by h,, = h,, then (nhn7),=h,.
It follows that d' = h,d’h,. Define g, = h,. Q.E.D.

It is clear that the choice of the original skew basis 8 of R}*! does not
effect the conjugacy class of Q(u,¢) or L,(u) in 0*(n + 1). The above
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lemma shows that the choice of d does not effect the conjugacy class. Thus the
groups L(u,¢) and L, (%) are well defined up to conjugacy in 0*(n + 1).

3. The Equivalence Theorem

3.1. Let H denote the upper half plane, consisting of all complex numbers

with positive imaginary part. The modular group is the group I' consisting of
. ) _au-+b a b\ . .
all transformations y:u —y(u) = cu 1 d of H where ( d) is an inte-

gral matrix of determinant - 1. We write y = + (Z d) . The mod 2 parabolic

modular group I'' is the subgroup of I' consisting of all y = + (Z 2) such

/ *
that ((: 2)5(3 1) (mod 2), i.e., such that ¢ is even but a and d are

odd. I is maximal among the subgroups of I' with all elements congruent
mod 2 to parabolic (= unipotent) transformations of H. I'" has a subgroup
of index 2, the “modular group of level two’’ given by b = 0 (mod 2), which is
well known.

Convention. Observe that Q(u,e) = L(— u,¢) and L,(u) = L, (— u).
As « bhas nonzero imaginary part, we may replace it by — w if necessary.
We will now always assume u ¢ H when we speak of (%, ¢) or &, (%).

The Equivalence Theorem is:

Theorem 3. 1. Suppose that 2h >n and k=n 4+ 1 — h =0 (mod 4), and
let w,u eH. Then (u, ) and L(w', &) areconjugate subgroups of 0*(n + 1),
if and only if (1) e = €', (2) there vs an element y e I' such that y(u) = ',
and (3) y eI if e = — . Suppose further that b = 0 (mod 2), that m = 3,4, 6
or 8, and that exp(4nV — 1/m) L(u) = L(u) and exp(4nV — 1/m) L(u') =
= L(u') where L(v) denotes the additive lattice {1, v} in C. Then L, (u) and
L,.(u') are conjugate subgroups of O0"(n 4 1), if and only if y(u) =u' for
some yel'.

The rest of § 3 is devoted to the proof of this theorem.

3.2. Let u,u eH, let L(u) = {1,u} and L(u') = {1, %'} be the corre-
sponding additive lattices in €, and suppose that y(u) =u' where y =

= x <Z :,) el Let x = (cu + p)~*, nonzero element of C. Then
L(u/) — {1, u/} :{1’ au + b

cu + p
Now &« is represented by sI, -+ ¢J, under 1 -1, and V-1 —J, and,

as d is an antisymmetric nonsingular k& X k real matrix which anticommutes
with J,, the same is true for d' = xd. By Lemma 2.4, there is a nonsingular

}:oc{cu—i—p,au—l—b}:ocL(u).
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real matrix g, of degree k, which commutes with J,, such that g¢,d%;, = «d.

g, 0 0
Let ge0*(n+1), gg= (O Ip_3 O ) . Then gt(wd)g = t(xwd) = t(wad)
00 ‘g7!

for every w e C. This proves that ¢g@(u, +) g = L', +), 98w, +) g1 =
= Q(u', 4), and, if A = 0 (mod 2), g8, (w)gt = 8,, ().

Now suppose that y e I''. As a and p are odd, and ¢ is even, it follows
that, given integers s and v, v s odd if and only if vp — sc is odd.
Now %' =oa(au—+0b) and 1=«(cu+ p); thus wux =pu' —b and
o« = — cu' + a. Given integers s and v, we have

g t(d)y(—t(ud)? g7t=(—1)"-gt((s + uv)d) g7* = (— 1)?- t((s + wv)ad) =
= (— 1)?-t((as — scu')d + (vpu' — vb)d) =
= (= 1)?- t((as — vb)d) - t((vp — sc)u'd) = t(d)**~*° (— t(u'd))*"~*

because v = vp — s¢ (mod 2). Thus ¢gL(u, —)g 1= L@, —).
This proves the sufficiency of our conjugacy conditions.

3.3. Let 8(u) be a subgroup L(u,¢) or &, (x) of 0%(n 4 1), and let
L(u') be another subgroup L(u',é&') or L, (u’) of the same type. Suppose
that there exists an element g e 0*(n 4 1) such that gQ(u)g = L(w) .

The various possibilities for LQ(u, ¢) are characterized as follows. Every
eigenvalue of every element of &(%, +) is equal to + 1. £(u, +) contains
— I. 8(u, —) has elements with eigenvalues equal to — 1, but it does not
contain — I. Thus ¢gQ(u, ) gt = (v, &) implies ¢ = ¢&'. Again looking
at eigenvalues, we see that ¢gQ(u, +)g* = L(w', +), whether LQ(u) is
L(u,e) or L, (u).

We will prove that %' = y(u) for some 9 ¢ I', as a consequence of

gl (u, +) gt = L@, +).

For g must preserve the nullspace of ¢(d) — I. In our skew basis g of R}*2,
g1 92 Js

it follows that gg = (O Ja g5) , where g e0(n 4+ 1) implies g, = g7 .
00

Thus weC gives gt(wd) ggf: (9, wdtg,), where C is identified with the

R-linear combinations of I, and J,. As % and I, span C over R, it

follows that ¢,J = + Jg, and ¢,dfg, = ad for 0 #% x ¢ C. We may replace

¢ by g,-diag{l, —1;...;1, — 1} if necessary, and assume g¢,J = Jg,.

Thus g - t(d)*t(ud)’g! = t(xd)’t(cud)® for any integers s and v. It follows

that the lattices L(u) = {1,u} and L(u') = {l1,%'} in € are related by

Lw') = aL(w). i.e., that {1,%'} = {x,ou}. As u,u' e¢H, L(u) and
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L(u') carry the same orientation; thus %' = axu + bx and 1 = cau + px
where <Z' ;) is an integral matrix of determinant 4 1. Now define

_ ,[a b ,_w  ascutba  autb
P = _-}:(c p)e]’, and observe that « = = ceutpx - cutp = y(u).

Except for the groups £(u, —) and L(u', —), this proves the necessity of
our conjugacy conditions.
Suppose that gQ@(u, —) gt = &(«', —). We must prove yel".

g - t(d)'(— t(ud))?g™ = (= 1)’t(x(s + vu)d) =
= (— 1)?-t((as — vb)d) - t((vp — sc)u’d)

as at the end of § 3.2. Thus (— 1)? = (— 1)"”7*¢ for any integers s and wv.

It follows that p is odd and ¢ is even. Thus 1 =ap — bc =a (mod 2)

proves that a is odd. Now (g’ z>z((l) ?) (mod 2), proving y eI'. This

completes the proof of the necessity of the conjugacy conditions.
Theorem 3.1 is now proved.

3.4. In [1, § 9.3], I made the error of stating that £(u, ¢) is conjugate to
L(u', ¢), if and only if the lattices L(u) and L(u') are equal. From the proof
of Theorem 3.1, it is clear that this condition is too strong. If ¢ = + or ¢= 4+,
then the correct condition is that L(u') = xL(u) where 0 £« ¢ C.

A similar error [1, § 9.4] was made with respect to the conjugacy of £,, ()
and £, (4'). Here the correct condition on the lattices is L(u') = « L (u)
where 0 £« € C.

Remark. The condition of Theorem 3.1 is not surprising, for the condition
that two lattices L; and L, in C arerelated by L, =« L,, 0 #Ax € C, is clearly
the same as the condition that an integral unimodular fractional linear trans-
formation sends the ratio of a pair of generators of L, to the ratio of a pair of
generators of L,.

4. Parameterization of .£ and .G,

L is a disjoint union £(+) U .L(—) U L(+) where

LE)= U U L, h,4t+h— 1)

h=4t t=1

and L(¢, h,n) consists of all manifolds S3/8(u, ¢) in L. Similarly, .0, =

-]

= U U .0,(28, 4t + 28 — 1) where .L,(kh, n) consists of all manifolds
8=2¢ =1

28, (u) in L£,. We will study the structure of L(e, h,n) and L, (h,n).
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We first look at the easy cases. Let % ¢ H = upper half plane. For appropriate
h and n, and any e, L(u,¢e) c0?(n + 1) is defined. The lattice L(u) is
preserved by multiplication by exp (4n V' — 1/4) = — 1, so, for appropriate
h and n, £(u) c0*(n 4+ 1) is defined.

Theorem 3.1 now yields:

Theorem 4. Let M = H/I", identification space of the wpper half plane under
the modular group; let M' = H/I"', identification space under the mod 2 parabolic
modular group. Then each L(+,h,n), each L(4,h,n) and each Ly(h,n)
18 parameterized by M, and each L(—, h,n) is parameterized by M'. More
precisely, for appropriate h and n, the maps

u—>Sp/8(u, +), uw—>Sy/L&(u, £), u—8;/L(u)

and u—Sy/8(u, —) induce one to one maps of M onto L(+,h,n), M onto
L(+,h,n), M onto Ly(h,n), and M' onto L(—,h,n), respectively.

Given w,u ¢eH, we can find an analytic arc (such as the straight line
segment) in H from # to «'. This results in a real analytic deformation of
L(e, u) (or L4(uw)) over to L(e,u') (or L(u')). It follows that any two ele-
ments of .L(e, h,n) (or of .Lyh,n)) are real-analytically homeomorphic.
This is notable because, by Theorem 4, .L(e, h,n) and 0,(h,n) carry the
structure of a real analytic V-manifold in the sense of BATLEY. On the other
hand, we cannot assert that two distinct elements of L'(¢, k, n) or of £,(h, n)
be affinely equivalent, for, utilizing irreducibility of the holonomy group and
the fact that the manifolds have the same constant curvature, such an affine
equivalence would be seen to be an isometry.

b. Uniqueness in .C;, .y and £

b.1. We will prove that each .C3(h, n), each Ly(h,n), and each Ly(h, n),
has just one element. This will require a lemma on latticesin €. The lemma also
gives an explanation as to why m is not arbitrary in the definitions of the
groups £,,(u).

Let L be a discrete additive lattice in C, and suppose that L = aL for
some non-real unimodular complex number x. As L is discrete, we may
choose a ¢ L with the property that |b| = |a| > 0 for every nonzero b e L;
we then define L’ to be the sublattice of L generated by a and za. Suppose

that « = cos(t) + V—1sin (t), treal. Then
|ra + sxal|?* = |a|? |r* 4 27rs cos(t) + s?]

for any r,seR.
Suppose that we have beL, b¢L'. b = ra 4 sza for some real » and s
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because @ and za are linearly independent over R, consequence of x ¢ R.
Adding an element of L' to b, we may assume that |r|< 1,[s] < }, and
b #0. Thus 0 < |b]2< |a]? |} 4+ § cos(t)]| < |a?.

Now |a| =< |a + za| implies cos(t) = — 1. As a"L=a"L = ... =1,
the same must be true of every power of . Thus cos(nf) =— 1 for every
integer n > 0. It follows that

P == exp(2nl/_:_1/3) or x =exp(+2xV — 1/4),

whence cos{t) = — } or cos(f) = 0. In either case, we have 0 < |b|? < |a|?,
contradicting b ¢ L'. We have proved:

Lemma 5. 1. Let L be a discrete additive lattice in C; suppose that
xeC, z¢R,|x| =1,

and xL = L. Then L = {a,xa}, where |a| =< |b| for every nonzero bel,

and x = exp (+ 27zl/:——1/3) or x= +V — 1. In other words, there is a
nonzero complex number a such that either

L=a{l,exp2aV —1/3)} or L=a{l,V — 1}.

Remark. Lemma 5.1 provides an alternative treatment of the last part of
[1,§ 10.4].

5.2. Theorem 3.1, the remark at the end of § 3.4, and Lemma 5.1, combine
to give a proof of:

Theorem 5.2. If m = 3, 6 or 8, then each L, (h,n) has just one element.
In other words, for appropriate h and n, we have:

1. Bvery S}/8Q3(u) 18 tsometric to S3/Ls (exp(2x VEB» .
2. Hvery S}/8¢(u) s isometric to S3/L (exp(_27z V- 1/3)) .
3. Every S%/8%(u) is isometric to S3/Ls V- 1).

5.3. Let M} and N} be connected homogeneous pseudo-RIEMANNian
manifolds of constant curvature - 1 with isomorphic fundamental groups.
7, (M}) =~ @ =~ n,(N}) for some abstract group G'. Let Z denote the infinite
cyclic group.

If @ is finite, then [1, Theorem 12] M} is isometric to Nj. If G is an
extension of Z by an element of order 4, then [1, Theorem 12] M} is iso-
metric to N3. If @ is an extension of Z X Z by an element of order m # 1,
2 or 4, then ([1, Theorem 12] and Theorem 5.2) m = 3,60r 8 and M}y is

isometric to N%. If M} is not isometric to N}, then ([1, Theorem 12] and
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Theorems 4 and 5.2) either G is an extension of Z by an element of order
lor 2,or @ is an extension of Z X Z by an element of order 1, 2 or 4. This
covers all possible G.

The Institute for Advanced Study
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