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On the Lattice Space Forms

by Joseph A. Wolf1), Princeton (N. J.)

1. Introduction

In a récent paper [1] we gave a global classification for homogeneous pseudo-
RiEMANNian manifolds of constant nonzero curvature. We described certain
families ofsuch manifolds, and proved [ 1, Theorem 12] that a complète connected
homogeneous pseudo-RiEMANNian manifold of constant positive curvature is
isometric to an élément of one of those families; for négative curvature, one
replaces the metric by its négative. The most complicated of those families are
the families </?, ~GZ, J3^ JC% and J3Bi the families of so-called lattice space
forms. The purpose of this note is to improve their description, examine their
interrelations, and correct a minor error in their enumeration.

We first give a criterion (Theorem 3.1) for two manifolds, each isometric to
an élément of J3 or to an élément of an JJm, to be isometric to each other,
i.e., to be equal as éléments of JC or JJm. We then décompose J3 into a
disjoint union of subsets «/?(+, A, w), J3{— ,h,n) and oC(±, h, n), and
décompose JCm into a disjoint union of subsets J?m(h,n); hère (h,n) refers

h n
to the dimension n and the signature of metric ds2 — S dx\ + £ dx\ of

1 A+l
the manifolds under considération. Our first main resuit (Theorem 4) is that
c/?(-f, A, w), *C(zt>h,n) and JJ^h^n) are each in one to one correspondence
in a natural fashion with the quotient of the upper half plane by the modular

group, and that <£(— ,h,n) is in one to one correspondence with the quotient
of the upper half plane by a maximal parabolic unipotent) (mod 2) subgroup
of the modular group. The other main resuit (Theorem 5.2) is that ~Cz{h, n),
o£6(h,n) and J38(h,n) each has just one élément.

2. Preliminaries

2.1. Let B>/J+1 bean (n + l)-dimensionalreal vectorspace with a symmetric
bilinear form Q of signature (h — 's, (n — h + 1) + '*) »

and let 0h(n + 1)

dénote the orthogonal group of Q. An orthonormal basis of RJ+1 is an ordered
basis {vt,..., t>n+1} such that Q(viy vô) ô^ if i> A, — <5ti if i ^ h.
A skew basis of RjJ+1 is, if 2h ^ n + 1, an ordered basis

1) The author was supported by a National Science Foundation fellowship while preparing
this paper.
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where k n - h + 1, Q(f{, et) 2ôtj - 2Q (vif vt) and Q(fit /,)
Q(ei? c^) Q(/i, Vj,) Q(vp, ej) 0. A similar définition holds if

2 h ^ n -\- 1. There is a one to one correspondent between orthonormal
bases and skew bases which sends an orthonormal basis {v{} to

K+i - Vi,..., vh+k - vk\ !>w,..., vA; vm + t?x,..., vh+k + vk}

when 2h ^ n + 1 •

If -4 is a linear transformation of R£+1 and /8 is a basis of R^+1, then A a

will dénote the matrix of A relative to /S. J2 will dénote the matrix I

and, if p is even, Jv will dénote the matrix I I of order p. /willj
dénote the identity transformation, and Iq will dénote the identity matrix of
order q. Finally, if p is even, R(6)P will dénote the rotation matrix

cos (2nO) Ip + sin (2nd) Jp.

2. 2. Now suppose that 2 h > n and Je n + 1 — h Q (mod 4), and
choose a skew basis p of R£+1. Given an antisymmetric nonsingular le X k

flk 0 2d\
matrix d, wehave t(d) €0h(n + 1) definedby t(d)p I 0 Ih-k 0 j Now

\0 0 Ik I
suppose that dJk + Jkd 0; this requires le 0 (mod 4). We identify the

complex number field C with the matrices (alk + bJk) by a + ï/— 16 ~>

(a/fc + 6^fc)> and observe that ^d is an antisymmetric nonsingular matrix
for every 0 =£ u e C. Let e be one of the signs + or — or ±. Given u e C,

t£ * R, we define fi(^, e) to be the subgroup of 0h(n + 1) generated by t(d)
and st(ud).

Now suppose, in addition, that A is even, i.e., that h — k is even. For
every nonzero integer m, we hâve r(m) eOh(n + 1) defined by r(m)p

R(l/m)n+1. Given u € C, u t R, let L(^) be the additive lattice {1, u}
in C. If m =3 ,4,6 or 8, and if exp(47iK — l/m) L(u) L{u), then we
define Qm(u) to be the subgroup of 0h(n + 1) generated by r(m), £(d) and

t(ud).
In [1, §§ 9.3-9.4], it was stated but not proved that Q(u, e) and 2m{u)

are well defined, up to conjugacy in 0h(n + 1) • This will follow from §2.4.

2.3. S£ is the quadric Q(x, x) 1 in R£+1, together with the induced
structure as a pseudo-RiEMANNian manifold with metric of signature

ds*= - Zdx\+ S dxï.
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0h(n + 1) is the full group of isometries of SJJ, and acts transitively on the
points of S^. S^ is thus homogeneous, and it has constant sectional curvature
+ 1. We refer to [1, § 4] for détails.

We hâve proved [1, §§ 9.3-9.4] that Sjf/£(^,e) and SJ/£m(tt) inherit from
S£ the structure of homogeneous pseudo-RiEMANNian manifold of constant
curvature + 1

• The manifolds SJ/fl (u, e) form a family J3, where we iden-
tify isometric manifolds. The manifolds 8^/&m(u) form a family J3m9 again
identifying isometric manifolds. jC and JCm are the families of lattice space
forms.

To study the lattice space forms, we must know when éléments of the families

J3 and J3m are isometric. An élément of one family cannot be isometric
to an élément of another family, so we may study the families separately. As
0h(n + 1) is the full group of isometries of SjJ, it is easily seen that a manifold
SjJ/£(w, e) is isometric to S^/Q(ur, e') if and only if n nl, h h' and
£(u9e) is conjugate to Q(uf, ef) in Oh(n+1), and that SH2m(u) is
isometric to Sj!/flm(t0 if and only if n n', h h' and 2m(u) is conjugate to
2m(u') in 0*(n+l).

2.4. In order to study conjugacy of groups Q(u, e) and &m{u)9 we will
need

Lemma 2. 4. Let d and d' be antisymmetric nonsingular real h X h matrices
which anticommute with Jk. Then there is a real nonsingular h X k matrix gx

which commutes with Jk, and such that g1dtg1 — d'.
Proof. Let y {s1,..., sk} be an orthonormal basis of F B>o an(i ^ J

be given by Jy Jk. V carries the structure of a complex vectorspace of
dimension k/2 where J is scalar multiplication by V — 1 ; now

isa C-basisfor F. Wedefineareal-lineartransformation rj of F by rj(st)
(— l)*+1st. Now rj9 d and df each anticommutes with J; thus d^ and

d'r\ commute with /, i.e., drj and d'r\ are C-linear. Let Q' be the sym-
metric C-bilinear form on F defined by Qf(s2l+1, s2}+1) ôt}; it is easily
checkedthat Q'(x,drjy)+Q'(drjx^) ==0==Q'(x,drr}y)+Qf(d'rjx,y) foreve-

ry x,y€V; thus {drj)y, and {d'rj)yf are nonsingular antisymmetric complex
matrices. If foliows that there is a nonsingular complex matrix h^ of order Je/2

such that hiidr))^^ (drrj)y,. If h is defined by Ay/ hl9 then (rjhrj-1^, A1.

It follows that d' Ayd*Ay. Define g1 hy. Q.E.D.

It is clear that the choice of the original skew basis /? of R£+1 does not
effect the conjugacy class of £(u,e) or Qm(u) in 0^(^+1). The above
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lemma shows that the choice of d does not effect the conjugacy class. Thus the

groups Q(u,e) and Qm(u) are well defîned up to eonjugacy in 0h(n-{-1).

3. The Equivalence Theorem

3.1. Let H dénote the upper half plane, consisting of ail eomplex numbers
with positive imaginary part. The modular group is the group F consisting of
n 4. r 4.- / \ au + b „ (a b\ail transformations y : u -> y (u) ;—=- of H where J is an mte-

cu + d
h, \c d)

gral matrix of déterminant -f- 1
• We write y ± The mod 2 parabolic

modular group F' is the subgroup of F consisting of ail y i I such

(n
/•! jjji \C (JLJ

J L A (mod 2), i.e., such that c is even but a and d are
c dj \0 1/

odd. F' is maximal among the subgroups of F with ail éléments congruent
mod 2 to parabolic unipotent) transformations of H. F' has a subgroup
of index 2, the "modular group of level two" given by b 0 (mod 2), which is
well known.

Convention. Observe that Q(u, s) £(— u, s) and Qm(u) fim(— u).
As u has nonzero imaginary part, we may replace it by — u if necessary.
We will now always assume u cH when we speak of Q(u,e) or 2m{u).

The Equivalence Theorem is:

Theorem 3, 1, Suppose that 2h > n and k — n + 1 — h 0 (mod 4), and
let u,uf cH. TAer^ 2,(u9e) and Q(u',er) areconjugatesubgroups of 0h(n+ 1),

if and only if (1) e e;, (2) £/&ere i5 a^ élément y € F such that y(u) ur,
araZ (3) y e J1' i/ e — Suppose further that h 0 (mod 2), ^Aa^ m 3,4, 6

or 8, and that exp(4yr]/— Ijm) L(u) L(u) and exp(47rV/— 1/m) L(u')
L(u') where L(v) dénotes the additive lattice {l,v} in C. TAe^ £m(^) amï

2m(uf) are conjugate subgroups of 0h{n -\- 1), if and only if y(u) u1 for
some y e F.

The rest of § 3 is devoted to the proof of this theorem.

3. 2. Let u, uf eH, let L(u) {1, u} and L(u') {1, u1} be the corre-
sponding additive lattices in C, and suppose that y(u) u' where y

± )€ F. Let oc (eu + p)'1, nonzero élément of C. Then
\c p)

L(uf) {1, u'} (l, au + b\
oc {eu + p, au + b} ocL(u)

Now a is represented by slk + tJk under 1 ->/fc and k — 1 -> Jfc, and,
as d is an antisymmetric nonsingular k X k real matrix which anticommutes
with Jk, the same is true for d' ad. By Lemma 2.4, there is a nonsingular
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realmatrix gx ofdegree k, which commutes with Jk, suchthat g1dtg1 <xd.

(9x0 0 \
Let geOh(n+l), ^=|0 /*_* 0 1. Then gt(wd)g~1 t(ocwd) t(wocd)

\0 0 Vf1/
for every w e C. This proves that g£(u, +) g-1 Q(ur, + g£,(u, ±) g'1

£(*', ±), and, if * 0 (mod 2), g&^u)^ £«(*').
Now suppose that y € F1. As a and p are odd, and c is even, it follows

that, given integers s and v, v is odd if and only if vp — se is odd.

Now u' oc (au + b) and 1 oc (eu + p) ; thus uoe pw' — b and
# — eu' + a. Given integers 5 and v, we hâve

g-t(d)8(- t(ud)Y• gr-1 (_ 1)

t((vp - se)u'd) t(d)a*~vb(- t(ufd))vp-8e

because v vp — se (mod 2). Thus g2(u, — g~x fi^', —

This proves the sufficiency of our conjugacy conditions.

3.3. Let 2(u) be a subgroup 2(u, e) or 2m(u) of 0h(n + 1), and let
2(ur) be another subgroup 2(ur, e') or fim(^') of the same type. Suppose
that there exists an élément g € 0h(n + 1) such that gQ^g-1 2(ur)

The various possibilities for 2(u} e) are characterized as follows. Every
eigenvalue of every élément of 2(u, +) is equal to +1. 2(u, ±) contains
— /. fl(w, — has éléments with eigenvalues equal to — 1, but it does not
contain — I. Thus g2(u, e) g*1 — 2(u', s1) implies s ef. Again looking
at eigenvalues, we see that g2(u, +) g-1 2(uf, +), whether £(w) is

fi (%, e) or 2m (u).
We will prove that u! y(u) for some y e F, as a conséquence of

For gr must préserve the nullspace of t(d) — I. In our skew basis /? of RJ+1,

0 04 &> I
>

where g eOh(n + 1) imphes ^6 Vï1-
0 0 gj

Thus ^ c C gives gt(wd) g*1 «(^ ivdtg1), where C is identified with the
R-linear combinations of Ik and Jk. As u and /fc span C over R, it
follows that gxj ± Jgx and ^d*^ ad for 0 ^ a € C. We may replace

0i by 0i * diag {1, — 1 ;... ; 1, — 1} if necessary, and assume gxj Jgx.
Thus g - t(d)9t(ud)vg~1 t(ocd)8t(ocud)v for any integers s and v. It follows
that the lattices L(u) {l,u} and L(uf) {1,^'} in C are related by
L(u') ocL(u). i. e., that {1, u'} {oc, ocu}. As u, u' eH, L(u) and
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L{uf) carry the same orientation; thus u' aocu + boc and 1 cocu + poc

where I j is an intégral matrix of déterminant + 1- Now define

(a b\ „ u' aocu + boc au + b
y ± u, and observe that u -—- ¦ ¦— y m).

\c VI caw + pa cw + p /v '
Except for the groups £(^, — and £,(u', — this proves the necessity of
our eonjugacy conditions.

Suppose that gQ (u, — g-1 £ {ur, — We must prove y e F1.

g •

(- l)v • «((a« - v6)cO • t((vp - sc)u'd)

as at the end of § 3.2. Thus (- l)v (- l)^-«c for any integers « and «;.

It follows that p is odd and c is even. Thus l ap — bc a (mod 2)

proves that a is odd. Now (a i) (mod 2), proving y € F'. This

complètes the proof of the necessity of the eonjugacy conditions.
Theorem 3.1 is now proved.

3.4. In [1, § 9.3], I made the error of stating that Q(uf e) is conjugate to
2 (u', s), if and only if the lattices L (u) and L (u') are equal. From the proof
of Theorem 3.1, it is clear that this condition is too strong. If e + or e ±,
then the correct condition is that L(u') ocL(u) where 0 ^ oc e C.

A similar error [1, § 9.4] was made with respect to the eonjugacy of &m(u)
and £m(uf). Hère the correct condition on the lattices is L{ur) ocL(u)
where 0 ^ oc e C.

Remark. The condition of Theorem 3.1 is not surprising, for the condition
that twolattices Lx and L2 in C arerelatedby L^ — ocL^Q y^oceC, is clearly
the same as the condition that an intégral unimodular fractional linear
transformation sends the ratio of a pair of generators of Lx to the ratio of a pair of
generators of L2.

4. Parameterization of JJ and jC±

<£ is a disjoint union <£{+) U -£( — U -£(±) where

U U J3{e, h, U + h - 1)

and aG(e,h,ri) consists of ail manifolds $H£,{u, e) in J3. Similarly, jCm
00 00

U U «/?w(2s, 4£ + 2« — 1) where </?TO(A, ^) consists of ail manifolds

S£/£m(w) in ^?m. We will study the structure of J3(e,h,n) and JJ^h.n).
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We first look at the easy cases. Let u e H upper halfplane. For appropriate
h and n, and any e, 2(u, e) cOh(n + 1) is defined. The lattice L(u) is

preserved by multiplication by exp (4tz ]/— 1/4) — 1, so, for appropriate
h and n, Q^(u) aOh(n -\- 1) is defined.

Theorem 3.1 now yields :

Theorem 4. Let M H//1, identification space of the upper half plane under
the modular group; let M' H/F', identification space under the mod 2 parabolie
modular group. Then each J3(+ ,h,n), each *G(±, h, n) and each J?é(h, n)
is parameterized by M, and each J3{ — ,h,n) is parameterized by M'. More
precisely, for appropriate h and n, the maps

and u-+8%l£(u, — induce one to one maps of M onto JC{-\- ,h,n), M onto

~C(±,h,n), M onto J7A(h,n), and M' onto <£(— ,h,n), respectively.
Given u, u' e H, we can find an analytic arc (such as the straight Une

segment) in H from u to u'. This results in a real analytic déformation of
&(e,u) (or £4(w)) over to 2(e, u') (or £4(w')). It follows that any two
éléments of J3(e,h,n) (or of JC£h, n)) are real-analytically homeomorphic.
This is notable because, by Theorem 4, J3(e, h, n) and c/74(A, n) carry the
structure of a real analytic F-manifold in the sensé of Bailey. On the other
hand, we cannot assert that two distinct éléments of jC(s} h,n) or of aC^(h,n)
be affinely équivalent, for, utilizing irreducibility of the holonomy group and
the fact that the manifolds hâve the same constant curvature, such an affine
équivalence would be seen to be an isometry.

5. XJniqueness in jCz </76 and J3%

5.1. We will prove that each JJZ(h,n), each J3%(h,n), and each ~C8(h,n),
has just one élément. This will require a lemma on lattices in C. The lemma also

gives an explanation as to why m is not arbitrary in the définitions of the
groups £m(u).

Let L be a discrète additive lattice in C, and suppose that L xL for
some non-real unimodular complex number x. As L is discrète, we may
choose a € L with the property that |b\ ^ |a\ > 0 for every nonzero b € L;
wethendefine Lf to be the sublattice of L generatedby a and xa. Suppose

that x cos (t) + V^ï sin (t), t real. Then

\ra + sxa\2 |a|2 |r2 + 2rs cos(*) + s2|

for any r, s eR.
Suppose that we hâve b e L, b i L1. b ra + sxa for some real r and s
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because a and xa are linearly independent over R, conséquence of x$B>.
Adding an élément of L' to b, we may assume that |r|^|-,|s|^|, and
b ^0. Thus 0< |6|2^ |a|2|| + Jcos(£)| < |a|2.

Now \a\ ^ \a + xa\ implies eos(£) ^ — \. As xnL xn~xL L,
the same must be true of every power of x. Thus cos (nt) ^ — \ for every
integer n > 0. It follows that

x exp(2^1/- 1/3) or a? exp(± 2nV — 1/4),

whence cos(^) — | or cos(^) 0. In either case, we hâve 0 < |6|2 < |a|2,
contradicting b $ L'. We hâve proved :

Lemma 5.1. Let L bea discrète additive lattice in C ; suppose that

x e C x iB>,\x\ l,
and xL L. Then L {a, xa}, where \a\ ^ \b\ for every nonzero beL,
and x exp (i 2tzV— 1/3) or x ± K— 1. /w o^Aer words, there is a
nonzero complex number a such that either

L a{l, exp {2n l/Tl/3)} or i a{l
Remark. Lemma 5.1 provides an alternative treatment of the last part of

[l,§10.4].

5.2. Theorem 3.1, the remark at the end of § 3.4, and Lemma 5.1, combine
to give a proof of :

Theorem 5. 2. // m 3, 6 or 8, then each JOm{h, n) has just one élément.

In other words, for appropriate h and n, wehave:

1. Every SJ/flsW is isometric to S^/fi3 (exp (2n
2. Every S£/fl6(^) is isometric to

3. Every S^/£8(^) is isometric to

5.3. Let Jf5* and N\ be connected homogeneous pseudo-RiEMAKNian
manifolds of constant curvature + 1 with isomorphic fondamental groups.
^h(Ml) ^ G ^ n^ND for some abstract group G. Let Z dénote the infinité
cyclic group.

If G is finite, then [1, Theorem 12] Ml is isometric to N%. If G is an
extension of Z by an élément of order 4, then [1, Theorem 12] M\ is
isometric to N^. If G is an extension of Z X Z by an élément of order m ^ 1,
2 or 4, then ([1, Theorem 12] and Theorem 5.2) m 3, 6 or 8 and Ml is

isometric to JV^. If Ml is not isometric to NI, then ([1, Theorem 12] and
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Theorems 4 and 5.2) either G is an extension of Z by an élément of order
1 or 2, or G is an extension of Z X Z by an élément of order 1, 2 or 4. This
covers ail possible G.

The Institute for Advanced Study
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