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Locally symmetric homogeneous spaces
by Joseph A. Wolf1), Princeton (N. J.)

1. Introduction and summary
We will give a necessary and sufficient condition for a locally symmetrio

RiEMANïrian manifold to be globally homogeneous, extending the criterion
([20, Th. 6], [21, Th. 4]) for manifolds of constant curvature. This involves a
study of the relations between symmetry, homogeneity, and a certain
condition on the fundamental group.

Let F be a properly discontinuous group of isometries acting freely on a
connected simply connected RiEMANNian symmetric manifold M, and con-
sider the conditions :

(1) M/Fis a RiEMANNian symmetric manifold.
(2) MjF is a RiEMANNian homogeneous manifold.
(3) F is a group of Clifford translations (isometries of constant displa-

cement) of M.
Our main resuit (Theorem 6.1) is that (2) is équivalent to (3). We also prove
(Theorem 6.2) that (2) implies (1) if, in É. Cartan's décomposition of M as
a product of Euclidean space and some irreducible symmetric spaces, none of
the compact irreducible factors is a Lie group, an odd dimensional sphère, a complex
projective space of odd complex dimension > 1, SU(2n) /Sp(w) with n^2,
or S0(4n + 2)/\J(2n + 1) with n^l. It is known [20, Th.5] that (2) need
not imply (1) if an irreducible factor of M is an odd dimensional sphère; the
same is seen if a factor is a compact Lie group H by taking F to be the left
translations by éléments of a finite non-central subgroup of H\ examples
are given in § 5.5 to show that the other restrictions are necessary. Thèse
theorems are complemented by the resuit (Corollary 4.5.2 and [20, Th. 4]) that
if M is a Lie group in 2-sided-invariant metric, ihen (2) is équivalent to F being
conjugate, in the full group of isometries of M, to the left translations by the

éléments of a discrète subgroup B of M, and (Theorem 4.6.3) (1) is équivalent
to B being in the center of M. An interesting conséquence of thèse theorems
and their proof is (Theorem 6.4) that the fundamental group of a RiEMANNian

symmetric space is abelian.

It is well known that (1) implies (2), and easily proved [20, Th. 2] that (2)

implies (3). Thus our results are obtained by studying the Clifford
translations of M. In § 3, that study is reduced to the case where M is Euclidean
or irreducible. The Euclidean case is known [20, Th. 4], and results of J.Tits

1) This work was supported by a National Science Foundation fellowship. The author's présent
address is : Department of Mathematics, University of California, Berkeley, 4, Califomia.
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allow us to dispose of the noncompact irreducible case. Then we need only
détermine the groups of Clifford translations of compact Lie groups (this is
done in § 4) and compact symmetric spaces with simple groups of isometries
(this is known for sphères [21], and is done in § 5 for the other cases). It turns
out that the most difficult case is when M is an odd dimensional sphère; this
was treated in our work [21] on Vincent's Conjecture.

In § 2 we establish définitions and notation, review some material on co-
vering manifolds and symmetric spaces, and give a short exposition of
É. Cartan's method of determining the full group of isometries of a symmetric
space. In § 6 we combine results from §§ 3-5 and obtain our main theorems.

I wish to thank Professors J. Tits, H. Samelsost and C.T.C.WalIi for
helpful conversations. In particular, J.Tits showed me the results mentioned
hère in §§ 3.2.1-3.2.4, H. Samelson improved my proof of Theorem 6.4,
and C.T.C.Wall provided the statement and proof of Lemma 5.5.10.

I am especially indebted to Professor H. Freudenthal for showing me that
diag. {a7; a,..., a} is a Clifford translation ofSU (2m) /Sp (m), and for confirm-
ing some of the results in § 5 by discovering an alternative method (to appear
in Mathematische Annalen) for finding the Clifford translations of certain
compact RiEMANNian symmetric spaces.

2. Preliminaries on groups and symmetric spaces

2.1. Définitions and notation
2.1.1. We will assume as known : 1) the définition of a RiEMANNian manifold

and elementary facts about the RiEMANNian metric, geodesics, eompleteness,
isometries and the exponential map, (2) the notion of a Lie group and Lie
algebra, and (3) the idea of a covering space.

Let M be a RiEMANNian manifold. The group of ail isometries of M onto
itself forms a Lie group ï(itf), the full group of isometries of M, whose

identity component Iq(^) is called the connectée group of isometries of M.
M is homogeneous if I (M) is transitive on the points of M. Let p e M. An
élément sp€l(M) of order 2 with p as isolated fixed point is called the
(global) symmetry of M at p ; if M is cormected and sp exists, then sp is

easily seen unique because it induces — /(/ identity) on the tangentspace
Mv. M is (globally) symmetric if it has a symmetry at every point. If M is

symmetric, then every component of M is homogeneous, and, if M is
irreducible (see §2.3.2), 1<>(M) is the identity component of the subgroup of
I(Jf) generated by the symmetries. M is complète if every component is

homogeneous.

2.1,2. The géodésie symmetry to M at p is the map
Expp (X)-> Expp (- X) (X€M9 with Exp,, (X), Expp (- X) defined)
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M is locally symmetric if, given qc M, there is a neighborhood U of q such
that the géodésie symmetry to M at q induces an isometry of U onto
itself. If M is symmetric then it is locally symmetric, and M is locally
symmetric if and only if the curvature tensor is invariant under parallel translation.

2.1.3. A Clifford translation of a metric space X is an isometry / : X -> X
such that the distance g(x, f (x)) is the same for every x c X; thus a Clifford
translation is an isometry of constant displacement. Note that a Clifford
translation is the identity if it has a fixed point.

If an isometry g : X -> X centralizes a transitive group H of isometries of
X, then g is a Clifford translation of X. For, given x and ^ in I, we
choose h e H with hx y, and hâve q(x, gx) qQix, hgx) q(hx, ghx)

2.1.4. The compact classical groups are the unitary group TJ{n) in n
complex variables, the spécial unitary group SU(w) consisting of éléments of
déterminant 1 in V(n), the orthogonal group 0(n) in n real variables, the
spécial orthogonal group SO (n) consisting of éléments of déterminant 1 in
0(n), and the symplectic group Sp(n) in n quaternion variables, which is
the quaternionic analogue of JJ(n). SU(w) is of type An_ly S0(2w -f 1) of
type Bni Sp(w) oftype Cn, and SO (2 n) oftype Dn in the Cartan-Killing
classification. We will use boldface to dénote the compact connected simply
comiected group of a given Cartan-Killing type. Thus SU(r& + 1) An5

Sp(w,) Cn, and E6 is the compact connected simply connected group of
type E6.

2.2. RiEMANNian coverings

A RiEMANNian covering is a covering n : M -» N of connected RiEMANNian
manifolds, where n is a local isometry. The group F of deck transformations
of the covering (homeomorphisms y : M -> M with n • y n) is then a
subgroup of \(M). If N is homogeneous, then the centralizer of F in 1q{M)
is transitive on the points of M, and every y e F is a Clifford translation of
M [20]; if the covering is normal and the centralizer of F in I(Jf)is transitive
on (the points of) M, then that centralizer induces a transitive group of
isometries of N, so N is homogeneous. If N is symmetric, then M is
symmetric and every symmetry of M normalizes F, whence products of symmetries
centralize F, for every symmetry of N lifts to a zr-fibre preserving symmetry
of M ; if If is symmetric, the covering is normal and products of symmetries
centralize F, then N is symmetric. If M is symmetric, then N is complète
and locally symmetric. If N is complète and locally symmetric and M is

simply connected, then M is symmetric [3].
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2.3. É.Cartw's classification of symmetric spaces

2.3.1. Cartan décomposition. Let M be a connected simply connectée!
RiEMANNian symmetric manifold, peM, G ïo(M)y K the isotropy sub-

group of G at p, and a the involutive automorphism of the Lie algebra ©
of G induced from conjugation of I(M) by the symmetry s^. This gives the
Cartan décomposition © il -f ^3 where *)3 is the eigenspace of — 1 for a
and 51, the Lie algebra of K, is the eigenspace of + 1 ; we hâve the well-
known [51, 51] c R, [R, <$] c <$ and [*p, $] c 51, which is just another

way of expressing the Cartan décomposition and specifying a.
The adjoint action of K on © induces an action of K on ^}; K also acts

on the tangentspace M9 as linear isotropy subgroup of G, and the
identification gK ~> g (p) of the coset space GjK with M gives a K-equivariant
identification of ^} with Mp. Thus the RiEMANNian metric on M can be
viewed as an ^4d(i£)-invariant positive définitive bilinear form on ^3.

2.3.2. Product structure. M is Euclidean if [^J5, ^] 0; then M is
isometric to a Etjclidean space. M is irreducible if i£ acts irreducibly on ^;
then [^3, ^S] 5t so © is semisimple. In any case, M is isometric to a
product Mo x .Mi X X -Jft of RiEMANNian symmetric manifolds, where
Mo is Eijclidean and the Mj(j > 0) are irreducible. This décomposition is
due to É. Cartan [8, § 1], will be called Cartan's symmetric-space décomposition

of M, and is a spécial case of G. de Rahm's décomposition [17] of a

complète connected simply connected RiEMANNian manifold under the holo-

nomy group. 1q(M) Iq(M0) x X I0(Mt), and I(M) is generated by
I (M0) x X I (Mt) and permutations of isometric factors Mj.

2.3.3. Duality. M is determined by (©, a, B) where B is the positive
definite K-mvariant bilinear form on ^3 determined by the inner product on

M9. ©* 5l+ ^3*, ^3* ]/— 1 ^|3, is a real subalgebra of the complexi-
fication of ©; a induces an involutive automorphism or* of ©*;
jg* (}/— i x, ]/— 1 Y) B(X, Y) is a positive definite K-mvariant form on
^3*. The dual symmetric space to M is the connected simply connected
RiEMANNian manifold Jf* determined by (©*, or*,

2.3.4. Types oî irreducible spaces. Now assume M irreducible. There are 4

possibilités :

1. © ©'©©' with & compact simple and a(X, Y) Y, X).
2. © is compact and simple.
3. © is complex simple and a is conjugation with respect to a compact

real form 51.
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4. © is noncompact simple with simple complexification, and Si is a maximal

compact subalgebra.

Under the duality, type (1) corresponds to type (3), and type (2) corresponds
to type (4). By irreducibility of K on S$, the metric is essentially induced by
the Killing form of ©.

2.3.5. Classification oî irreducible spaces. In view of thej duality, one need

only list the irreducible spaces of types (1) and (2), Le., the compact irreducible
M. The spaces of type (1) are just the compact simple Lie groups, and will
be described more fully in §4.1. É. Cartan has treated them in détail f 10].
The spaces of type (2) were first classified by É. Cartan by considering possible
holonomy groups [8], then by using the duality and his classification [7]
of the real simple Lie groups [9], and finally by using involutions of Lie
algebras [12]. The classification is readily accessible from F. Gantmacher's
account [16] of involutions of Lie algebras, and Cartan's list [9, §§ 58-68] is
well known.

2.4. The Ml group of isometries of a symmetric space

2.4.1. Let if be a connected simply connected irreducible RiEMANNian

symmetric manifold. É. Cartan has given a technique for calculating 1(31)
from (we retain the notation of § 2.3) G \(M) and an isotropy subgroup
K of G; see [11] for the gênerai theory and the cases where M is of type (2)

or (4), and see [10] and § 4.1.2 if M is of type (3) or (1). Nevertheless, this
material is somewhat inaccessible, so we will give a short exposition for the
convenience of the reader.

2.4.2. Choose a Cartan décomposition © R + ^3. K acts irreducibly
on *J5, for M was assumed irreducible, whence Schur's Lemma says that the
centralizer F of Ad (K)\^ in the algebra of linear endomorphisms of ^ is
a real division algebra. Thus F is one of the three fields R> (real), C (complex)
or H (quaternion). Actually, H is excluded:

2.4.3. Lemma. (1) F R if and only if K is semisimple. (2) F ^ H.
(3) Thèse are équivalent: (a) K has a l-dimensional center, (b) K is not semi-

simple, (c) M has a G-invariant Kâhler structure (and is thus a so called

"Hermitian symmetric space") which induces the original RiEMANNian structure,
and (A) F C.

Proof. The results are essentially due to Cartan [11, 13]; part of the treat-
ment is taken from Cartan [11] and Borel [3].
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We identify K with Ad(K)\^, and let Z dénote the center of K. As
K is compact, Z is a subgroup of the multiplicative group F1 of unimodular
éléments of F. Thus F R or H implies that Z is finite, whence K is

semisimple.
Now suppose that F has a complex subfield, i.e., that F' has an élément J

with J2 — /. We define real subspaces of the complexifîed algebra
©c by 33 (I + V^ÏJ)S$ and » (/- V^T J) gj, whence fi

Rc + 93 gives £ 51e + 93. One easily checks that [&, $] c Ç implies

[5tc,_93] c 93 and [51er, »]_c », whence [93, 93] c [$* ÇC) c 51er c fi,
[S, % c [$<?, <P<?] c &c c fi, and [5*<s 51e] c R^ 2 - "fi, showjhat fi
and fi are complex conjugate real subalgebras of (5e with £ -f fi ©c
and fl ^ fi 51e. This is precisely A. Frolicher's criterion [14, § 20] that
J define a G-invariant complex structure on M OjK. This G-invariant
complex structure and our original 6?-invariant RiEMANNian metric give us

a 6?-invariant Hebmitian metric on M which induces the RiEMANNian
metric. K is the holonomy group of M because M is connected, simply
connected, and irreducible RiEMANisrian symmetric; thus the complex structure
is invariant under parallel translation, so the Hermitiaet metric is Kâhler.
This implies (replace M by its dual if M is noncompact, and thus assume
M compact) H2 (If; R) ^0 because of the fondamental 2-formof the Kâhler
metric, whence n2(M) is infinité. The homotopy séquence

0 tz2(G) -> 7t2{M) -> 7tx{K) -> 7tx{Q) finite

now shows that K is not semisimple, so Z is infinité; thus F' is infinité and
so F C. This shows the équivalence of the conditions of (3) and proves
F ^H. (1) follows. Q.E.D.

2.4.4. Let K1 be the isotropy subgroup of I(M) at the point at which K
is the isotropy subgroup of G I0(M); our conditions on M show that K
is the identity component of Kf, and I(M) G • Kf. Thus, in order to find
l(M) from 6? and Z, it suffices to find K'.

We identify Kf with Ad(K') | ^, and observe that the symmetry seK' is
identified with the endomorphism — / of $P. We know that s e K if and

onlyif K has a central élément of order 2, for s centralizes K, andtheirre-
ducibility shows that s is the only involutive élément of K' which centralizes
K. Let K" dénote the subgroup K ^ s • K of K' ; to find K', it suffices
to find {lcx 1, &2, km} c K1 such that K1 is the disjoint union of the
kj • K"\ we then define G" G ^ s • G and hâve 1(M) as the disjoint union
of the hi • G". Cartan's main idea for finding the lcj is :
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2.4.5. Lemma. Each 1c3(j>l) induces an outer automorphism of K which
is induced by an automorphism of G. For distinct kj(j ^ 1), thèse automorphism

of K do not differ by an inner automorphism of K.

Remark. This gives a sharp bound on the number of components of G.

Proof. Note that, retaining the notation of § 2.4.2, Fr c K". For if F R,
then F' {/, - /} {1, s}. If F C, then Lemma 2.4.3 shows that the
center of K1 contains a circle, whence F' C c K K". Lemma 2.4.3
shows F to be R or C. Two éléments of K1 are identical if they give the
same linear transformation of S$, for two isometries of a connected manifold
are identical if they hâve the same tangent map at a point. Thus k e K' lies
in K" if and only if it induces an inner automorphism of K. The Lemma
now follows. Q.E.D.

2.4.6. Cartan's use of this Lemma to détermine \{M) [11] does not always
give results which are sufficiently explicit for our purposes. Thus we will
occasionally hâve to repeat some of his déterminations in order to obtain the

kj explicitly as isometries of M. This will be done in § 5, as it is needed.

3. Réduction to the case oî a compact irreducible symmetrie space

Let F be the group of deck transformations of a RiEMANïrian covering
n\ M -> N where M is complète and simply connected. We consider the de
Rahm décomposition M Mo x M1 x X Mt, where Mo is Euclidean
and Mj (j > 0) is non-EucLiDEAN and irreducible, and recall that I (M) is

generated by I (Mo) x X I (Mt) and permutations of isometric Mi. We
wish to prove that F is, under certain conditions on JV, a subgroup of
I(M0) x X I(Mt), and thus reduce our considérations to the case where
M is Euclidean or irreducible; this is done in § 3.1. In § 3.2, we consider the
case where M is noncompact and irreducible. The final réduction is made
in § 3.3.

3.1. Splitting o! Clifford translations

3.1.1. Let / be a self-homeomorphism of a topological product space

X X1 x x Xn. (1)

We say that / préserves the product structure (1) if we hâve a permutation i of
{1,..., n} and homeomorphisms fi : X{. -> Xi such that f(x1,..., xn}

(fi(xi}),..., fn(xin)) We say that / décomposes under (1) if it préserves
the product structure (1) and the permutation i is trivial.
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3.1.2. Theorem. Let (X, q) (Xl9 ^) x X {Xn, gn) be a metric product
of metric spaces where each Xô has at least two points, and let f be a Clifford
translation of (X,q) which préserves the product structure (l).Then f décomposes
into fxx X fn under (1) where f3 is a Glifford translation of (X3, q3).

Proof. /(a?!, xn) (/xte,),..., fn(x%n)) We need only show i 1,
for then / décomposes into fx x X fn under (1), and we see that f3 is a

Clifford translation of (X5, qs) by holding ail xk (k ^ j) fixed and varying
xi over Xj.

The Theorem is trivial if n 1 ; we proceed by induction on n. Writing i
as a product of disjoint cycles, we obtain a décomposition

X Y1 X X Ys (2)

such that each Y} is a product of some of the Xk and / décomposes under
(2). So by our induction hypothesis we need only consider the case

Now suppose i (l, 2,..., n). Each f} is an isometry, so we may identify
(X3+1, q3+1) and (Xjy q3) under f3, 1 <j<n, and assume that f(x1.. ,xn)

(/i(«J» *i> • • • xn-i). As / is Clifford,
q(x9 f(x)Y ^(0^, ACxJ)2 + Ql(x2, xxf + + Qi(xn, xn_xf

is some constant c, for xel. The choice x (xXi x1,..., xx) would give us

> xif + • • • + ^i(^i, ^i)2,

whence c= Q1(x1, /i(^i))2. As X, lias at least two points, n>2 would
give the possibility of x2 ^ xx xn, whence

thus n < 2. But n 2 and a; (a?!, f^x^) would give

whence w 1. Q.E.D.

3.1.3. Corollary. ie^ Jf MQ x Jfx X x Mt be the de Bahm de-

composition of a complète connected simply connected RiEMANNian manifold M,
and let y be a Clifford translation of M. Then y y0 x yx X X yt
where yi is a Clifford translation of M5.

For y is an isometry of M, so it préserves the product structure of the
de Rahm décomposition.
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3.1.4. Corollary. Let M Mo x Mx x X Mt be Cartan's symmetric-
space décomposition of a connectée!, simply connectée RiEMANNÎan symmetric
manifold M, and let y bea Clifford translation of M. Then

7 7o X yx X X yt

where y3 is a Clifford translation of M}.
For M is complète, and Cartan's symmetric-space décomposition of M

coïncides with the de Rham décomposition of M.

3.2. Clifford translations oî irredueible noncompact symmetric spaces

It is known [20, Th. 3] that a Clifford translation of hyperbolic space is
necessarily trivial,because distinct geodesics diverge. We will describe J. Tits'
extension of that resuit to strictly non-EucLiDEAisr (no Euclidean factor)
strictly noncompact (no compact factor) RiEMANNian symmetric spaces.

3.2.1. A bounded isometry f : M-> M of a metric space (M, g) is an iso-

metry / such that the displacement fonction df(x) — q(x, f{x)) is bounded
on M. A bounded automorphism oc : G ~> G of a topological group G is an
automorphism oc such that G has a compact subset K with ot{g)*g~l € K
for every g e G.

3.2.2. Lemma (J. ïits). Let f be an isometry of a connected RiEMANNian

homogeneous manifold M, and let oc be the induced automorphism of Io(-M^).

Then f is a bounded isometry of M if and only if oc is a bounded automorphism
of ÏO(M).

3.2.3. Lemma (J. Tits). Let G be a connected semisimple Lie group without

compact factor2), and let oc be a bounded automorphism of G. Then oc is the

identity.

3.2.4. Theorem (J. Tits). Let M be a connected RiEMANNian homogeneous

manifold such that 1O(M) is a semisimple group without compact factor. Then
Io (M) centralizes every bounded isometry of M.

3.2.5. Corollary, Let M be a connected simply connected RiEMANNian
symmetric manifold, product of irredueible noncompact non-EucLWEAN symmetric

spaces. Let F be a group of Clifford translations of M. Then F {!}.
Proof. A Clifford translation of M is a bounded isometry, and the assump-

tions on M imply that ÏO(M) is a centerless semisimple Lie group without
compact factor; it foliows from Theorem 3.2.4 that F^ Iq(M) {1}. Now a

Clifford translation ^ 1 has no fixed point, and É. Cartan's famous

2) The universal covering group of G is a product of noncompact simple Lie groupa.
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argument [12, §16] shows that an isometry of M of finite order must hâve a
fixed point; it foliows that every élément ^ 1 of f has infinité order. But
JV Io(Jf) {1} and 1(M) has only finitely many components; thus F= {1}.

Q.E.D.
3.2.6. Corollary. Let M be a connected simply connected RiEMANNian homo-

geneous manifold such that Iq{M) is a semisimple group wiihout compact factor,
and let F be ihe group of deck transformations of a RiEMANNian covering
n : M -> N. Then N is RiEMANNian homogeneous if and only if F is a group
of Clifford translations of M.

As n is a normal covering, this foliows directly from Theorem 3.2.4 and
from [20, Th. 1 and 2].

3.3. The final réduction

Theorem. Let n: M -> N be a RiEMANNian covering where M is a connected

simply connected RiEMANNian symmetric manifold, let F be ihe group of deck

transformations of ihe covering, and let M Mo x Mt x X Mt be Cartan's
symmetric-space décomposition of M. Suppose that F is a group of Clifford
translations of M, so that (Cor. 3.1.4) every yeF is of ihe form
7o X 7\ X • • • X y* where yj is a Clifford translation of Mi, let F} be

ihe subgroup {y3:y€F} of 1(M,)9 and let G} be ihe identity component of
ihe centralizer of Ft in \{M3). Then N is homogeneous if and only if G3- is
transitive on M}- whenever Mj is compact, and N is symmetric if and only if
Oi 1O(M}) whenever M$ is compact,

Proof. Let O be the identity component ofthe centralizer of F in I(M);
G GoxGxx xGt.

Now Fo is a group of Cliffobd translations of the Eucliedan space M0, so

Fo is a group of ordinary translations of Mo [20, Th. 4]; thus Go contains the
full group of translations of Mo. Also, Gi \[M^ if j > 0 and Mi is

noneompaet, by Theorem 3.2.4 or by Corollary 3.2.5. Thus G is transitive
on M if and only if Ot is transitive on M$ for each compact Mg. As N is
homogeneous if and only if G is transitive on M [20. Th. 1], the first part of
the Theorem is proven.

Let F1 be the subgroup of l(M) generated by the Fjy and let M'
M/F'. If Gj lo(M3) whenever M^ is compact, then our remarks above

on G} for M$ noneompaet show that every symmetry of M normalizes
F'; thus M' is symmetric, whence its covering manifold N MjF is
symmetric. Conversely, if N is symmetric, then evey symmetry of M normalizes
jT, for every symmetry of N lifts to a symmetry of M ; it follows that every
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symmetry of M3- normalizes F§. The symmetries of Mj form a connected
subset of I(-Mj), that set being ail gsg-1 with g €1^(31j) where s is some
fîxed symmetry of M} ; it foliows that jT, is eentralized by the subgroup of
I(Mj) generated by ail products oftwo symmetries of Mt\ this implies G}

J0(M3) for ?>0, so G§ Io(M}.) whenever Mi is compact. Q.E.D.

4. Clifford translations oî group spaces

4.1. Group spaces as symmetric spaces

4.1.1. A 2-sided-invariant metric on a compact Lie group G is a RiEMANNian
metric on the underlying manifold of G such that the group T(G) of ail
transformations (h, h) : g-^hgk'1 of G for h, k e 6? is a group of isometries of
G, Le., such that left translations and right translations are isometries. Given
a 2-sided-invariant metric on 6?, the map s:g-+g-x is an isometry; thus G
is a RiEMANisrian symmetric space, the symmetry at h e G being given by
gr-> hg~1hi and s being the symmetry at 1 e G.

4.1.2. For simplicity, we will now assume G to be connected. Then Io(6?)

T(Cr). If G is semisimple, then 1(6?) is generated by T(6?), those products
actually defined on G of symmetries at the identity to the simple factors of
G, and the outer automorphisms of G; in any case, Ï(G) is contained in the

group generated by T (G), those products actually defined on G of symmetries
at the identity to the simple factors and the connected center of G, and the
outer automorphisms of G. Neither 1(6?) nor the Levi-Civita connection on
G dépend on the choice of 2-sided-invariant metric. The geodesics of G are
the left and right translates of the 1-parameter subgroups.

4.1.3. If G is simply connected (hence semisimple), then Cartan's sym-
metric-space décomposition of G is just the décomposition of G into a

product of simple Lie groups. In any case, we identify the Lie algebra © with
the tangentspace at 1 eG, and observe the one-to-one correspondence be-
tween 2-sided-invariant metrics on G and ^W(6?)-invariant positive definite
bilinear forms on ©. Decomposing © into a sum % ® ©x © © ©f of the
center % and semisimple ideals ©i5 we note that the Jld((?)-invariant positive

definite bilinear forms on © are just the forms Bo © Bx © © Bt where
Bo is a positive definite bilinear form on 21 and Bj(j > 0) is a négative real
multiple of the Killing form on ©,..

For a detailed analysis of thèse symmetric spaces, we refer to É. Cartan's
memoir [10]. In the sequel, the 2-sided-invariant metric on G will not be

mentioned explicitly.
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4.2. Clifford translations in T((?)

4.2.1. Lemma. Let {u, v) eT(6?) be a Clifford translation of G. Then u
commutes with every conjugate of v.

Proof. Let g be the distance function on G ; given h e G, we hâve

@(1, uv*1) g(h, uhv'1) g(l, u • hv-lh~x)

Thus the distance from any conjugate of u to any conjugate of v is the
constant c g(l, uv~x) g(u, v). Now take a minixnizing géodésie g(t)

(0 ^ t 5^ 1, X e ©) from u to hvh'1. o'(0) o* (-7-
\

orthogonal to ad(G)u {gug~x : g e G}, for ad(G)u lies in the sphère of
radius c about hv^h"1. Orthogonal to some ad (G) — orbit on G, a is

orthogonal to every ad (Cr)-orbit, whence cr' (1) is tangent to the centralizer of
hvh~x [5]. That centralizer being totally géodésie in G, it contains u a(0).

4.2.2. The Lie algebra © is a sum 51© ©x © © ©w where the ©^
are simple ideals and 21 is an abelian idéal. Let A exp(2I) and G$

exp(©i). Every élément g e G has expression gAgi- • -gm with gr^ c ^4,

Lemma. £e£ (u, v) eT(G) be a Clifford translation of G. Then, for each j,
either uj or v^ is central in Gé.

Proof. Suppose that Uj is not central in G$, so the centralizer Z of u} in
Gj is a proper subgroup of G$. Lemma 4.2.1 says that Z contains ad(Gj)vj,
so the closed normal subgroup H of Gjy which is the closed subgroup of
Gi generated by ad (6?,) vj, lies in Z ; thus H is a proper closed normal
subgroup of Gr As Qi is connected and simple, it follows that H is a
discrète central subgroup of Gr Thus vi is central in Gv Q.E.D.

4.2.3. Lemma. Every élément of s*T(G) has a fixed point on G.

Proof. Let y s • (u, v) e S'T(G). We may assume v 1 because

(l,v)*y(l9v)-1={l,v)-8-(u,v).(l,ir1)=8'(v, l).(t*, v).(l, v1) «-(t?tt, 1).

Now assume y s*(u, 1). Choose A € G with A2 w1, and notice that
y(h) s{uh) A-11^-1 A. #.J£.IX

4.2.4. Theorem. ie^ ff i x ^ X X 6W 6e a compact connected Lie
group where A is a torus and the G} are simple. Let Y (G) be the group of iso-
metries of G generated by T (6?) and the symmetries sa s§ to A and 6?y at
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their identities. Let fcF (G) be a group of Clifford translations of G. Then
F is conjugate in F (G) to a group of left translations of G.

Proof. G A x Gx x X Gm is essentially Cartan's symmetric-space
décomposition of G, and it follows from Theorem 3.1.2 or Corollary 3.1.4
that every y e F is of the form ya X yx X X ym where (write yQ yAi A==

6r0) yj is a Clifford translation of Gj. Thus Lemma 4.2.3 shows F c T (G),
so every y e F is of the form

(a, 1) x (%, vx) x x (um) vj with (w/,vi) e T(#,)
Now suppose, for some y with 1 <g j fg m, that we hâve y, y' e F with
neither ui nor t;J central in G5\ then wj and vi are central in Gi by
Lemma 4.2.2, whence neither u'jUj nor u^^ is central in Gj. As y'y is a

Clifford translation of 6?, this contradicts Lemma 4.2.2. In other words,
given 1 5^ j <£ m, either i^. is central in Cr,- for every y c jT or Vj is central
in Gj for every y e F; in the former case, we may conjugate F by sj} and
assume every Vj is central in Gj. Thus, possibly after having been conjugated
by some of the 8j9 F is a group of left translations of G. Q.E.D.

We remark that the particular form of G was required only in order that
the symmetries Sj act on G. As our primary interest is the case where G is

simple, in view of Theorem 3.3, this restriction will cause no diffîculty.

4.3. Clifford translations and automorphisms

4.3.1. Lemma. Let och-^h* be an automorphism of a compact connected

Lie group G, let geG, and let y : h-*gh* be a Clifford translation of G.
Then (ugu-*)* — ugu~a for every u*G.

Note: u~a dénotes (w~1)a.

Proof. Let S be the sphère {v e G : g(l,v) q(1, g)} about 1 e G, where

g is the distance function on G. Given u e G, we hâve ^(1,^) @(l,y(l))
Q(u,y(u)) q(u, gua) g(l, gu^w1), so gu^u"1 e 8. Now choose X e ©

such that exp(L£), 0 ^ t < 1, is a minimizing géodésie in G from 1 to g,
so the left translation (g, l)*X is orthogonal to S at g. Let FeS, define

t^ exp(£F) and qt — 9u<tuï1> and note that qt€S. Thus Z qA-rr
\ at

(g, 1)* (Fa — Y) is tangent to 8 at g. It follows that X is orthogonal
to (oc — 1) ©. As oc is an orthogonal linear transformation of ©, we conclude
that Xa X, whence g exp(X) tells us that g01 g.

Let ueG and note that (u, l)-y(w, l)"1 (u, l)-(<7, l)*oc*(w1} 1)

(u, l)-(<7, l)-(^~a, l)-<% (ugu-a, l)»oc is a Clifford translation of G.
Now the Lemma follows from the above paragraph. Q.E.D.
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4,3.2. Lemma. Retain the hypothesis of Lemma 4.3.1 and let B be the

identity comportent of the centralizer of g in G. Then Ba B, and, if the

restriction a\B is an inner automorphism of B, then oc is an inner auto-
morphism of G.

Proof. jBa B because, by Lemma 4.3.1 with u 1, we hâve g* g.
If oc is inner on B, then it préserves each élément of a maximal torus of B;
then oc préserves each élément of a maximal torus of G, for B and G hâve
the samerank. This implies [15, Th. 19]that oc isinneron G. Q.E.D.

4.3.3. Theorom. Let oc be an automorphism of a compact connected Lie
group G, let (g,h)€T(G) and y (g,h)»oc, and suppose that both y and y2

are Clifford translations of G. Then oc is an inner automorphism of G.

Proof. y (g, h)»oc {gh~x, l)»{(h, h)•oc}, (h, h) is an inner automorphism
of so oc is inner if and only if {h, h)»oc is inner. Therefore we may assume
h 1, i.e., y (g, l)*oc. This puts us in a position to use our Lemmas.

We assume the Theorem for groups whose dimension is less than dim. G.

Thus, by induction hypothesis and Lemma 4.3.2, we need only consider the
case where g is central in G. Thus the #-invariance of ugu~Cù given by
Lemma 4.3.1 can be expressed

u(u-«)* u^u-^u-01 (1)
which gives

(u01)2 uu*2 if u commutes with u* (2)

We write the Lie algebra © as a sum % © ©x ® ©©w where % is an
abelian idéal and the ©y are simple ideals. oc préserves % and ©!©... ©®m,
and induces a permutation of the ©^, because it is an automorphism of ©.
Let A exp(3I) and (?> exp(©,.). If oc sends ©t. to ©^ with i^j,
we could choose u e Gt very near 1, and then u(u~a)2 would not lie in any
Gk; but u^w** w01- would lie in some Gk, in violation of (1). Thus A0L A,
and (Gj)* Gi for every j. Now every élément u € G has expression
u uaux um with ua € A and u^eG^ We pick some such décomposition
g gAgx.. ,gm and observe that ga and gi are central in G, whence

y(uAfh... um) (juttj) (ftttf)... {gmuaj

Thus y is decomposed into {ya, ylf • •., ym) with

y(uAfh---Um) ^N7iW#'-7»W •

Toseethat ya is a Clifford translation ofA and yi is a Clifford translation
of Gs, we fix ail but one component of u and vary that component. Thus,
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if the décomposition © 9t ©©!©...© ©OT is nontrivial, our induction
hypothesis shows that oc is inner on 91 and on ©^, so oc is inner on ©.

Now we may assume that G is simple or is a torus, and g is central in G.

If G is a torus Tn, then, by analyticity, équation (2) lifts to the universai
covering group Rw. In additive notation, oc is an orthogonal linear
transformation of Rn such that 2oc(ÏÏ) il + a2(#), whence (oc — If 0.
This implies oc / because # is fully reducible on Rn, so <% is inner. We
now assume G simple. We may assume g ^ 1, as g 1 implies y(l) 1,
whence y 1, so a 1 is inner. We may also assume g2 ^ 1, for g2 1

implies (y2 was assumed to be a Clifford translation of G, and Lemma
4.3.1 gives g* g) oc2 1, whence either oc l and is inner, or there is a

1-parameter subgroup ut of G with W* wjT1; in the latter case équation
(2) gives u_2t u2t, which is impossible for small nonzero t. We may also

assume that G has an outer automorphism; in fact, by Lemma 4.3.1 and the
assumption g2 ^ 1, we may assume that G has an outer automorphism
which leaves invariant some central élément with square ^ 1. There is no
such simple Lie group. Q.E.D.

4.4. Clifford translations and symmetries

4.4.1. Lemma. Let oc be an automorphism of a compact connected Lie group
G, let s be the symmetry h -> h~x at 1 e G, let g € G, and suppose that

y (g, l)*oc*s is a Clifford translation of G, Then (ugu-*2)'1 (ugu-*2)*
for every u eG.

Proof. Let 8 be the sphère {vcG : Q(l,v) Q(l,g)} about leG. Given utG,
wehave g(l9g) g(l,y(l)) ç(u,y(u)) Q(u,gu~a) Qil.gu-^w1), so

gu-^w1 e S. Let exp(LST) (0 <J t ^ 1, X € ©) be a minimizing géodésie in G

from 1 to g, so (g,l)%X is orthogonal to S &t g. Let Ye®, define

ut exp(^F) and qt guj*ujx, and note that qt e 8. Thus g_A-rr
\ dt

(g, 1)* (— Fa — Y) is tangent to 8 at gr, hence orthogonal to (g, 1)*Jl.
It foliows that X is orthogonal to (oc + 1) ©, whence Jfa — X because a
is an orthogonal linear transformation of ©, so g* g'1 because g exp(X).

The fact that y is a Clifford translation of G implies that

(u, tia)-y(tf, tP)-1 (u, u")»(g, l)*&*ê*(vr

is a Clifford translation of G. The Lemma now follows from the above

paragraph. Q.E.D.
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4.4.2. Theorem. Let oc be an automorphism of a compact connected Lie group
G, let s be ihe symmetry at 1 e G, let (g,h) ei(G), and suppose that y

(g, h)'oc'S is a Clifford translation of G. Then G is a torus and y is a
left translation.

Proof. As in the proof of Theorem 4.3.3, we may assume y (g, 1)•<%•«$.

Now assume the Theorem true for compact connected Lie groups of dimension
less than dim. G, and let B be the identity component of the centralizer
of g in G. The restriction of s to B is the symmetry b -> b-1 of B at 1,
and g* g~x (by Lemma 4.4.1 with u 1) implies B* B, whence y
préserves B. As y is a Clifford translation of G and B is totally géodésie
in G, we see that y is a Clifford translation of B.

Suppose that g is not central in G ; then our induction hypothesis implies
that B is a maximal torus of G and y is left translation by g on B. Thus
b e B gives gb y(b) gb~a, whence ba b'1. G is not abelian, and we
use the fact that every élément of G is conjugate to an élément of the maximal
torus B, and try to choose aeB such that the connected centralizer D of
a in G is a nonabelian proper subgroup of G. But aa a'1 implies D* D,
whence g e D implies y (D) D ; it follows that y would be a Clifford
translation of D. In view of our induction hypothesis, we conclude that,
given a e G, the centralizer of a in G is either S or a maximal torus of G.

It follows [4] that the semisimple part of G is a 3-dimensional simple Lie
group. So the Lie algebra © SU © & where 31 is an abelian idéal and &
is a 3-dimensional simple idéal. Let A exp (21) and G' exp (©')> an(i recall
that every u e G has expression u uau' with ua € A and v! eG'. Choose

some such expression g gAg', observe that A* A and (6?')a G' be-

cause <% is an automorphism, and note that A is central in G ; thus

y(uAuf) gAgf uj" u'-« (gAuja) (g'u'-«),

and we easily check that u' -^g'u'-* is a Clifford translation of G'. This
contradicts our induction hypothesis unless G Gr. It follows that we may
assume 6? to be a 3-dimensional simple Lie group; either G SU(2) or
(?==S0(3). This implies [21] that y is conjugate in I(G) to a left translation,
for G is isometric to the sphère Sz or the projective space P3; replacing y
by that conjugate, we assume that y is a left translation, y now assumes the
form (u,v)»(}»s where (u,v)eT(G) and p is conjugate to oc in the group of
automorphisms of G, and y(l) uv~x shows that y (h) uv~xh for every
h € G. Thus v~xhv h~P for every h cG, so h,k eG gives v^hv^v^kv

v~xhkv (hk)~P k~P h~P v^kv^v^hv; this implies that G is abelian,
which is a contradiction.
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We have shown that we may assume g central in G. But we may replace

y by (v, l)-y(v, l)"1 (v, l)-(gr, l).*.*.^"1» 1) {vg, 1)-*«(1, tf"1)**
(vgr, v-a)«a-5 (v<7?;a, ].)•/?•£ where /? (v~a, v~a)*a, for any v € G, and
assume vgva central in G. Thus vva is central for every v c G, whence
ift v~x for every élément v of the semisimple part of G. But v -> v-1 is
not an automorphism on the semisimple part of G. It foliows that G is a
torus.

Now 6 is a torus Tn. As G is abelian, Lemma 4.4.1 gives w^-u**
vPvr** for every ucG. This lifts, by analyticity, to the universai covering

group B>n of G; in vector notation, we have an orthogonal linear
transformation oc of Rn such that (oc + I)(oc2 — I) 0, because <%2(#) — u

oc(u) — ocB(ÏÏ) for every tieU71; it follows that oc2 / on Rn, whence
<x2 1 on This shows that G is generated by its sub-tori G' and G",
where G' is the identity component of {h € G : h00 h} and 6?" is the identity
component of {h * G :ha h'1}. Let c g(l, y(l)) g(l, gr), so c

£(A, y (A)) for every A e Given h' e Gr, we choose h e G1 with h2 A',
and note that c ^(A, y (A)) ç(h, gh"1) ^(A2, gr) g(fe', gr). It follows
that any minimizing géodésie in G from 1 to gr is orthogonal to G1 et 1,
whence g € G". Similarly, given h' e G', any minimizing géodésie in G from
A' to gr is orthogonal to G' at h', whence gh'^eG". Thus Gf a G", so
G G". Now we see Aa A"1 for h eG; it follows that y(h) gh for
A € G, and the Theorem is proven. Q.E.D.

4.5. Clifford translations as left translations

4.5.1. Theorem. Let G A x Gt x X Gm 6e a compact connected Lie
group where A is a torus and the Gi are simple, and let F be a group of
Clifford translations of G. Then F is conjugate in 1(6?) to a group of left
translations of G.

Proof. It follows from Theorems 4.3.3 and 4.4.2 that F is a subgroup of
the group F (G) of Theorem 4.2.4; the resuit now follows from Theorem 4.2.4.

Q.E.D.

4.5.2. Corollary. Let F be a group of Clifford translations of a compact
connected Lie group G which is either centerless, simple or simply connected.

Then F is conjugate in I (G) to a group of left translations of G.

For G has the form required by Theorem 4.5.1.

4.5.3. Corollary. Let F be the group of deck transformations of a Riem-anman

covering n: G-> N where G is a compact simply connected Lie group. Then N
is RiEMANNian homogeneous if and only if F is a group of Clifford translations
of G.

6 CMH vol. 37
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Proof. If N is homogeneous, then F is known to be a group of Clifford
translations [20, Th. 2]; as n is a universal covering, hence normal, we prove
the converse by assuming F to be a group of Clifford translations of G,
and finding a subgroup B of I(G) which centralizes F and is transitive
on G [20, Th. 1]. Since G is simply eonnected, Corollary 4.5.2 shows that we

may assume F to be a group of left translations of G. Let B be the group of
ail right translations of G. Q. E. D.

4.6. Symmetric spaces as group spaces

4.6.1. We wish to eonsider the possibility of putting a 2-sided-invariant
metrie on a Lie group G which is not compact. If G is eonnected and is a

covering group tz:G->H of a compact Lie group H, then G carries a
2-sided-invariant metrie such that n is a RiEMAimian covering, and the
universal covering group of G is a product of compact simple groups and a vector
group. This is the only possibility:

4.6.2. Lemma. Let G be a connectée, Lie group. Then G admits a 2-sided-
invariant metricz) if and only if the Lie algebra © is a direct sum of compact
simple ideals and an abelian idéal, and G is a BiEMANNian symmetric manifold
in any 2-sided invariant metrie.

Proof. G has a 2-sided-invariant metrie if and only if © has a positive
definite ^Ld((?)-invariant bilinear form. © has the form, as constructed in
§ 4.1.3, if it is a sum of compact simple ideals and an abelian idéal. If © has
the form, then © is a reductive Lie algebra, so © ©1©...©©i©31
where the ©^ are simple ideals and 51 is an abelian idéal; now each ©^ is

compact because the form is definite. The last statement by observing that,
if G is endowed with a 2-sided-invariant metrie, then there is a RiEMANNian

covering n:G->H where H is a compact Lie group. Q.E.D.

4.6.3. Theorem. Let F be the group of deck transformations of a BiEMANNian

covering ti:G->N where G is a simply eonnected Lie group in 2-sided-invariant
metrie. Then thèse are équivalent:

(1) JV is a BiEMANNian symmetric manifold.
(2) N is a Lie group and ti\G-+N is the universal covering group.
(3) G has a discrète central subgroup B such that F is conjugate in I(G)

to the group of left translations of G by éléments of B.

Proof. The équivalence of (2) and (3) is clear, and Lemma 4.6.2 shows that
(2) implies (1). Thus we need only prove that (1) implies (3).

*) positive definitite, of course.
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Now let N be RiEMANirian symmetric. Under Cartan's symmetric-space
décomposition, G A x Gx x X Gm where A is a vector group Rn and
the Gf are compact simple groups. F is a group of Clifford translations
of G, whence every yeF has form yx X y2, y1 being a Clifford translation
of A and y2 being a Clifford translation of G1 ^ x X Gm, by Co-

rollary 3.1.4. Now Fl {yx : y e F} is a discrète subgroup of A acting by
left translations, by [20, Th.4]. Thus we need only prove that F2 {y2 • y*F}
is I(Cr;)-conjugate to a group of left translations of G' by central éléments of
G'. In other words, we may assume that G is compact and simply connected.

Now assume G compact and simply connected. Using Corollary 4.5.3, we

may assume that F consists of left translations of G by éléments of a discrète
subgroup B. The symmetry to N at 7t(l) lifts to the symmetry s of G at 1,

whence s normalizes F. Now b e B gives (6, 1) e T(6?) with s-(6, l)*^"1
(1,6), so we hâve b' e B such that bfg gb for every gcG. This shows

that B is a discrète normal subgroup of G ; it foliows that B is central in G.
Q.E.D.

5. Clifford translations of spaces with simple group ol isometries

5.1. Symmetric spaces with simple group of isometries

Let M be a compact connected simply connected irreducible RiEMANNian

symmetric manifold. M is of type (1) if Io(^0 is not simple; Clifford
translations of thèse spaces were considered in § 4. We will now assume \{M)
simple and study the Clifford translations of M. For the most part, it turns
out that F c I(M) is a group of Clifford translations of M if and only if
F centralizes lo(M), and, in any case, M/Fis RiBMANNian homogeneous if and

only ifF is a finite group of Clifford translations ofM.
The case where M is a sphère /S™"1 has been treated [20; 21] in full. We

take the field F B>, C or H of maximal real dimension r 1, 2 or 4

which divides n, n rm. M S71'1 is viewed as the unit sphère in a left
Hermitian vectorspace V of dimension m over F. If F is a subgroup of

then thèse are équivalent :

(a) F is a discrète group of Clifford translations of M.
(b) MjF is RiEMANNian homogeneous.
(c) F is conjugate in l(M) to a finite subgroup of the multiplicative group

F' of unimodular éléments of F, F1 acting on M by scalar multiplication.

The finite subgroups of F1 are well known. As MjF is RiEMANNian
symmetric if and only if F c {± 1} (acting on V) [22, § 16], we can easily find r
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such that M/F is RiEMANNian homogeneous but not RiEMANNian symmetric,
provided that n-\ is odd.

5.2. Clifford translations and inner automorphisms

5.2.1. Lemma. Let K be a compact irreducible group of linear transformations

of a real vectorspace F, and let O^îeF. Then the orbit K(x) does not
lie in a half-space.

Proof. Let § be a half-space of F. This means that we hâve a basis
{e{} of F such that $) {£ a0e3: a1'ïz Qi). Now let H be the hyperplane
{Ua}ej:a1 0} associated to § The "center of gravity4)" J k(x) d/u(k) of

K
K on le {fÂ is normalized Haar measure on K) is a iT-invariant élément of
F, hence 0 by irreducibility of K.

Now suppose Z(i)c$. K(x) <$ H by irreducibility, so we may replace
x by a iT-image and assume ~x — E x3e0 with xx > 0. Given y

K(x), we hâve supposed yx ^ 0. Thus xx > 0 contradicts

0. Q..B.Z).

5.2.2. Theorem. Le£ M be a connected RiEMANNian homogeneous manifold,
and suppose that:

(a) TAe connected linear isotropy subgroups of \{M) are irreducible on the

tangentspaces of M.
(b) pel(M) centralizes Iq(M), g e I(M) has a fixed point on M, and

y gft is a Clifford translation of M.
Then y fi, i.e., g 1.

Proof. As g has a fixed point, y is a Clifford translation by hypothesis
and /S is a Clifford translation because it centralizes a transitive group
Io(M) of isometries of M, it foliows that /? and y are isometries of the same
constant displacement 6^0. If 6 0, then y fi g 1. We assume

6>0.
Now suppose g yé l. As g has a fixed point, judicious choice of x e M

gives us the condition 0 < g(fix, yx) < e on the distance, for any e > 0.
Furthermore, fix and yx each lies on the "sphère" of radius 6 about x.
Thus we may choose x e M with fix ^ y# but £(/?#, yx) so small that (1)
there is a unique minimizing géodésie exp (tX) (0 fg t < 1, X in the tangent-
space jM^s) from fix to y#, and (2) given a minimizing géodésie o(t)
(0 <£ 2 ^ 1) from # to /?x, the angle between af(l) and X is at least n/2.
Now make a choice of a(t), let H be the hyperplane (/'(l)-1- in Jf^, and
let £ be the half-space <F,or'(l)> ^ 0 in Mpx.

*) This concept was brought to my attention by R. F. Williams.
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As /? centralizes Iq(M) and Iq(M) contains the connected isotropy sub-

group K of I(M) at x, it foliows that K is the connected isotropy sub-
groupof \{M) at fix. Let K*X {k*X : k e K} be the orbit of X € M$m
(recall our choice of x) under the linear isotropy action of K at (ix. Now
k € K gives (1) k y k~x kgk'1^ is a Clifford translation of displacement 6,
(2) kx xikf}x f}x and fcya; iyi"1^, and (3) Q(P%,y%)
— Q(k(ïx,ky x) q(I$x, ky x). Thus fc*Xe|). It follows that Z^IcS,
which contradicts Lemma 5.2.1. We conclude that g 1. Q.E.D.

5.2.3. Corollary. .Le£ M be a compact connected RiEMANNian homogeneous

manifold of Euler-Poincarê characteristic %{M) ^0 such that the connected

linear isotropy subgroups of I(M) act irreducibly on the tangent-spaces of M,
and suppose that 1(M) U ^ • \{M) where fc centralizes Iq{M) (this is
automaticif Io(^) admits no outer automorphism). Let F be a group of Clifford
translations of M. Then F c {jSJ, F centralizes J^(M), and M/F is a
RiEMANNian homogeneous manifold.

Proof. %{M) ^ 0 implies [19, Th.4] that every g e Iq(M) has a fixed point
on M, and that Ff] \{M) ~ {1}. The Corollary now follows from Theorem
5.2.2. Q.E.D.

5.2.4. Corollary. Let M be a compact connected simply connected Rie-
MANNian symmetric manifold with \{M) simple, but with 1q{M) not of type
An (n > 1), Dn(n > 3) or E6. Let F be a group of Clifford translations of M.
Then F centralizes Ia(M) and MjF is a RiEMANNian symmetric manifold.

Proof. Let K be the isotropy subgroup of G \(M) at peif, and let s
be the symmetry to M at p. Conjugation by s is an inner automorphism of
0, for our hypothèses ensure that G has no outer automorphism, whence

K contains a maximal torus of G. Thus x {&/£) ¥=" 0. K acts irreducibly
on the tangentspace Mp because M is irreducible. The other hypothesis
of Corollary 5.2.3 is satisfied because G has no outer automorphism, so F
centralizes G 1Q{M) by that Corollary. Thus M/F is symmetric. Q.E.D.

5.3. Fixed points and symmetries

We will use a resuit of J. de Siebenthal [18, p. 57]

Let Go be the identity component of a compact Lie group G, x eG, and T
a maximal torus of the centralizer of x in G. Then every élément of the

component x»G0 of x is ad(G0)-conjugateto an élément of x*T

to show that certain components of certain I(M) contain no élément without
a fixed point, thus containing no Cuffobd translation of M.



86 Joseph A. Wolf

5.3.1. Lemma. Let s be a symmetry of a compact connected ^x^^x**
symmetric space M. Then every élément of s«I0(Jf) has a fixed point on M.

Proof. s is the symmetry at p e M. Let T be a maximal torus of the
isotropy subgroup K1 of 1(M) at p. K' and the centralizer of s in \{M)
hâve the same identity component. Thus de Siebenthal's Theorem shows
that every élément of s*Iq{M) is conjugate to an élément of s*T c Kr. The
Lemma follows. Q.E.D

5.3.2. The proof of Lemma 5.3.1. proves

Lemma. Let M be a compact connected RiEMANNian homogeneous manifold,
K' the isotropy subgroup of \(M) at p e M, k € K' and g e k^{M). Suppose
that K' contains a maximal torus of the centralizer of k in I M). Then g has

a fixed point on M.

5.3.3. Lemma. Let M be a compact connected irreducible RiEMANNian
symmetric manifold such that a connected isotropy subgroup of I (M) admits no outer
automorphism. Let y be an isometry of M which has no fixed point. Then

Proof. 1{M) I0(M) U 8*I0(M) by § 2.4.4. The Lemma now follows from
Lemma 5.3.1. Q.E.D.

5.4. Bank and imbedding of symmetric spaces

5.4.1. Let M be a connected RiEMANNian symmetric manifold, 0 I0(M),
K the isotropy subgroup of G at x € M, and (5 Si + ^5 the Cartan
décomposition. Every subalgebra of © contained in S$ is abelian because

[^5, ^î] ^ ^P 0, and is contained in a maximal such subalgebra. The maxima
among the subalgebras of © contained in *)} are called Cartan subalgebras
of (©, a), are mutually conjugate under Ad(K)\^} and thus ail hâve the
same dimension; this common dimension is called the rank of M. A Cartan
subalgebra of (©, a) contains a line and is contained in a Cartan subalgebra
of © ; thus 1 <£ rank. M ^ rank. ©.

5.4.2. Ë. Cartan has given a map of M into 0 which we will find useful
for providing géométrie interprétations of M. Given g*G, define g* —

or(gr~x). As keK gives kk* 1, this defines a map f:M->G bjf(gK)
g9*, where M is identified with G/K. The image of / is P exp(^J), and

/ : M-+P is a covering with finite fibre KajK where KQ {g e G : a (g) g].
If G is compact, we can endow G with a 2-sided-invariant RiEMANNian metric
such that ^} is a totally géodésie submanifold and / : M->P is a RiEMANNian
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covering; then / is 6?-equivariant, G acting by isometries on P by rg(p)

gpg*. If we write M as GjK where G is the universal covering group of
®, and if M is compact and simply connected, then K equals the fixed point
set of a on G and the map corresponding to / is an isometry.

5,5. Clifford translations and symmetric quotients

We hâve reached the goal of § 5 :

5.5.1. Theorem: Let M be a compact connected simply connected irreducible
RiEMANNian symmetric manifold wiih 1Q{M) simple, and let F be a group of
Clifford translations of M. If F is finite, then MjF is a RiEMANNian

homogeneous manifold. If M is not an odd dimensional sphère, a space SU (2m)/Sp(m)
with m > 1, a complex projective space of odd complex dimension > 1, or a

space SO(4w-f 2)/U(2w-)- 1) with n>0, then F is finite and centralizés

I0(M), and M/F is a RiEMANNian symmetric manifold; the spaces excluded in
this statement hâve finite groups of Clifford translations such that the quotient
is RiEMANNian homogeneous but not RiEMANNian symmetric. If M is not an
odd dimensional sphère or a space SU(2m)/Sp(ra) with m>l, then F is finite;
the spaces excluded in this statement hâve one parameter groups of Clifford
translations.

Proof. Let G I0{M) and let K be the isotropy subgroup at xeM.
By Corollary 5.2.4, weneed only check the cases where G is of type An(n >1),
Dn(n > 3) or Ee. As the statements are known for sphères ([20; 21]; recalled
in § 5.1), É. Cartan's classification [9] shows that we need only check the
cases (AI) 8V(n)l8O(n) with n>2, (AU) SU(2w)/Sp(n) with n>l,

(AIII) SV(p + q)/{SV(p + q)~ [U(p) x

with pq>l, (DI)SO(p + î)/SO(p) xSO(g) withp^2,g^2 and

(this need only be checked when p + q is even, i.e., when 80 (p + q) is of
typeD), (DHI)S0(2»)/U(n) with n>l, (El) E6/ad (C4), (EU) E6/A5xAl9
(EIII) E6/i)5 X T1 where Tr dénotes an r-torus, and (EIV)Ee/F4.

5.5.2. If G is a compact matrix group, then © is a Lie algebra of real or
complex matrices and B -Real.trace {XY) is positive definite Ad(G)-
invariant bilinear form on ©. Thus B is proportional to the Kjlldstg form
of ©, *p ft-1- relative to B where © 51 + ty is a Cartan décomposition,

and we may take any positive multiple of the restriction B\y for the
metric on M.
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5.5.3. M 8U(n)IS0(n). As in §5.4.2, M can be represented as the
symraetric matrices in SU(w). SU(^) acts by g : x-> gx*g, K is the iso-

tropy subgroup of G at /, and a (g) tg~1.

If n is odd, then G SU(rc) and JE^SOfa), and I(Jf) G ^ s-G
because K has no outer automorphism. If n is even, then G SU(w)/{± /}
and K SO(n)l{±I}; then I(Jf) v s-G ^ <x-G ^sot-G where

oc : #->a#*a.

for some a e\J(n) of déterminant — 1. In either case, s : a;-* a:"1. We will
use G1 to dénote G if w is odd and G ^ oc*G if w is even; I(Jf) Gr ^ s>Gr.

Let J?ti dénote the n X n matrix with 1 in the (i,j)-place and zéros
elsewhere. Then © has a basis {Xti, Yuv,Ze} where XtJ El0 — En for

YUV V^Ï(EUV + Evu) for 1 ^u<v Sn, and Ze

— J^e+u e+i) f°r 1 ^ e < w. {-X"tJ is a basis for il and
{ Yuv, Ze} is a basis of $. Now

g diag. {expd/^To!),..., exp (V^lan)} e SU(n)

with | at | small and Eat 0 gives as distance q(I, g{I))2 2*a^. It folio

ws that we may take the distance on M to be given by q(x, y)2 — Za^ where

yx has eigenvalues exp(2 V— 1 at) with Zat 0 and \at\ ^Ln.
Let g diag. {exp(K— 1 %),..., exp(l/— 1 an)} represent an alement

of Fr, G1 with the at chosen to minimize Sa\. Then c q(I, g(I))2 -Ta?,

and c q(x, g(x))2 for every x e M. If we take # diag. {(JJ), — 1;

1,...,1}, then g (x) • x diag. {exp (K— 1 (% + a2)) exp (l/—1 (% + a2)) ;

exp (2 V- 1 os),..., exp(2 j/^T an)}, whence a\ + a\ \ (ax + a2)2; it
follows that % a2. Similarly, at a3 ; thus ^ is scalar. It follows that
F^ G' is represented by scalar matrices, and is thus central in G'.

F r^ s»G is empty by Lemma 5.3.1. Let y sg e F^ sofG, and let g also
dénote the matrix in a*SU(n). y2 sgsg tg~~xg lies in F<^ G, and is thus
represented by a scalar matrix cl. Now *g cg, whence g t{tg) t(cg)

c2g; thus fy ± gr. If gr V> then <7 ^A"1^1 € Jf for some AcSU^),
and x hthe M; y(x) s(%-1A-1A%%"1A-1) s^h^h-1) hth x. This is
impossible because y has no fixed point; thus fy — gr. That is impossible
because det. g — 1. We conclude that FrsstX'G is empty.

We hâve proved that F is a central subgroup of Gf; in particular, F cen-
tralizes Iq(M).

5.5.4. M SU(2m)/Sp(m). M can be viewed as the skew antisym-
metric) matrices in SU(2m) and we assume m>l because SU(2)/8p(l)
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is a single point. G SU(2m)/{± /} acts by g: x-^gxfg and K
Sp(m)/{± 1} is the isotropy subgroup at J T

because X has no outer automorphism, and s : x -> Jx^^J; thus s Joe

where <x : ^-^o;"1, and conjugation of G by oc is the opération of inverse
transpose on representing éléments of SU(2m).
fc(j by Lemma 5.3.1; we will see that every élément of F is represented

in SU(2m) by a matrix conjugate to some diag. {ar; a,..., a}. For as in
§ 5.5.3, one can eheck that the distance on M is given by q(x, y)2 \ Za*
where — yx has eigenvalues exp(2l/ — 1^.) with | c^ | ^n. Let y e F
and conjugate it so that y is represented by a diagonal matrix I _
with x

u diag.

v diag. {exp(V- lvj,..., exp(j/- 1 vJ}

for minimal | % |; then c ~ q(J, y(J))2 Zv%. The number c does not

dépend on our choice of conjugate of y; conjugating by diag. Il I

1,..., 1} if foliows that (ut — u2)2 (vx — v2)2. Similarly, (u{ — Uj)2

{vt — Vj)2 for every i and j. Another conjugation (exchanging the jth
and (m + j)th basis vectors) interchanges vj and — vjy resulting in
(Vt — Vf)2 (u{ — Uj)2 (v{ + Vj)2 whenever i =£ j. This proves that at most
one of the v{ is nonzero, so we may assume v2 v3 vm 0, and
it foliows that u2 u3 um and % — u2 ± %. This proves that
the matrix representing y is conjugate to some diag. {a!; a, a}.

If jT is cyclic, choose a generator y, and let L be the connected centralizer
of y in G. If y is not central, then G/L is complex projective space P2m~1(C)

of odd complex dimension. It is known, and not difficult to check by counting
dimensions, that K acts transitively on G/L. Thus G KL, which implies
G LK, so L acts transitively on G\K M. If F is finite, so M/F is
a manifold, then L induces a transitive group of isometries of M'/F, and
M/F is RiEMANisrian homogeneous.

The argument above is valid even if F is not cyclic, provided that the image
of F in the adjoint group of SU(2m) is cyclic. For then F is generated by
central éléments of G and at most one other élément y. Thus we need only
prove :

Lemma. Let F be a finite subgroup of SU(&), k > 2, in which every élément

is SU(k)-conjugate to some diag. {af ; a,..., a}. Then the image of F in
ad (SU (A)) is cyclic.
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Proof. Let p: SU (k)-> ad (SU (k)) be the projection. We wiU first prove
that every abelian subgroup of f}(F) is cyclic. For this, it suffïces to show that
/}(F) has no subgroup which is the product of two cyclic groups of prime order

p. Let A be such a subgroup; we will dérive a contradiction.
If p is prime to k, then it is easy to find éléments y and ô in B P~X{A)

such that the group A generated by y and ô is mapped isomorphically
onto A bj p. A cannot act freely on the unit sphère in Cfe because it is
abelian and fînite but not cyclic; thus A has an élément ^ / with an eigen-
value + 1 • Now we may assume that ô has an eigenvalue + 1 • Changing
orthonormal basis in Cfc, we may assume that ô diag. {a'\a, a} and
that either y diag. {bf; b, b} or y diag. {6, b1 \ 6,..., b}; this is
possible because y and ô commute, and because eachis the product of an élément
of F with a scalar matrix. If a 1, then a' det. ô 1 and ô I)
thus a ^ 1 and a1 1; it follows that p ^ 2. Now b ^= b' because p is

prime to k, det. y 1 and y has order p; as p ^ 2, so ôy and ôy2 each
has precisely two distinct eigenvalues, the second possibility for the form of

y is eliminated and we hâve y diag. {&'; 6,..., b}. If e exp(2jz K—
this implies that zl consists of matrices diag. {eu; ev,..., ev}, whence A
contains nontrivial scalar matrices. That is impossible because A has order
prime to k. Thus A cannot exist.

If p divides k, we define

e diag. {exp {2nV^Ï/k)9 exp(2rcl/^T/&)} e SU(&)

and we choose éléments y and ô in B fi'1 {A) which map onto generators
of A. As f}(y) and f}(ô) commute, we hâve ôyô"1 yeu for some integer
u. Looking at eigenvalues and using k > 2, we see that y ô ôy. Thus the
subgroup A of B generated by y and ô is abelian. We may also assume that
y and ô were chosen of prime power order; then A is a p-group. A is not
cyclic because it has the noncyclic group A as a homomorphic image; thus A

does not act freely on the unit sphère in C^, and it follows that A has an
élément x ^ I which has + 1 for an eigenvalue. As before we may assume

r diag. {1; a, a}, r has some order q pb because A is a p-group.
As p divides &, p is prime to & — 1; thus det. t^I. This contradicts the
existence of A.

We hâve proved that every abelian subgroup of p(F) is cyclic. Now suppose
that p(F) has éléments (}(y) and p(ô) such that

for some integer r. Then ôyô"1 yr(x for some scalar matrix

a diag. {a, ,,.,a}.
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We may assume y diag. {bf ; b, 6}; thus k > 2 implies b'ra b! and
bra b. This contradicts fi(y)r =fc fi (y)- We conclude that fi (F) cannot hâve
a subgroup E with generators x and y satisfying a relation of the form
xyx~x yr •=£¦ y. As every abelian subgroup of fi (F) is cyclic, the odd Sylow
subgroups are cyclic and the 2-Sylow subgroups are cyclic or generalized
quaternionic (see [19]). A generalized quaternionic group being a group of the
form E above, every Sylow subgroup of fi (F) is cyclic. It foliows that fi (F)
has generators x and y satisfying a relation xyx-x~yr (see [19]); thus
y (F) is commutative. This proves that fi (F) is cyclic. Q.E.D.

5.5-5. M SU(n p + q)l{8U{n)~ [U(p) X U(g)]} with pq> 1. M is
the Grassmann manifold of (complex) g-planes in O and is usually viewed
as the coset space V(p + q)/\J(p) X V(q). If q 1, then M is the complex

projective space Pn~1(C) of (complex) dimension p n — 1. In some
orthonormal basis {ej of Cn, K is the isotropy subgroup of G SU(^)/sca-
lars at the g-plane x — ep+1/\ep+2/\ .../\en spanned by the last q basis
vectors. K ^ {U(p) X U(#)}/scalars and thus has outer automorphisms : only
i-^fc"1 if p ^ q; lc->t]crv, exchange of the two factors U(£>), and their
product, if p q. Let <% : y->y be the transformation of Jf resulting from
conjugation of C over R extended to O by means of {ej, and let
fiiy-^y-1- if p q. It follows that I(ilf) ^oc*G if p^q, and
I(Jf) (t ^oc*G v fi*G ^ fiofG i{ p q. If p q, fi commutes with oc and
centralizes G, whence F^(G ^ fi-G) c {1, fi} if p qy by Theorem 5.2.2,
and F r\ G {1} in any case.

Let y otg e F^ oc*G. Then y2 ocgocg V~V =1? so tQ~1Ç is repre-
sented by a scalar matrix cl; the matrices *g cg, whence

9 *(V) *(c?) c2gr, so c2 1 and *g ± g

If g =z *gy then <7 exp(l/— 1 Z) with Z real symmetric. There exists

h€&O(n) with AZA"1 diagonal; it follows that d hgh'1 is diagonal. Then
hocgh,-1 hoch^hgh,-1 Whocd ocd has ^ A • - • A^a as a fixed point,
contrary to hypothesis on y. In other words, g — *^. Thus we can find

A e SU(») with Agr*A J m) where n 2m.
\—lm U /

aJ,

so y is conjugate to ocJ. If p ot q is even, then one easily produces a

fixed point for ocJ; thus p and q are odd. If 1 <q ^ m so

g 2^ + 1 with 0 < w and w + 2 < m, then we define
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V <h. A em+1 Ae2 /\em+2 A A<?u

« «i A «WA • • A^.xA^^^
and check that y ocJ gives

Y (y)

resulting in q(z, y(z))2 3 £(?/, y (y))2 ^ 0. This contradicts the hypothesis
that y is a Clifford translation; thus q 1 if g ^^- We hâve now proved
that Fr\(x*G is empty unless M is complex projective space V2m-1(G), and
that any élément of F r^ oc» G is conjugate to aJ in that case.

Let p q and let y fiocg e F^ f}oc»G. Then y2 fiocgfiag f}2ocgocg

oc g oc g lg~xg 1 is represented by a scalar matrix, and an argument
above shows that g ± *g. If g — *g, then we may assume g J as

above, and a fixed point for y is given by ^ A • • • A^; thus g — *g and

we may assume (as above) that <7 is diagonal. Examining g-planes spanned by
subsets of {^}, g is odd beeause y has no fixed point and then q 1 because

y is a Clifford translation. We hâve assumed pq > 1 because

X

is a 2-sphere; thus F r\ fi oc* G is empty. In particular, F cannot meet both
/?.<? and #•(?.

We hâve proved that F {1} or T7 c {1, j8} if M is not an odd dimen-
sional complex projective space. In that case, then, F centralizes G. If M is

an odd dimensional complex projective space, and if F does not centralize G,
then we hâve shown that F= {l,ocJ}; the centralizer of ocJ in Cr

SU(2m)/scalars is Sp(m)/{±/}, which acts transitively on Jf, so Jf/P
is RiEMANïrian homogeneous in any case.

5*5.6. M S0(2n)/\J(n) with n>2. M is the space of unitary structures
on B,2n compatible with a given EtrcuDEAN structure. G S0(2w)/{±/},
K U(n)/{± /}, and the symmetry s ± diag. l( J Jj f J Jj
The only globally defined outer automorphism of iT extends to and is
induced from conjugation by a ± diag. {1, — 1; ; 1, — 1}. I(lf)

G ^>oc'G where conjugation by oc is conjugation by a. This is inner on G

if and only if n is even. Thus F centralizes G by Corollary 5.2.3 if n is

even.
Now suppose that n is odd; then I(Jf) 0(2n)l{±I} with a and a

identified. Let 1 ^ y e .F; then y is represented by a matrix of square ± /
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and déterminant — 1 ; using the fact that y is not conjugate to s or to a, it foliows

y is conjugate to some ± I aw~v I with v odd and v < n. Let p bethat
/

the point at which K is isotropy; if v ^ 3, it foliows that

±diag.{l, — 1; 1 1} and ±diag.{l, - 1, 1, - 1, 1, - 1; 1,..., 1}

move p the same distance because they difïer from a conjugate of y by an
élément of K. This is easily seen impossible; thus v 1 and the connected
central]zer L of F in G is the S0(2w — 1) acting on the first 2n — 1

coordînates. It is well known that K is transitive on the sphère 8O(2n)/L;
thus KL G. This proves LK G, so L is transitive on M, and M/F
is RiEMANNian homogeneous.

5-5-7. M SO(;p + ï)/SO(p) X SO(g) with p even, g even, p^2,
q ^ 2 and ^ + > 4. We set aside the case p 4 q for § 5.5.8. M is
the Grassmakn manifold of oriented ^-planes in an oriented Rw where
n 2m p + q. 0(n) acts on M in the obvious fashion with kernel {± 1}.
G &O(n)H± 1} and we define G1 0(w)/{± /}. a cl(if) is defined by
a; -> — a; (opposite orientation); if p q, then fi € I(ikf) is defined by
x -> x-1 with a;-1 oriented so that a;A#± gives the orientation of Rn.
a centralizes G' and commutes with /?, /3 centralizes G, and it is not
difficult to verify from the foliowing paragraph that gfig~x fi oc if g e Gf
has déterminant — 1.

j£= {SO(^) X SO(q)}/{± 1}. If p #?, then the only outer automor-
phism of K which extends to G is induced by, say, ± diag. { — 1 ; 1,..., 1} e Gf.

If p qt there is this automorphism, the interchance of factors 80 (p)
induced by fi> and their product. The only other possibility, in view of our
exclusion of p 4 q, would be from triality automorphism on a factor
S0(8) of K (excluded because triality is not well defined on S0(8)) or a
permutation of factors S0(3) of a factor S0(4) of K (excluded because it
couldn't extend to G). Thus I(if) Gf ^ot*Gr if p^q, and 1{M)

Gf ^ot-G'^fi-G' ^fioc-Gf if p q.
Both p and q being even, rank. K rank. G and F <~s G {!}. If

F cff ^<x*G when p^q and F c G ^ ocG ^ fi*G ^ fiocG when p q,
then F centralizes I^iM) G by Theorem 5.2.2; we will see that this is the
case. If not, then we would hâve y ôg e F with ô e {l,cx} if p =^ q,
de{l9<x9p,<xp} if p q, and det. g — 1. If ô is fi or <xfi, then
y* (x, using Theorem 5.2.2, and it foliows that g is conjugate in G to

i n~v
T with v odd. A short calculation shows then that y cannot be
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a Ciifford translation because q> 1. Now let ô oc. y2 — ôgôg —
g2 ±1, so g2 I because det. g — 1. Conjugating by an élément of

G, we may assume g ±1 u
T

I in an orthonormal basis {e3) with u and v

odd; this cornes from conjugation of y because ô is central in l(M). It is

easy to choose q of the ej where the number of subscripts j> u is even;
thèse ej span a fixed point for g on M. g ^ ± / now contradicts Theorem
5.2.2; thus FcG^ot-G if p ^ 2 and r cS ^ oc* G ^ fi-G ^ocfî-G if
p — q. If foliows that F centralizes in I0(M).

5.6-8. M SO(8)/SO(4) x S0(4). The situation is much the same as in
§ 5.5.7, except that the triality automorphism of G S0(8)/{± /} induces
additional automorphisms of K. Retaining the notation of §5.5.7, let G"
be the subgroup Gr ^oc*Gr ^ fi*Gf ^oc^G1 of \(M)\ \{M) has an élément t
oforder 3 such that conjugation by r is the triaMty automorphism of and
induces an outer automorphism of K not induced by an élément of G". The

group of outer automorphisms of K is isomorphic to the symmetric group
on 4 letters, being the group of permutations of the 4 local factors S0(3) of
K {S0(4) x S0(4)}/{± J8}, and thus has order 24; it follows that I(M)

G" v x*G" ^ t2'G" and has 24 components. In view of § 5.5.7, we wish to
show rcG"\ it will then follow that F centralizes G. As t has order 3,

it suffices to show that no élément of F has order 3. This will follow from:

5.6.9. Lemma. Let y be a self-homeomorphism of M SO(8)/SO (4) x S0(4)
of period 3. Then y has a fixed point on M.

Remark. The idea of the proof is to calculate the Lefschetz number
L(y) Z{— 1)* trace. yj9 where yi is the linear automorphism of W(M; R)
induced by y, and use the Lefschetz Fixed Point Theorem, which says that
y has a fixed point if L (y) ^ 0. By means of the Hirsch formula it is easy
to see that (6, dim. W(M; R)) 60 616 1, 64 612 =3, 68 4, bi 0

if j> 16, and b$ 0 if j =£ 0 (mod 4). Now y3 1 implies that yi has

j o t. t jp o/qx / eos(27r#) sin (2^#)\order 3 or 1, whence, if we define R (<&) [ ; ; ; each

is a direct sum of matrices (1) or U(l/3). Thus trace.yQ trace. y19 1,
trace. y8 4, + 1 or — 2, and trace. y4 trace. y12 0 or 3. It follows
that L(y) 0 if and only if trace.y4 0 and trace.y8 — 2, i. e., if

^ i t • -i * W/S) \ ^ • • -i * W/3) \and only u y4 is sranlar to I J and y8 is simuar to I pniv\)
C.T.C.Wall has kindly shown me that y8 has an eigenvalue +1; it follows
that L(y) ^0, so y has a fixed point on M. This is a conséquence of:
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5.5.10. Lemma (C. T.C. Wall). Let f be a self-homeomorphism of M
S0(8)/S0(4) x S0(4) such that some power of | is homotopic to 1, and let £s

be the induced linear transformation of H8 (M; R). Then f8 has an eigenvalue + 1.

Proof. Let L= SO(8) and U SO(4) x SO(4), and choose a maximal
torus T of L such that T c U c L. The Weyl groups WL and Wv act
on the elassifying space BT, hence on H*(5/r;R). H*(2?r;R) is a poly-
nominai ring on 4 generators a^. of degree 2. It is well-known to follow from
[1, Prop.30.1] that H*(L/?7; R) is isomorphic to the quotient of the ring Iu
of TFjj-invariant éléments of K*(BT; R) by the idéal l'L generated by the
TTx-invariant éléments of degree > 0. Iv is generated by

x± -f- X2, ^i ^2 » *^3 i *^4 and cc3 ^4 ;

1!L is generated by 27^ x\,'Ei<^ x\x2^ Ei<i<h x\x^x\ and x1x2x3x4t; it foliows that
H*(Jf LjU; R) is the graded algebra on generators a xtx2 + #3#4î
6 xtx2 — ^3^4 and c x\-{- x\ of degree 4 with relations a2 b2 c2

and a6c 0. Thus H*(ikf;R) has an additive basis {1} if / 0, {a, 6, c}
if j 4, {a2, a6, bc, ca} if 8, {a3,63,c3} if j 12, {a4} if / 16, and
zéro otherwise.

Now observe that, for y a,b, or c, H4(ilf; R) is spanned by éléments z
such that z2 y2. We will prove: // 2/€H4(Jtf;R) such that H4(Jf;R) is
spanned by éléments z with the property that z2 y2, then y is a nonzero multiple

of a, b or c. To see this, let y Xa -f- jub + vc, and suppose that
z oca + pb + yc with y2 z2. Then l2 + fi2 + v2 oc2 + ^ + y2, Xju

ocp9 Xv oc y and pv — (3y. It is now easily checked that the éléments z

span H4(Jf ;R) if and only if precisely one of A, ju, v is nonzero.
Suppose that rj is an automorphism of H*(ikf; R). The preceding para-

graph shows that rj(a) is a nonzero multiple of a, b or c. Thus rj(a)2 oca2

with oc > 0. If 97 is of finite order, this implies rj (a)2 rj (a2) a2, whence r\
has an eigenvalue + 1 on H8(ilf; R). The Lemma is now proved by taking
rj to be the automorphism of H*(Jf;R) induced by f. Q.E.D.

5.5.11. M SO(p + q)/8O(p) x SO(j) with p odd, p odd, p>2 and

g > 2. Jkf is the Gbassmann manifold of oriented g-planes in an oriented
Rm, where m 2n p + q. 0(m) acts efïectively on M by isometries, so
G S0(m), ©; 0(m) and J?" 80(p) X 80(g). As p and q are odd,

the symmetry s p- cG', 5 £ whence Gf G v 5-G. If p ^ g,

then jff has no outer automorphism and I(-Jf) G'. If p q, then the
only outer automorphism of JT is the exchange of the two factors SO(p); it
then follows that I(M) G'^p*Gf where p:M->M by #->#x. #x is
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oriented such that x A #x gives the original orientation of Rw. f$ centralizes
G'. As p q is odd, we hâve x A #x — #x A x\ thus /?2 — I eOf.

The Lie algebra © has basis {^}i^<^w where Xl} El} — En, and
the subalgebra & corresponding to K has basis

The Killdstg form on © is proportional to the positive definite form B (X, Y)
— J trace(XF), for both are ^d (G)-invariant forms on ©. Using B for

the metric on M, {Xlj}1^i^p<J-^m is an orthonormal basis of ^}. It foliows that
Q(eh A Aev (cos 0^ + sin ^ekl) A A (cos êq-e3q + sin #tf-e^))a

S #j if | #, | ^ n: and if the ia, together with those &a for which
sin $q t^ 0, form a set of distinct indices.

Let g e G' 0 (m) be a Clifford translation of Jf. Then g e SO (m) by
Lemma 5.3.1. Thus <7 can be conjugated in G' and we can assume g
diag. {-R(#i),..., -R(#n)} where 0 ^ êx ^ ^ #w ^ jr and where
/ cos ^ sin i?\ T _ _ A A mi
\— sin ^ #) ' p "" ^ 63)+1 A * ' ' A6m*

iA... Aew, giving ^(a:, ^(a;))2 #*, so g
is of constant displacement #tt. Thus, permuting basis vectors, we see

fî1 — &2= =ên; let # dénote the common value of the fi3; 0 ^ # ^ n and

flr diag.

// q were 1, i.e., i/ iW t^ere a/i orfrf dimensional sphère, we could say nothing
more about g ; that is why the odd dimensional sphères are the most complicated
Grassmann manifolds from the viewpoint of Clifford translations. As q > 1,

we hâve y ex/\ez/\eb/\e%/\ f\eq+2€M. g (y) (cos^^ + sin#.e2)A
(cos § • e3 + sin # • e4) A e5 A ee A • • • A eq+1 A(cos * • etf+2 + sin ^ • eff+3). If
sin ^t^O, this would give g(y, g (y))2 3 ??2 7^ #2, which is impossible
because (7 is of constant displacement ê. Thus sin î? 0, so g ± /. It
follows that r^ G' c {± /}. Thus r is central in G if p ^q.

If p q^ suppose that y e F^ f}*G', say y (}g with g € G'. y2

/?^/5^r /î2^2 z=z—g^€ F^ G, so g2 ±I. g2 — I would imply that we

could conjugate y and assume $r I * whence y would hâve a fixed
Vp U / (I \

point ep+1 A A622,=m on Jf. Thus g2 I and we may assume g r

We define x e1 A -.. A^ and y (e1 + e,^) A •. A(«P + e2V) cM. If
r_^ ^^0, then y(x) ev+1 A Ae2p and y (y) ± (e1 - ep+1)

A...AK- ep+u)A(eu+1 + e9+u+1)A...A(e9 + et9)9 whence ^(o;,y(^))2
p{nj2)2 and Q(y,y(y))2 u(n/2)2. Thus p ^ and g I. Similarly, if
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t — p v ^ 0, then p v and g — — I. Thus y ± /?. It follows that
fc {i /, zb /?}, and consequently centralizes

5.5.12, M J£e/jD6 x T1. Hère we need only know [11, §90] that 1{M)
has exactly two components. The Etjleb characteristic %(M) is the quotient
of the order 27.34.5 of the Weyl group of E6 by the order 27.3.5 of the Weyl
group of D5 x T1. Thus %{M) 27, so x(Mlr) 27/(order of T) because
M-> M!F is a covering. Thus the order of r divides 27. But F r, G {1}
because rank. G rank. K, whence the order of F divides the order 2 of
I(M)/G. It follows that r {1}, which is central in I(Jf).

5.5.13. M EJAS X At. Hère again wemustknow[ll, §90] that I(M)
— G ^oc»G. G ad(E6), seK, and we may assume that K ^ oc• K is the iso-

tropy subgroup of I (M).
Conjugation by oc induces an outer automorphism of K ; we must check

that it induces an outer automorphism of G. If oc induces an inner
automorphism of G, then we hâve a e G which induces the same automorphism
of G, and thus commutes with s. As the universal covering E6 -> G has

multiplicity 3, we can take sf e E8 over s e G, and cube it if necessary, to
ensure that s'2 1. We define B' {g e E6 : [sf, g] s'gs'g-1 is central in
E6}. Now suppose g e Br ,h [V, g], h ^ 1. Then s'g hgsf, whence

g s's'g s'hgs' hs'gs' hhgs' s' h2g, so h 1 because E6 has
center cyclic order 3. Thus B' is the centralizer of s' in E6. As E6 is simply
connected and s' has order 2, it follows [11, § 101] that B' is connected (also,
see [6, Prop. 3.11]). Br is the full inverse image of the centralizer B of s in
G; B is thus connected. This implies a e K, which is impossible because oc

induces an outer automorphism of K. It follows that oc induces an outer
automorphism of G ad(Ee); this proves that the centralizer of oc in G is
of rank 4.

As Ax has no outer automorphism, oc must centralize a torus T1 c Al9
and oc must induce an outer automorphism of A5. Thus oc centralizes a torus
Tz c A5. It follows that K contains a maximal torus T3'TX î74 of the
centralizer of oc in G. By Lemma 5.3.2, every élément of oc*G has a fixed
point on M, and F ci G. But every élément of G has a fixed point because

rank. G rank. K. Thus J1 {1}, which is central in I(-M).

5.5.14. M E6/(F4 or od(C4)). G E6 and K is either F4 or
Sp(4)/{±/}; l(M) G^s*G because s <t G and K has no outer

automorphism. Thus F c G by Lemma 5.3.1.
Let A be a connected subgroup of type AtxAB in E6 [4, p. 219]; replacing

A by a conjugate we hâve s^s""1 A. Hère 5 is the symmetry at x e Jf ;

7 CMH vol. 37
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it follows that N A (x) is a connectée! totally géodésie submanifold of M
(and thus RiEMANNian symmetric) and that the restriction a-> a\N defines a
homomorphism / : A-+I(N). f(A) Iq(N) because A is connected and semi-
simple, and because f(A) induces every transvection from x along N. Let
D be the center of E6; D is cyclic of order 3, acts freely on M, and is con-
tained in A. It follows that / (D) is a central cyclic subgroup of order 3 in

Let B be the kernel of /. As B c K, rank. B ^ 4; thus B is discrète
or of type Al9 and Iq(N) is either of type Ax X A5 or of type A5. This
implies [9] that the universai RiEMANNian covering of N is a product Nt X JV"2

where Nx is a single point or a sphère S2, and where N2 is a complex Grass-
mann manifold, SU(6)/SO(6) or SU(6)/Sp(3). f(A*K) is the isotropy
subgroup of 1${N) at x, and has rank fg 4; thus N2 is not a complex
Grassmakk manifold. Looking at the various possibilities, now, we see that
f(D) is the center of Iq(N).

Let g e A be a Clifford translation of M. As N is totally géodésie in
M, f(g) is a Cliffokd translation of N. If Nz SU(6)/SO(6), then it
follows that f(g) is central in Iq(N), and we conclude that f(g)ef(D). This
implies that g dk with d e D and k € K; now g € D by Theorem 5.2.2.

Suppose that N2 SU(6)/Sp(3). The projection of N2 into N is one to
one because Iq(N) has a central élément of order 3. Thus N2 A5(x) is a

totally géodésie submanifold of M ; we hâve a projection f : A-> I(^2) given
by restriction; f (A) I0(N2), f(D) is the center of IoC^Vg), and f (g) is a

Clifford translation of N2. 10(^2) is isomorphic to SU(6)/{=h/}; making
the identification and viewing SU(6) as acting on C6, § 5.5.4 provides an
orthonormal basis of C6 for which f (g) ± diag. {a'\ a,..., a). This choice
of orthonormal basis of C6 amounts to a choice of maximal torus in Iq(N2),
which in turn is a choice of maximal torus T5 in the Ah factor of A such
that Th c jT6 where î76 is a maximal torus of A which we may assume to
contain g. If beO normalizes T6, then it follows that /'(bgb'1) ±
±diag. {a,..., a; af;a9...,a}.

Let X be the Lie algebra of the torus T — T* chosen above. E6 has a

subgroup of type D5 X T1 m which î7 is a maximal torus. In particular, X
is a sum II + 93 +908 of 2-dimensional subspaces, and G has éléments u
and v which normalize T, such that ad(u)\u and ad(v)\$ are the identity
transformations, and od(u)\SQ+w and od(v)\u^m are —/. We can make
a choice X of U, 93 or U + 93 such that 3) X^ X5 has the property:
2 <J dim. ^ 3; if y is the corresponding élément, ^, t; or wi? of G, then
/' (ygy1) ± diag. {a,..., a; a'; a,..., a) implies a ar. Thus f for) c/' (D),
and, as with the other possibility of N2,g e D.



Locally symmetric homogeneous spaces 99

Let y e F. Then y e G, so y hgh~x for some A € 6? and some g € A.
g is a Clifford translation of Jf, and we hâve just seen that this implies
geD. Now y g is central in G. Thus 71 is central in

5.5.15. The statement of Theorem 5.5.1 has now been verified for every
compact connected simply connected RiEMAKsrian symmetric space with
simple group of isometries. Q.E.D.

6. The main theorems

6.1. Clifford translations and homogeneity

Our main resuit, an immédiate conséquence of Theorem 3.3, Corollary 4.5.3
and Theorem 5.5.1, is:

Theorem: Let F be the group of deck transformations of the universal
MANNian covering n: M -> N of a complète connected locally symmetric Bie-
MANNian manifold N. Then N is a RiEMANNian homogeneous manifold if and
only if F is a group of Clifford translations of M.

6.2. Symmetry oî locally symmetric homogeneous spaces

From Theorems 3.3 and 5.5.1 we hâve:

Theorem : Let N be a connected locally symmetric RiEMANNian homogeneous

manifold such that, in Cartan's symmetric space décomposition of the universal
RiEMANNian covering manifold of N, none of the compact irreducible factors is
a group manifold, on odd dimensional sphère, a complex projective space of odd

complexdimension >1, SU(2ra)/Sp(ra) with m> 1, or S0(4w + 2)/\](2n+ 1)

with n > 0. Then N is a RiEMANNian symmetric manifold.
As we hâve seen, this theorem does not remain true if we drop any of the

restrictions on the factors of the universal covering manifold of N.

6.3. Clifford translations and symmetry

From Theorems 3.3 and 5.5.1, or from Theorems 6.1 and 6.2, we hâve :

Theorem: Let F be the group of deck transformations of a universal Rie-
MANNian covering n: M -> JV of a complète connected locally symmetric Rie-
MANNian manifold N, and suppose that none of the compact irreducible factors
in Cartan's symmetric space décomposition of M is a group manifold, an odd
dimensional sphère, a complex projective space of odd complex dimension > 1,
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SU(2m)/Sp(w) with m> 1, or S0(4n + 2)/\J(2n + 1) w^A 7i>0. Then N
is a RiEMANNian symmetric manifold if and only if F is a group of Clifford
translations of M.

6.4. The fondamental group of a symmetric space

Theorem: Let N be a RiEMANNian symmetric manifold. Given xeN, the

fundamental group 7tx(N, x) is abelian.

Remark. My original proof depended on a réduction to the case where N is

locally irreducibile and then on the resuits of § 3-5. The proof given below is
due to H. Samelson; it is a considérable improvement.

Proof. It suffices to prove that every élément Çzn^N, x) can be represented
by an arc of a closed géodésie y^ through x. For then the symmetiy sx reverses
orientation of y^ and consequently induces an automorphism £-* C"1 of nx (N, x).
If the transformation a->a~x of a group A is automorphism, then A is abelian.
Thus nx {N, x) will be abelian.

In order to represent f e nx (N, x) by a closed géodésie, we first represent it
by a géodésie arc ôç of minimal length Lç based at x. If rj is the free homotopy
class of C, then homogeneity of N shows that Lç is minimal for the length of
a closed curve representing rj. ï£ ôç had a corner at x, then rounding that
corner would give a représentative of rj of length less than L^, which is
impossible. Thus ôç is an arc of a closed géodésie y^ through x, and the Theorem
is proved. Observe that this paragraph is équivalent to [20, Th. 2].

Q.E.D.

The Institute for Advanced Study
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