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Uber die Aquivalenz 2-adischer quadratischer Formen

von J. W.S. CasseLs, Trinity College, Cambridge (England)

Einleitung
Es sei ;
f(x) = _z'lfijxix:n = (2, s %r)
4, )=

eine quadratische Form mit Koeffizienten f;; aus dem Ringe Z, der gew6hn-
lichen 2-adischen ganzen Zahlen. Die Menge der r-dimensionalen mit Koeffi-
zienten aus Z, gebildeten Vektoren bezeichnen wir mit Zj. Unter der An-
nahme, daf3 die Determinante F von f eine 2-adische Einheit ist, gibt es
einen modulo 2 eindeutig bestimmten Vektor?)

W= (W,..., W) €2y
derart, daB
[(x) =[x, w) = 2 f,z,w; (mod 2)

i, 7§

fir simtliche x e Z] gilt. Der Wert
f(w) (mod 23)
hiangt bekanntlich2?) von der besonderen Wahl von w nicht ab.

Satz 1. Es seien f(x) und g(x) quadratische Formen mitderselben Variabeln-
anzahl r und mit Koeffizienten aus Z,. Man setze

F = det (f;;), @ = det (g;)

und nehme an, F und G seien 2-adische Einheiten. Die folgenden Bedingungen
sind notwendig und hinreichend dafir, daf} f und g dquivalent in bezug auf dem
Korper Q, der 2-adischen Zahlen sind:

(i) F=G@G (mod 23

(ii) f(w) =g(t) (mod 2°)

wobei der Vektor t fiir die Form g dem Vektor w fiir die Form f entspricht.

1) Die Vektoren w sind durch die Bedingung 2:' fi;w; = [y (mod 2) bestimmt, wie man sich

leicht iiberzeugt. (Bemerkung von Herrn Hopf, die Herr Ledermann mir miindlich mitteilte.)
2) Es ist namlich
f(mw + 21) = f(w) + 4f(w, t) + 4/(t) = f(w) (mod 2°)

fiir jedes te Z} (vgl. Ledermann (5)).
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Satz 1 folgt sofort aus dem folgenden Satz 2, unter Benutzung der bekann-
ten Eigenschaften des Minkowski-HAssEschen Symbols (HASSE (2), JoNEs (3),
Watsox (7)).

Satz 2. Esset f(x) eine quadratische Form der in der Einleitung besprochenen

Beschaffenheit. Dann ist
52(1) = (— 1)(f(m)+F—r-—-1)/4 , (1)

wobei ¢,(f) das Mingowskr-Hassesche Symbol mit der von Hasse (2) ange-
gebenen Normierung?) ist.

Anlaf} dieser Arbeit war ein von Herrn HirzEBRUCH Sommer 1961 in Liver-
pool gehaltener Vortrag, worin er dieTheorie der Mannigfaltigkeiten behandelte.
Diese Theorie legte ndmlich gewisse Vermutungen iiber quadratische Formen
nahe, die leicht aus Satz 2 gefolgert werden konnen. Satz 2 steht auch eng mit
den von LEDERMANN (5) und von VAN DER BLiJ (1) bewiesenen Kongruezen
zusammen, die auch der Theorie der Mannigfaltigkeiten ihre Entstehung ver-
danken. (Siehe auch SERRE (4)).

Beweis von Satz 2

Hilfssatz 1. Mt der in Satz 1 eingefithrien Bezeichnungsweise seien f(x) und
g(x) Zy-dquivalentt). Dann ist

f(w) =g(t) (mod 23).
Bewezs: Klar.

Hilfssatz 2. Satz 2 st fir r = 1 richirg.
Beweis: Klar.
Hilfssatz 3. Satz 2 ist fiir eine Form der Gestalt

f(zy, 29) = 2023 + 22, 2, + 2b2]  (a,b € Zy)
richtig.
Beweis: Man kann w = (0, 0) setzen. Dadurch wird die rechte Seite von
(l) zu (_ l)ab—-l

3) Das heiit E,( z aja:?) = II (a, a;)y. (Vgl. auch Witt (8)). Mit (a;, a;), bezeichnen wir
1<i<r i<j
das Hilbertsche Normenrestsymbol.
4) Z,-aquivalent bedeutet: es gibt eine Transformation y, = E’pii z; (p;;€ Z;) derart, daB
i

(1)/(y) = g(x) ist und (ii) die umgekehrte Transformation, etwa z; = 2'¢;;y; auch Koeffizienten
g;; aus Z; besitzt. Die zweite Bedingung ist gleichbedeutend damit, da8 det(p;) eine 2-adische
Einheit ist.
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f(xy, 25) = 2“(3’1 +‘g%) - “oa Ty

folgt aber den bekannten Eigenschaften des HiLBERTschen Symbols geméis

- dab—1 4dab—1 4ab — 1
() = (20, 2ay (22020, 2L (5g, 2402 1)

2a
4ab — 1
= (2a, — 1)2(——————2a , — 1)2 (2a, 1 — 4ab),
= (4ab — 1, — 1), (2,1 — 4ab),
= — (2,1 — 4ab),
= (— 1)%-1 w.z.b.w.

Hilfssatz 4. Es gelte Saiz 2 fiir die Formen f(x) bzw. g(y) in den r bzw. s
Variabeln x = (x,,...,2,) bzw. vy= (¥, ...,Y,) . Dann gilt er auch fir die Form

f+9=1#+g()
wn den r + s Variabeln (x, 1)
Beweis: Bekanntlich?®) ist

c(f +9) = (F, Q) Z2(’) cx(g)

wobei F bzw. @ die Determinante von f bzw. ¢ ist. Es geniigt also, die
Formel

y(f+9)=F, Gy{f)r(g) (2)

zu beweisen, wobei y(f) die rechte Seite von (1) bezeichnet. Es entspreche der
Vektor t fiir ¢ dem Vektor w fiir f : somit ist (w,t) ein entsprechender
Vektor fiir f 4 g. Die Formel (2) folgt also jetzt unmittelbar aus der be-
kannten Gleichung

(F,@)y=(— 1)F-DE-DA (F =G =1 (mod 2))

Hilfssatz 5. Jede Form f(x) der in Satz 2 angegebenen Beschaffenheit 18t mit
etner Form g(x) folgender Gestalt Z,-dquivalent:
g(x) = X gk(xk)’ = (xl» X2,.. 4, xK) ’
1<k<K
wobei jede Form g, (x,) entweder nur eine Variable enthilt oder eine von den in
Hilfssatz 3 behandelten Formen 1ist.

Beweis. Wiren die p-adischen Zahlen ihm bekannt gewesen, so hitte schon
Minkowskr (6) diesen Hilfssatz ausgesprochen. Der Vollsténdigkeit halber

8) Hassg (2), Formel (12) auf Seite 214.
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geben wir den einfachen Beweis wieder. Er verliuft mit vollstindiger Induk-
tion nach der Variablenanzahl.

Erster Fall. Es gibt etn Diagonalglied, etwa f,,, das eine 2-adische Einhett ist.
Dann ist

f(x) = fllx;.z —I— fl(x2s tre xi‘)’ xi = xl +_]_‘1—2—x2 + R +j_1_r—xr’
fll fll
wobei die f,;/f;; dem Ringe Z, angehoren. Somit sind die Koeffizienten der
Form f, aus den r — 1 Variablen z,, ..., x, auch Elemente aus Z,.

Zweiter Fall. Sdamtliche Diagonalgiveder sind gerade. Da det(f,;) eine Einheit
ist, so muf} es ein Glied, etwa f,, geben, welches eine Einheit ist. Man bestimme
u;, v; durch die beiden Gleichungen

fut; + fev; = fis fie; + fav; = fo -

Die wu;,v; gehoren dem Ringe Z, an, da die Determinante f,f, — f3, der
Gleichungen wegen f; = fss = 0, f;s = 1 eine Einheit ist. Man setze

|

Ty =X + U %y + ... + w2,

Ly = f12(x2 "[— U3 3 + s o "I" vrxr)

gu (21, 23) = fua® + 2% @5 + fi3” a2y’ .
Somit ist

f(x) = 91(93%’ xé) + fil#s, -, @)

wobei die Koeffizienten sowohl von ¢, als von f; in Z, liegen.
Jetzt folgt Satz 2 unmittelbar aus den Hilfssdtzen 1 bis 5.
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