Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 37 (1962-1963)

Artikel: Über die Äquivalenz 2-adischer quadratischer Formen.

Autor: Cassels, J.W.S.

DOI: https://doi.org/10.5169/seals-28607

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über die Äquivalenz 2-adischer quadratischer Formen

von J. W. S. Cassels, Trinity College, Cambridge (England)

Einleitung

Es sei

$$f(\mathfrak{x}) = \sum_{i,j=1}^{r} f_{ij} x_i x_j, \quad \mathfrak{x} = (x_1, \ldots, x_r)$$

eine quadratische Form mit Koeffizienten f_{ij} aus dem Ringe \mathbb{Z}_2 der gewöhnlichen 2-adischen ganzen Zahlen. Die Menge der r-dimensionalen mit Koeffizienten aus Z_2 gebildeten Vektoren bezeichnen wir mit Z_2^r . Unter der Annahme, daß die Determinante F von f eine 2-adische Einheit ist, gibt es einen modulo 2 eindeutig bestimmten Vektor¹)

$$\mathfrak{w}=(w_1,\ldots,w_r)\in Z_2^r$$

derart, daß

$$f(\mathbf{x}) \equiv f(\mathbf{x}, \mathbf{w}) = \sum_{i,j} f_{ij} x_i w_j \pmod{2}$$

für sämtliche $\mathfrak{x} \in \mathbb{Z}_2^r$ gilt. Der Wert

$$f(\mathfrak{w}) \pmod{2^3}$$

hängt bekanntlich²) von der besonderen Wahl von w nicht ab.

Satz 1. Es seien f(x) und g(x) quadratische Formen mit derselben Variabelnanzahl r und mit Koeffizienten aus \mathbb{Z}_2 . Man setze

$$F = \det (f_{ij}), G = \det (g_{ij})$$

und nehme an, F und G seien 2-adische Einheiten. Die folgenden Bedingungen sind notwendig und hinreichend dafür, daß f und g äquivalent in bezug auf dem Körper Q_2 der 2-adischen Zahlen sind:

(i)
$$F \equiv G \pmod{2^3}$$

(ii) $f(\mathfrak{w}) \equiv g(\mathfrak{t}) \pmod{2^3}$

(ii)
$$f(\mathfrak{w}) \equiv g(\mathfrak{t}) \pmod{2^3}$$

wobei der Vektor t für die Form g dem Vektor w für die Form f entspricht.

2) Es ist nämlich

$$f(\mathfrak{w}+2\mathfrak{t})=f(\mathfrak{w})+4f(\mathfrak{w},\mathfrak{t})+4f(\mathfrak{t})\equiv f(\mathfrak{w})\ (\mathrm{mod}\ 2^8)$$

für jedes $t \in \mathbb{Z}_2^r$ (vgl. Ledermann (5)).

¹⁾ Die Vektoren $\mathfrak w$ sind durch die Bedingung $\sum\limits_i f_{ij} w_j \equiv f_{ii} \pmod 2$ bestimmt, wie man sich leicht überzeugt. (Bemerkung von Herrn Hopf, die Herr Ledermann mir mündlich mitteilte.)

Satz 1 folgt sofort aus dem folgenden Satz 2, unter Benutzung der bekannten Eigenschaften des Minkowski-Hasseschen Symbols (Hasse (2), Jones (3), Watson (7)).

Satz 2. Es sei f(x) eine quadratische Form der in der Einleitung besprochenen Beschaffenheit. Dann ist

$$\overline{c}_2(f) = (-1)^{(f(w)+F-r-1)/4},$$
 (1)

wobei $\overline{c}_2(f)$ das Minkowski-Hassesche Symbol mit der von Hasse (2) angegebenen Normierung³) ist.

Anlaß dieser Arbeit war ein von Herrn Hirzebruch Sommer 1961 in Liverpool gehaltener Vortrag, worin er die Theorie der Mannigfaltigkeiten behandelte. Diese Theorie legte nämlich gewisse Vermutungen über quadratische Formen nahe, die leicht aus Satz 2 gefolgert werden können. Satz 2 steht auch eng mit den von Ledermann (5) und von van der Blij (1) bewiesenen Kongruezen zusammen, die auch der Theorie der Mannigfaltigkeiten ihre Entstehung verdanken. (Siehe auch Serre (4)).

Beweis von Satz 2

Hilfssatz 1. Mit der in Satz 1 eingeführten Bezeichnungsweise seien f(x) und g(x) Z_2 -äquivalent⁴). Dann ist

$$f(\mathfrak{w}) \equiv g(\mathfrak{t}) \pmod{2^3}$$
.

Beweis: Klar.

Hilfssatz 2. Satz 2 ist für r = 1 richtig.

Beweis: Klar.

Hilfssatz 3. Satz 2 ist für eine Form der Gestalt

$$f(x_1, x_2) = 2ax_1^2 + 2x_1x_2 + 2bx_2^2 \quad (a, b \in Z_2)$$

richtig.

Beweis: Man kann $\mathfrak{w} = (0, 0)$ setzen. Dadurch wird die rechte Seite von (1) zu $(-1)^{ab-1}$

³) Das heißt c_2 ($\sum_{1 \leq j \leq r} a_j x_j^2$) = $\prod_{i \leq j} (a_i, a_j)_2$. (Vgl. auch Witt (8)). Mit $(a_i, a_j)_2$ bezeichnen wir das Hilbertsche Normenrestsymbol.

⁴⁾ Z_2 -äquivalent bedeutet: es gibt eine Transformation $y_2 = \sum p_{ij} x_j$ $(p_{ij} \in Z_2)$ derart, daß $(i)f(\mathfrak{y}) = g(\mathfrak{x})$ ist und (ii) die umgekehrte Transformation, etwa $x_i = \sum q_{ij} y_j$ auch Koeffizienten q_{ij} aus Z_2 besitzt. Die zweite Bedingung ist gleichbedeutend damit, daß $\det(p_{ij})$ eine 2-adische Einheit ist.

Aus

$$f(x_1, x_2) = 2a\left(x_1 + \frac{x_2}{2a}\right)^2 + \frac{4ab - 1}{2a}x_2^2$$

folgt aber den bekannten Eigenschaften des Hilbertschen Symbols gemäß

$$\overline{c}_{2}(f) = (2a, 2a)_{2} \left(\frac{4ab - 1}{2a}, \frac{4ab - 1}{2a}\right)_{2} \left(2a, \frac{4ab - 1}{2a}\right)_{2} \\
= (2a, -1)_{2} \left(\frac{4ab - 1}{2a}, -1\right)_{2} (2a, 1 - 4ab)_{2} \\
= (4ab - 1, -1)_{2} (2, 1 - 4ab)_{2} \\
= -(2, 1 - 4ab)_{2} \\
= (-1)^{ab-1} \qquad \text{w.z.b.w.}$$

Hilfssatz 4. Es gelte Satz 2 für die Formen $f(\mathbf{x})$ bzw. $g(\mathbf{y})$ in den r bzw. s Variabeln $\mathbf{x} = (x_1, \ldots, x_r)$ bzw. $\mathbf{y} = (y_1, \ldots, y_s)$. Dann gilt er auch für die Form

$$f + g = f(\mathfrak{x}) + g(\mathfrak{y})$$

in den r + s Variabeln (x, y)

Beweis: Bekanntlich⁵) ist

$$\overline{c}_2(f+g) = (F, G)_2 \overline{c}_2(f) \overline{c}_2(g)$$

wobei F bzw. G die Determinante von f bzw. g ist. Es genügt also, die Formel

$$\gamma(f+g) = (F,G)_2 \gamma(f) \gamma(g) \tag{2}$$

zu beweisen, wobei $\gamma(f)$ die rechte Seite von (1) bezeichnet. Es entspreche der Vektor \mathfrak{t} für g dem Vektor \mathfrak{w} für f: somit ist $(\mathfrak{w},\mathfrak{t})$ ein entsprechender Vektor für f+g. Die Formel (2) folgt also jetzt unmittelbar aus der bekannten Gleichung

$$(F, G)_2 = (-1)^{(F-1)(G-1)/4} \quad (F \equiv G \equiv 1 \pmod{2})$$

Hilfssatz 5. Jede Form f(x) der in Satz 2 angegebenen Beschaffenheit ist mit einer Form g(x) folgender Gestalt Z_2 -äquivalent:

$$g(\mathbf{x}) = \sum_{1 < k < K} g_k(\mathbf{x}_k), \, \mathbf{x} = (\mathbf{x}_1, \, \mathbf{x}_2, \dots, \, \mathbf{x}_K),$$

wobei jede Form $g_k(\mathfrak{x}_k)$ entweder nur eine Variable enthält oder eine von den in Hilfssatz 3 behandelten Formen ist.

Beweis. Wären die p-adischen Zahlen ihm bekannt gewesen, so hätte schon Minkowski (6) diesen Hilfssatz ausgesprochen. Der Vollständigkeit halber

⁵⁾ Hasse (2), Formel (12) auf Seite 214.

geben wir den einfachen Beweis wieder. Er verläuft mit vollständiger Induktion nach der Variablenanzahl.

Erster Fall. Es gibt ein Diagonalglied, etwa f_{11} , das eine 2-adische Einheit ist. Dann ist

$$f(\mathbf{x}) = f_{11}x_1^{2} + f_1(x_2, \ldots, x_r), \ x_1' = x_1 + \frac{f_{12}}{f_{11}}x_2 + \ldots + \frac{f_{1r}}{f_{11}}x_r,$$

wobei die f_{1j}/f_{11} dem Ringe Z_2 angehören. Somit sind die Koeffizienten der Form f_1 aus den r-1 Variablen x_2, \ldots, x_r auch Elemente aus Z_2 .

Zweiter Fall. Sämtliche Diagonalglieder sind gerade. Da $\det(f_{ij})$ eine Einheit ist, so muß es ein Glied, etwa f_{12} geben, welches eine Einheit ist. Man bestimme u_j, v_j durch die beiden Gleichungen

$$f_{11}u_j + f_{12}v_j = f_{1j}$$
, $f_{12}u_j + f_{22}v_j = f_{2j}$.

Die u_j , v_j gehören dem Ringe Z_2 an, da die Determinante $f_{11}f_{22} - f_{12}^2$ der Gleichungen wegen $f_{11} \equiv f_{22} \equiv 0$, $f_{12} \equiv 1$ eine Einheit ist. Man setze

$$x'_{1} = x_{1} + u_{3}x_{3} + \ldots + u_{r}x_{r}$$

$$x'_{2} = f_{12}(x_{2} + v_{3}x_{3} + \ldots + v_{r}x_{r})$$

$$g_{1}(x'_{1}, x'_{2}) = f_{11}x'_{1}^{2} + 2x'_{1}x'_{2} + f_{12}^{-2}f_{22}x'_{2}^{2}.$$

Somit ist

$$f(\mathbf{x}) = g_1(x_1^1, x_2^1) + f_1(x_3, \ldots, x_r)$$

wobei die Koeffizienten sowohl von g_1 als von f_1 in Z_2 liegen. Jetzt folgt Satz 2 unmittelbar aus den Hilfssätzen 1 bis 5.

LITERATURVERZEICHNIS

- [1] F. VAN DER BLIJ, An invariant of quadratic forms modulo 8. Proc. Kon. Ned. Akad. Wet. Amsterdam 52 (1959) (= Indag. Math. 21 (1959), 291-293.
- [2] H. HASSE, Über die Äquivalenz quadratischer Formen im Körper der rationalen Zahlen. J. reine angew. Math. 152 (1923), 205-224.
- [3] B.W. Jones, The arithmetic theory of quadratic forms (Carus Math. Monograph Nr. 10, 1950).
- [4] J.-P. Serre, Formes bilinéaires symétriques entières à discriminant \pm 1. Séminaire Henri Cartan 14 (1961-2), n° 14-15.
- [5] W. LEDERMANN, An arithmetic property of quadratic forms. Comment. Math. Helv. 33 (1959)
- [6] H. Minkowski, Grundlagen für eine Theorie der quadratischen Formen (Pariser Preisschrift). Werke Bd. 1, 3-144.
- [7] G.L. Watson, Integral quadratic forms. (Cambridge Math. Monograph Nr. 51, 1960.)
- [8] E.Witt, Theorie der quadratischen Formen in beliebigen Körpern. J. reine angew. Math. 176 (1936), 31-44.

(Eingegangen den 8. Februar 1962)