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Uber die Âquivalenz 2-adischer quadratischer Formen

von J. W. S. Cassels, Trinity Collège, Cambridge (England)

Einleitung
Es sei r

f(x) E ftjx,x3, x (xl9 ...9xr)

eine quadratische Form mit Koeffizienten ftJ aus dem Ringe Z2 der gewohn-
lichen 2-adischen ganzen Zahlen. Die Menge der r-dimensionalen mit
Koeffizienten aus Z2 gebildeten Vektoren bezeichnen wir mit Z\. Unter der An-
nahme, daB die Déterminante F von / eine 2-adische Einheit ist, gibt es

einen modulo 2 eindeutig bestimmten Vektor1)

XX) (wl9..., wr) <lZ\
derart, daB

f(x) /(ï, m) ZUi*t*>, (mod 2)

fur samtliche x * Zr2 gilt. Der Wert

f{m) (mod 23)

hangt bekanntlich2) von der besonderen Wahl von to nicht ab.

Satz 1. Es seien f(x) und g(x) quadratische Formen mit derselbenVariabeln-
anzahl r und mit Koeffizienten aus Z2. Man setze

F= det (/„), G= det (gl9)

und nehme an, F und G seien 2-adische Einheiten. Die folgenden Bedingungen
sind notwendig und hinreichend dafur, daji f und g aquivalent in bezug auf dem

Korper Q2 der 2-adischen Zahlen sind:

(i) F G (mod 23)

(ii) f(w)=g(t) (mod 23)

wobei der Vektor t fur die Form g dem Vektor xo fur die Form f entspricht.

a) Die Vektoren to sind duroh die Bedmgung £ ftjW3 fn (mod 2) bestimmt, wie man sich

leicht uberzeugt. (Bemerkung von Herrn Hopf, die Herr Ledermann mir mundlich mitteilte.)
2) Es ist namlich

f(m + 2t) f(m) + 4/(tD, t) + 4/(t) s /(to) (mod 28)

fur jedes ïeZ^ (vgl. Ledermann (5)).
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Satz 1 folgt sofort aus dem folgenden Satz 2, unter Benutzung der bekann-
ten Eigenschaften des MiNKOWSKi-HASSEschen Symbols (Hasse (2), Jones (3),
Watson (7)).

Satz 2. Es sei f (x) eine quadratische Form der in der Einleitung besprochenen
Beschaffenheit. Dann ist

(/()p-1)/4, (1)

wobei c2(/) dos MiNKOwsKi-HASSESche Symbol mit der von Hasse (2) ange-
gebenen Normierung3) ist.

AnlaB dieser Arbeit war ein von Herrn Hirzebruch Sommer 1961 m Liver-
pool gehaltener Vortrag, worin er die Théorie der Mannigfaltigkeiten behandelte.
Dièse Théorie legte namlich gewisse Vermutungen uber quadratisehe Formen
nahe, die leicht aus Satz 2 gefolgerb werden konnen. Satz 2 steht auch eng mit
den von Ledermann (5) und von van der Blij (1) bewiesenen Kongruezen
zusammen, die auch der Théorie der Mannigfaltigkeiten ihre Entstehung ver-
danken. (Siehe auch Serre (4)).

Beweis von Satz 2

Hilfssatz 1. Mit der in Satz 1 eingefuhrten Bezeichnungsweise seien f(x) und
g(x) Z2-aquivalenté) Dann ist

f(w)=g(t) (mod23).
Beweis: Klar.

Hilfssatz 2. Satz 2 ist fur r 1 richtig.

Beweis: Klar.

Hilfssatz 3. Satz 2 ist fur eine Form der Gestalt

+ 2xt x2 + 2bx\ (a, b € Z2)

richtig.

Beweis: Man kann m (0, 0) setzen. Dadurch wird die rechte Seite von

*) Das heifit c2( 27 a^) — IT (a%t a,)%. (Vgl. auch Witt (8)). Mit {a%9 aj)t bezeichnen wir
l<7<f »<;

das Hilbertsche Normenrestsyxnbol.
4) Z2-âqiuvalent bedeutet : es gibt eine Transformation y% £vtj xj (Ptj * ^2) derart, dafi

(i)f(X)) g(x) ist und (11) die umgekehrte Transformation, etwa x% — Zq^Vj auch Koeffizienten
qtj aus Z% besitzt. Die zweite Bedingung ist gleichbedeutend damit, daû det {ptj) eine 2-adische
Einheit ist.
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folgt aber den bekannten Eigenschaften des HiLBERTsehen Symbols gemaB

c2(/) (2a, 2a)2(—__,

(2a, - 1)2(—^ - l)2 (2a, 1 - 4a&)2

(4a6 - 1, - 1)2 (2, 1 - 4aô)2

-(2,1- 4a&)2

(- l)**-1 w.z.b.w.

Hilfssatz 4. Es gelte Satz 2 fur die Formen f(x) bzw. g(ï)) in den r bzw. s

Variabeln x {xx,..., xr) bzw. t) (y1,..., y8). Dann gilt er auch fur die Form

in den r + s Variabeln (x,ï))
Beweis: Bekanntlich5) ist

wobei F bzw. G die Déterminante von / bzw. g ist. Es geniigt also, die
Formel

y(f + 9) (F,G)2y(f)y(g) (2)

zu beweisen, wobei y(f) die reehte Seite von (1) bezeichnet. Es entspreehe der
Vektor t fur g dem Vektor xo fur / : somit ist (trj, t) ein entsprechender
Vektor fur f + g. Die Formel (2) folgt also jetzt unmittelbar aus der
bekannten Gleiehung

(if, Q)t (- i)C*-i><0-i>/4 (F G 1 (mod 2))

Hilfssatz 5. Jede Form f(x) der in Satz 2 angegebenen Beschaffenheit ist mit
einer Form g(x) folgender Gestalt Z2-âquivalent:

g(x)= Z sr*(x*), s ta, *a,...,*z),
wobei jede Form gk(xk) entweder nur eine Variable enthâlt oder eine von den in
Hilfssatz 3 behandelten Formen ist.

Beweis. Wâren die p-adischen Zahlen ihm bekannt gewesen, so hâtte schon

Minkowski (6) diesen Hilfssatz ausgesproehen. Der Vollstândigkeit halber

«) Hassb (2), Formel (12) auf Seite 214.
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geben wir den einfachen Beweis wieder. Er verlàuft mit vollstândiger Induk-
tion nach der Variablenanzahl.

Erster Fail. Es gibt ein Diagonalglied, etwa fn, das eine 2-adische Einheit ist.
Dann ist

fux? + /i(*a> • • • > Xr)> x'i xi + T^x* + • ' * + T1-^*/ii /ii
wobei die f^/fu dem Ringe Z2 angehôren. Somit sind die Koeffîzienten der
Form fx aus den r — 1 Variablen x2, xr auch Elemente aus Z2.

Zweiter Fall. Sdmtliche Diagonalglieder sind gerade. Da det(/^) eine Einheit
ist, so muB es ein Glied, etwa /12 geben, welches eine Einheit ist. Man bestimme

Uj, v} durch die beiden Gleiehungen

inU, + fv*vi ho » /i2^ + /ffiî>, /2i •

Die ^, ^ gehôren dem Ringe Z2 an, da die Déterminante /n/22 — /12 der
Gleiehungen wegen /u /22 0, /12 1 eine Einheit ist. Man setze

Somit ist

wobei die Koeffizienten sowohl von gx als von fx in Z2 liegen.
Jetzt folgt Satz 2 unmittelbar aus den Hilfssàtzen 1 bis 5.
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(Eingegangen den 8. Februar 1962)

xi + %^a + • • • + urxr
/l2(^2 + ^3^3 + • • • + Vr

(X'l, X2) /il ^i2 + 2^i ^2 +
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