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A remark on the moduli of rings

F. W. GEHRING

1. Modulus of a ring. A finite doubly-connected plane domain is called a ring.
Given any ring R we let C, and C, denote, respectively, the bounded and un-
bounded components of the complement of R in the extended plane. We
further let B, = 9C, and B, = 9C,, where d E denotes the boundary of
the set £. B, and B, are then the components of dR.

Each ring R in the z-plane can be mapped conformally by w(z) onto an an-
nulus 0 <a<|w|<b< oo so that B, corresponds to |w|=a and B,
to |w| = b1). The conformal invariant

mod R = log% (1)

is called the modulus of R. When B, and B, are both non-degenerate, 0 < a <
b < oo and the function

(2)

is harmonic in R with boundary values 0 on B, and 1 on B,. It is also easy to
verify that

2n g
od R ~--%Hvul do .
If we now appeal to the DIRICHLET principle, we obtain
2x .
— 2 2
AR 1101fj1'if|vv| do , (3)

where v is any function which is continuously differentiable in B and has
boundary values 0 on B, and 1 on B,. When B, or B, reduces to a point,
mod B = co and the infimum on the right hand side of (3) is 0. Hence (3)
yields an alternative definition for the modulus of a ring which does not
depend upon conformal mapping.

It is sometimes convenient to work with a slightly larger class of competing
functions v. For example if v satisfies a LipscHITZ condition on each compact

1) See p. 203 of [4].
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subset of R, then v is differentiable almost everywhere in R. If, in addition,
v bas boundary values 0 on B, and 1 on B,, we can apply GREEN’s theorem to

show that

ot S {f1voltdo ) (4)

Hence the infimum in (3) can be taken over the class of all such functions v.

2. Continuity of the modulus. A sequence of sets { K, } is said to converge
uniformly to a set K if, for each &> 0, there exists an N such that n > N
implies each point of E, lies within distance ¢ of £ and each point of  lies
within distance ¢ of K, .

In the preceding paper [2] VAIsiLA and I appealed to the following conti-

nuity property of mod R.

Theorem. Let {R,} be a sequence of rings and let R be a bounded ring. If
each of the components of d R, converges uniformly to the corresponding component
of OR, then

mod B = lim mod R, 3) . (5)

n—>oo

It is easy to establish this result by a direct argument in the special cases
we required, that is when R is bounded by concentric rectangles or by concen-
tric ellipses. I present here an elementary proof for the general case where R

is an arbitrary bounded ring.

3. The proof depends upon an equicontinuity property for the harmonic func-
tions  defined in (2). (See also p. 386 in [5].)

Lemma 1. Let 0 <a < b, let R be a bounded ring and let the diameter of B,
exceed b. Let u be the harmonic function defined in (2) and extend u 8o that u 18 0

on Cyand 1 on C,%). Then

| w(z)) —u(z) | < (6)
whenever |z, — 2, | < a, where
c= Zn(modR-log—g—)_%. (7)

Proof. Fix z, and 2, so that |z, —2,| <a.Since 0 <wu(z), u(z) <1,
we may clearly assume that ¢ < 1 for otherwise (6) follows trivially.

?) This follows, for example, from the proof of Theorem 4.3 in [3].
3) The restriction that R be bounded can be omitted by redefining the notion of uniform con-

vergence in terms of the metric on the RIEMANN sphere.
%) The fact that R is bounded implies that B, is also non-degenerate.



44 F.W. GEHRING

Now let y = y (r) denote the circle with center 1(z, + 2z,) and radius 7,
r > 0. By the ScHWARZ inequality

( f |vul|ds)® < 2ar [ |vu|2ds
y~R R

Y

and, with FuBINT’s theorem, we obtain

1 dr (27)2
11rj’a(y;f\Rlv'u,ld.s)z—;—— < 2nj1'2j'|vu|2da = od B

Hence there exists an r, La <r <1b, for which

J |vulds <c .
y~R

Suppose that the corresponding circle y lies in R. Since the diameter of ¢
is less than that of B,, R contains 2, the disk bounded by y. Thus u satisfies
the maximum principle in A and

|u(z,) — u(zy)| <oscu < f|lvu|ds <c,
14 7
as desired.

Next suppose that y meets both B and C,. Then y ~ R is the union of open

arcs « and, since

oscu < f |vulds <c<1,
"t y~R

it follows that y does not meet C,. Thus each « has its endpoints in B, and hence

supu < ¢ .
7
We see d(a~R) cyv B, and, since u satisfies the maximum principle in
A~ R and vanishes on A ~C, and B,,
|u(2) — u(zy) | < sup u = supu <c .
ANnER 4

A slight modification of the above argument handles the case where y meets
R and C,.

Finally suppose that y is contained in a component of the complement of R.
The fact that the diameter of y is less than that of B, implies a lies in the same
component. Hence u(z;) = u(z,) and the proof is complete.

4. We now use Lemma 1 to establish the following result.

Lemma 2, Let 0<a<b and let R and R' be bounded rings with boundary
components B,, B, and By, B;, respectively. Let all points of By and Bj lie within
distance a of B, and B,, respectively, and let the diameter of B, exceed b. Then
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mod R’ > (1 — 4¢) mod R, (8)
where ¢ 138 as in (7).
Proof. We may assume that ¢ < } for otherwise (8) follows trivially. Now

let % be the harmonic function defined in (2) and extend % so that % is 0 on C,
and 1 on C,. Then define v as follows:

0 if u<c,
U — C
= -— - g 1 —
v T—_—p if c<u< c,
1 if 1—c<u.

The set where ¢ <u# <1 — ¢ is a compact subset of R. Hence u satisfies
a LipscHITZ condition at each point of this set. From this it follows that v
satisfies a LipscHITZ condition at all points of the ring R’. Next let 2’ be a
point of By. By hypothesis 2’ lies within distance a of some point z of B, and
Lemma 1 yields %(2') = w(2') —u(z) <c¢ . Thus v is 0 on B;. Arguing
similarly we see that v is 1 on B;. From (4) it follows that

27 - 2 (1 — 90)-2_ 2T
mgy’]vvlzdog(l——2c)2g|vul do = (1 — 2¢) o d B

and, since 1 — 4¢ <(1 — 2¢)2, we obtain (8) as desired.

b. Proof of the theorem. Suppose first that B, is non-degenerate and let
B,, , and B, , denote the boundary components of E,. Then mod R < oo
and we can find a sequence {a,}, @,> 0, and a number b > 0 with the
following properties. All points of B, , and B, , lie within a, of B, and
B, respectively, the diameter of B, exceeds b, and a,— 0. Lemma 2 then
yields mod R, > (1 — 4c¢,) mod R for large n, where

g, == 2at<modR . logé)—)_% "

n

and, since ¢,—> 0, we obtain
lim inf mod R, > mod R . (9)

n—> oo

The uniform convergence next implies the existence of a second sequence
{a,}, a, >0, such that all points of B, and B, lie within a, of B, ,
and B, , respectively and a,— 0. Since the diameter of B, , eventually
exceeds b, mod R > (1 — 4c,) mod R, for large n, where

cn = 2n (moan . log-zf—,—)_% .
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Inequality (9) implies that ¢, — 0. Hence
lim sup mod R, < mod R

n —> o0
and we obtain (5) for the case where B, is non-degenerate.
Now suppose that B, reduces to a point P, let r, be the radius of the smallest
closed disk with center at P and containing B, , , and let d, be the distance
from P to B, ,. Then mod B = co and

mod R, > log—g—”——-> co .

n

Hence we again obtain (5) and this completes the proof of the theorem.

6. Remarks. This result can also be proved directly using theorems on con-
formal mapping. On the other hand the above method can be used to establish
the same continuity property for the moduli of rings in space [1].

Finally examining the above argument we can split up the hypotheses and
conclusions for the theorem as follows.

If, for each ¢ > 0, there exists an N such that m > N implies the points of
each component of 0R, lie within distance ¢ of the corresponding component of
OR, then

mod R < lim inf mod R, .

n—>o
If, for each € > 0, there exists an N such that n > N implies the poinis of

each component of dR lie within distance ¢ of the corresponding component of
oR,, then

mod B > lim sup mod R, .

7n—> 00

It is clear that neither of the above inequalities can be replaced by equality .
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