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Vincenr's Conjecture on Crirrorp Translations of the Sphere

by JosepH A. WoLF?, Princeton (N.J.)

I. Introduction and statements of theorems

G. VINCENT has suggested the possibility that every finite group of CLIFFORD
translations of a sphere is either cyclic or binary polyhedral [2, § 10.5]. In a
recent Comptes rendus note [3] I stated that this is the case; the purpose of
this note is to supply a proof.

S” is the unit sphere in Eucripean space R"t!, and carries the induced
RiemaNnNian structure ; hence the group of isometries of S* is the orthogonal
group O(n + 1). Recall that an isometry f of S is a Crirrorp translation
if the distance between a point x ¢ S and its image f(x) is independent of
2. This just means that either f = + / (/ = identity) or » + 1 = 2m and
there is a unimodular complex number A such that f has m eigenvalues

equal to 4 and m eigenvalues equal to the complex conjugate 1 of A.

We recall the binary polyhedral groups. The polyhedral groups are the
dihedral groups 9,,, the tetrahedral group 7, the octahedral group O
and the icosahedral group J7—the respective groups of symmetries of the
regular m-gon, the regular tetrahedron, the regular octahedron and the regular
icosahedron. Each polyhedral group can, in a natural fashion, be considered
as a subgroup of the special orthogonal group SO(3). Let & : Spin(3) - S0O(3)
be the universal covering. The binary polyhedral groups?) are the binary di-
hedral groups DF = n~1(D,,), the binary tetrahedral group T* = n~1(T),
the binary octahedral group O* = n~1(0), and the binary icosahedral group
T* = q~1(T).

We can now state

Theorem 1 (conjectured by Vincenr). If T s a finite group of Crirrorp
translations of a sphere, then T 1is either a cyclic group or a binary polyhedral
group.

In fact, one can add

Theorem 2. Let I be a finite group of Crirrorp translations of a sphere
S* < R+, If T 18 cyclic of order 1 or 2,then T = {I} or {+1}. If T 13
cyclic of order q > 2, then n+ 1 iseven (say n+ 1 = 2s) and T 1is the

1) This work was done while the author held a National Science Foundation fellowship.
%) This definition was brought to my attention by J. Trrs.
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wmage of a representation @ of the abstract cyclic group Z, where A 1is a
generator of Z, and o s SO(2s)-equivalent to the representation

R(t/s)
At — i _ , R(O)= (

cos (27 0) sin (2n0)>
"R(t/s)

— 8in(2x0) cos(2x0)

If T s binary polyhedral and noncyclic, then 4 divides n + 1 (say n+ 1= 4s)
and I s the image of a representation o of an abstract binary polyhedral
group P* L T where g9 ts SO(4s)-equivalent to a sum of s copies of the
S O (4)-representation

P* < Spin(3) = SU(2) c SO4) .

Finally, the images of these representations are finite groups of Crirrorp trans-
lations of S™.
Using Theorem 2 we will prove

Theorem 3. Let T be a finite group of Crirrorp translations of a sphere
S* < R™. Then the centralizer of T wn O(n + 1) s transitive on S™.

Theorem 4. Let T be a finite subgroup of O(n + 1). Then these are equi-
valent:

(1) T <8 a group of Crirrorp translations of S™.

(2) T <s the tmage, by one of the representations described in Theorem 2, of
a cyclic or binary polyhedral group.

(3) The centralizer of T in O(n -+ 1) s transitive on S™.

(4) The quotient S™/T s a Riemannian homogeneous manifold.

I1. Proof of VINCENT’s conjecture

We must give an abstract characterization of finite groups of CLIFFORD
translations of a sphere.

Definition. Let ¢: T — U(q) be a faithful unitary representation of an
abstract finite group T such that, for every y eI, either @(y) = 4+ 1 or ¢
18 even (say q = 2s) and there s a unimodular complex number A such that

@(y) ¢ U(q)-conjugate to
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Then ¢ 1s a CLirrorp representation of I'. Let A be an abstract finite group
which has a Crirrorp representation. Then A is a CLIFFORD group.
Note that a CLIFFORD representation ¢ of I gives a representation

rs U(g) c SO(2q) of T as CrLiFrForD translations of S2?-1, and a finite
group A of CLIFFORD translations of §* admits a CLIFFORD representation

Ac On+1)c U+ 1).

Lemma 1. Let T be a noncyclic Crirrorp group. Then

(1) Every abelian subgroup of I 1s cyclic.

(2) GQiven primes p and ¢q, every subgroup of T of order pq <s cyclic.

(3) T has a unique element of order 2. It generates the center of T .

(4) If o and of are conjugate elements of T, then o« =&t or ot = a.

Proof. Statements (1), (2) and the uniqueness of elements of order 2 in T’
are well known to follow from the fact that I' has a free action on a sphere;
see [2], [4] or [5], for example. As I'" has even order [2, § 10.5], (3) follows
when we show that a central element %1 of I' has order 2.

Let ¢ be a CLIFFORD representation of I'. Looking at characters, we see
that the irreducible components of ¢ are equal and are CLIFFORD represen-
tations, so we may assume ¢ irreducible. If y 541 is central in I', SCHUR’s
lemma shows that ¢(y) is scalar,

A .
¢(y) =
)
Hence A= 1 so | A] =1 implies (y #%1) ¢@(y) = — 1/, so that 2 =1
and (3) is proved. In (4), we may assume & not centralin I', so
A— y L
A At
p(x) = ‘. and () = @(x)’ = ‘.
A— At
A A

have the same eigenvalues. Thus either 41 = A* and « = af, or A= 2 and
cl=ut. Q.E.D.

Lemma 2. Let I, be a normal subgroup of a Crirrorp group I, assume
I, cyclic or binary dihedral D}, (m # 2), and suppose T generated by T,
and some element veI'. Then T 18 cyclic or binary dihedral.

Proof. First suppose I cyclicof order m:a™ = 1. tat ' =« or a~! by
Lemma 1. If zat!=«, I is abelian and thus cyclic by Lemma 1. Now
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agsume Tx7T!=a1lz%x. 7 is not central in I' so 721, but 2 is
central in I' and I is not cyclic, so = has order 4. Thus I is binary di-
hedral 2}, if m is odd, D} if m = 2s.

Now suppose I binary dihedral 9} with m £ 2:am =1 = 8%, paf1 =
=1 for m odd; «®™ =1, g2 = o™, Bxf~! = &1 for m even. As m # 2,
the cyclic group {x} is a characteristic subgroup of I;, hence a normal
subgroup of I'. Thus 77! is either x or «~!. f% is centralin I' because
it has order 2, so the subgroup I' generated by p2, «, and either v or zj8
is abelian and thus cyclic. T is generated by I'' and f. 787! has order 4,
hence is of the form fav or B3a*; thus f-ltf is of the form a*7 or avzp?
and f-'(zp)B is of the form «*(zf) or «*(zf)p2. Thus I, is normal in
I’ and we are done by the first paragraph of the proof. Q.E.D.

The next lemma depends on a procedure of H.ZASSENHAUS [5, proof of
Satz 7] which depends on his result [5, Satz 6]: Let G be a finite solvable
group of order mot divisible by 2*+1, and which contains an element of order
2¢-1(s > 1). Then G has a normal subgroup G,, with cyclic 2-Svrow sub-
group, such that G|G, is the cyclic group Z, of order 2, the alternating group
A, on 4 letters, or the symmetric group <5, on 4 letters. The lemma also uses a
result of G. VINCENT [2, Théoréme X] which implies that a CLIFFORD group
with all SyLow subgroups cyclic is either cyclic or binary dihedral 2 (m odd).

Lemma 3. A solvable Crirrorp group s cyclic, binary dihedral, binary tetra-
hedral or binary octahedral.

Proof. Let I' be a solvable CLIFFORD group. We recall [2,5] that the odd
SyrLow subgroups of I' are cyclic and the 2-SyLow subgroups are either
cyclic or generalized quaternionic (binary dihedral 2 where m >1 is a
power of 2) because every abelian subgroup of I' is cyclic. If the 2-SyLow
subgroups of I' are cyclic, we are done by the above-mentioned result of
VincENT. Otherwise, I has order 2!z with » odd and s> 2, and an
element of order 2*-!. Using the above-mentioned result of ZAsSSENHATUS, we
take a normal subgroup I; of I with all Syrow subgroups cyclic and
I/T, = 2Z,, A, or J,. Note that I, is either cyclic or 2} (m odd) by the
result of VINCENT.

Case 1: T|I'y = Z,. By Lemma 2, T is cyclic or binary dihedral.

Case 2: T|I'y = A,. As the 2-Syrow subgroups of I' are generalized
quaternionic and those of I'/T;, are Z; X Z,, I}, must have some even
order 2¢. I/T, is given in generators and relations by u2=%2=%%=1,
AA AN AAAN_ A ANAN_1 AN .
uv =vu, opw =79 and 0w = Yu. We choose representatives u, »,
o in T for %, %, ® in I/I.
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First suppose that I is cyclic: «% = 1. Lemma 1 shows that one of
vu, v and u commutes with «, so we can assume ux = au. Then p and
« generate a cyclic group of order 4¢, which is normal in the group I
generated by u,x and ». Lemma 2 shows that I is either cyclic order
8t or binary dihedral 9}, of order 8¢. Note that I’ is normal in I'. If
t #1, Lemma 2 shows that T is binary dihedral. If ¢t = 1, I' = 2} has
automorphism group o5, so an automorphism of I’ of order 3% has order
3, and thus ®? is central in I'. Replacing o by aw if necessary, we see
that I is the binary tetrahedral group J*:ut=1, u? =1 = «,
wP=1,uvp =721 opowol=v and wvew ! =ru.

Now suppose that I, = 9% (m odd): am = p¢t =1, paxf~! = «!. The
cyclic group generated by « is characteristic in I';, hence normal in T.
As before we can assume pox = op, so u and « generate a cyclic group,
evidently normal in the group I' generated by u,» and «. By Lemma 2,
I'" is either cyclic or binary dihedral. As the order of I’ is not 8 and I"
is normal in the group I" generated by I'' and B, I'” is binary dihedral
by Lemma 2. TI'” is normal in I' because it is generated by I, u and »;
a final application of Lemma 2 shows that I' is binary dihedral.

Case 3: T/T;, = ;. We have a natural homomorphism o: I —f; of
I' onto o5, with kernel I, and we set I' = »~1(&%;). I is a normal sub-
group of index 2 in T'. By Case 2, I' is either binary dihedral 9} (¢ # 2)
or binary tetrahedral J7*. If I' = 9} (q # 2), Lemma 2 shows I' = 2} .
If ©' = 7%, then I, is cyclic order 2, is the center of I’ and is the center
of I'. It is now easy to see that I' is the binary octahedral group O%*.
Q.E.D.

It now remains only to show that a non-solvable CLIFFORD group is the
binary icosahedral group 7*. Our proof depends on the isomorphism of 7*
with the group SL(2,5) of unimodular 2 X 2 matrices over the field Z; of
5 elements, as well as a result of M. SuzukI which implies [1, Theorem E]
that a non-solvable group with every abelian subgroup cyclic has a normal
subgroup isomorphic to some SL(2,p) with p > 3 prime.

Lemma 4. If p is a prime and SL(2,p) is a Crirrorp group, then p = 3
or p=>5.

Proof. Let w be a generator of the multiplicative group of non-zero ele-
ments of the field Z, of p elements, and set

o 0 d 1 1\ $L(2
v=(0 w-1> an 6 = 0 1) in (2,p) .

var—l = o 50 w?= 4+ 1 (mod. p) by Lemma 1. Hence w*= 1 (mod. p)
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80, a8 ® has order p — 1 in the multiplicative group, p — 1 divides 4.
Thus p is 2, 3, or 5. p # 2 because SL(2,2) has several elements of order 2.

Q.E.D.

Lemma b. Let T be a Crirrorp group, and suppose that T has a normal
subgroup T, isomorphic to SL(2,5). Then T = I.

Proof. Given y eI, let ad(y) denote the automorphism « — yxy—! of
I,. Let yeI' and assume that ad(y) is an inner automorphism of TI.
There is a 9’ eI}, with ad(yy’) =1, so yy' is central in the noncyclic
CrirrorD group generated by yy' and TI;. Thus yp9'eI;, for either
yy' =1, or yy' is the unique element of I' of order 2, and that is contained
in I;. Thus 9’ eI, implies y e I,;. It follows that I'/I; is isomorphic to
a group of outer automorphisms of SL(2,5). The group of outer automorphisms
of SL(2,5) has order 2, so I'y hasindex 1 or 2in I.

Now assume T # Iy, and let o eI such that ad(s) is the outer auto-

morphism of SL(2,5) = I'y which is conjugation by (g o (];) o cannot
have order 2 but o* = — / ¢ SL(2,5), being central in I'. In SL(2,5) we

have
1 1 8 1 0 d 0 —1
== y — an = .
* 01 1 1 d 1 0
As ad(o)o = f% and yay™r = g1, B is conjugate in I' to B3 = g%2. As

I’ is CLIFFORD, it follows that g8 =/ or B has order 3. This is a contradic-
tion. Q.E.D.

Lemma 6. Let T' be a nmon-solvable Crirrorp group. Then T 1is a binary

icosahedral group 7*.
Proof. Lemmas 4 and 5 and the result mentioned of Suzuki [1, Theorem E]

show I' @ SL(2,5). But SL(2,5) « 7*. Q.E.D.
Theorem 1 is an immediate consequence of Lemmas 3 and 6.

III. Representations of CLIFFORD groups

Given an abstract CLIFFORD group I', we will find the faithful orthogonal
representations ¢: I — O(n + 1) such that ¢(I') is a group of CLIFFORD
translations of S§*. This will provide proofs of Theorems 2 and 3.

Lemma 7. Let y generate a cyclic group I of finite order q and let
p: I - 0(n -+ 1) be a faithful orthogonal representation such that w(I') s a
group of Crirrorp translations of S*. If q <2, w(I)= {I} or {X1}. If
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g>2, then n+ 1= 28 and y is O(n + 1)-equivalent to a sum of s copies
of one of the representations given by

cos (2xt/q)sin (2xt/q)

a,(y) = R(t/q) = ( ), t prime to q.

— sin(2xt/q) cos (2mt/q)
Conversely, {I}, {11} and O(2s)-conjugates of images of sums of s copies
of a o, are groups of CLirrorD translations.

Proof. The statement for g < 2 is clear; assume ¢>2. As y(y) is a
CLirrorDp translation of order ¢, it has (n + 1= 2s) s eigenvalues
exp(2ntt/q) and s eigenvalues exp(— 2zit/q), where ¢ is prime to gq.

R(t/q)
Thus y(y) is O(n + 1)-conjugate to " ,80 yis O(n+1)-

"Ry
equivalent to 0,® --- @ o,. The rest is clear. Q.E.D.

Lemma 8. An irreducible CrLirrorp representation ¢ of a mon-cyclic group
T has degree 2.

Proof. I is binary polyhedral. Suppose first that T =9%. m>1 as
27 is cyclic. 2% has m -+ 3 conjugacy classes of elements, hence m + 3
inequivalent irreducible unitary representations, say of degrees d;. The
commutator subgroup has index 4 so we may assume d, =d, = d; =d, = 1,
and the other d; > 1. Xd;2=4m as D}, has order 4m, so each d, is 1
or 2. @ has even degree as I' is non-cyclic, so the degree of ¢ is 2,

Now suppose T = J* binary tetrahedral group. As above, we see that
the degrees of the irreducible representations are 1, 2 and 3. As ¢ has even
degree, it has degree 2.

Suppose that ' = O*. O* has a subgroup J* of index 2 such that ¢
is irreducible if and only if its restriction to J* is irreducible. Hence ¢ has
degree 2.

Finally, suppose that I' = 7*. 7* has 9 conjugacy classes, order 120,
and presentation: «l® =1, a® = 93, pay ! =a"ly. As ¢ has even degree
q = 2r, ¢(«) has r eigenvalues exp (27¢v/10) and r eigenvalues
exp(— 2n4 v/10), for some integer v prime to 10. Thus the character g,
of ¢ is determined on 6 conjugacy classes by r and v: y (1) = 27, y,(x) =
= 27 cos (mv[5), yx,(x%) = 27 cos(2mv[5), xu(0®) = 27 cos(3mv/5), x,(x*) =
= 2r cos(4nv/5) and y,(a°) = — 2r.

Let & be an eigenvalue of ¢(y). As ¢(y)) =¢@()®* = — 1/, b is a cube
root of — 1. @(y) %4/ so b=exp(2ni/6) or b = exp(— 2m=1/6). Thus

Zo(y) = (b + 3) = 2r-co8(n/3) = r and yx,(y?) = r(b% + 52) = 2r.cos(2x/3)
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= — r. Finally yx, is zero on the conjugacy class consisting of elements of
order 4, so y, is determined on all 9 conjugacy classes —hence is completely
determined—by r and v. We notice that y, is precisely r times the cha-
racter of one of the representations 7* < Spin(3) = SU(2) ¢ U(2), so the
irreducibility of ¢ implies r =1. Q.E.D.

We remark that we have just seen: If ¢: 7* — U(q) ts an irreducible
CLirrorD representation, then q = 2 and @ is equivalent to one of the repre-
sentations T* c Spin(3) = SU(2) c U(2). In fact we have

Lemma 9. Let ¢: T — U(q) be an irreducible Crirrorp representation of
a noncyclic group. Then q = 2, T s binary polyhedral, and ¢ s equivalent
to one of the representations T < Spin(3) = SU(2) < U(2).

Proof. We need only check the equivalence class of ¢ for T = 9f(m > 1),
J* and O*. As with J7*, we calculate the character y, and see that it
is the same as the character of one of the representations I < Spin(3) =
=SU(2) c U(2). Q.E.D.

Proof of Theorem 3. Given a finite group I' of CLIFFORD translations of
S® ¢ R*t1, we will show the centralizer G of I' in O(n + 1) to be tran-
sitive on 8. This is obvious if I is cyclic of order 1 or 2, so we first suppose
L cyclicof order ¢ (¢>2). Let 2s=n-+1, as n+ 1 is even; let
I" ¢ U(s) be the cyclic group generated by exp(2n¢ 1/q)/. T’ is central
in U(s) so its centralizer in {(s) is transitive on the unit sphere in complex
euclidean space C®. By Lemma 7 we can assume that I’ goes onto T,
and its centralizer U(s) into G, under the inclusion U(s) ¢ O(n + 1)
induced by an isometry of C* onto R"*! which sends the unit sphere of
C* onto S*. Hence G is transitive on S".

Now suppose T noncyclic. I' is isomorphic to a binary polyhedral group &7*.
Let K be the algebra of quaternions and let K’ be the multiplicative group of
unit quaternions. Under the inclusion and identification £7* < Spin(3) = K’,
we’ll view S7* as a subgroup of K'. Let K®(4s = n + 1) be a left quater-
nionic euclidean space, so that K (hence K’, hence 7*) acts on K* by left
scalar multiplication and the symplectic group Sp(s) acts on the right. The
action of Sp(s) commutes with that of 27*, and Sp(s) is transitive on the
unit sphere of K*. By Lemma 9 we can assume that Z7* goes onto I', and
Sp(s) goesinto G, under the inclusions K' ¢ O(rz + 1) and Sp(s) < O(n + 1)
induced by an isometry of K* onto R"*! which sends the unit sphere of K*
onto S*. Hence G is transitive on S*. Q.E.D.

Proof of Theorem 2. By Lemmas 7 and 9, all that remains to be shown is
that the images of the representations of Theorem 2 are actually groups of
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CLIFFORD translations. Let T ¢ O(n + 1) be the image of one of those re-
presentations. In the proof of Theorem 3, we saw that the centralizer G of
I in O(n + 1) is transitive on S*. Now let y eI, let =, yeS*, and let
d be the distance function on S§" determined by its RIEMANNian metric.
There is an element g e G with g(z) = y. Hence

8(z, yx) = (g, gyx) = 6(y, ygx) = 6(y, yy)
so ¥ is a CLIFFORD translation of S*. Q.E.D.

IV. Homogeneous space-forms

We will prove Theorem 4. Theorem 2 establishes the equivalence of (1) and
(2), Theorem 3 shows that (1) implies (3), and the proof of Theorem 3 shows
that (3) implies (1). It is obvious that (3) implies (4): the centralizer of T
induces a transitive group of isometries of S$*/I'. Finally, (4) implies (3) is
known [3, Théoréme 1]. Q.E.D.

We remark that Theorems 3 and 4 provide a proof of a result [3, Théoréme 6]
previously announced without proof in the Comptes rendus, and that Theorems
1 and 4 provide an alternative proof of the classification [3, Théoréme 5] of
the RiEmaNNian homogeneous spherical space-forms.
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