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On the Geometric Definition for Quasiconformal Mappings

By F. W. GEHRING and JUSSI VAISALA

Introduection

1. Geometric definition. Let ¢ denote a (topological) quadrilateral, that
is a JORDAN domain in the complex plane with four distinguished boundary
points which divide the boundary curve into four arcs, the sides of Q. @ can
be mapped conformally onto a rectangle @' with sides @ and b so that the
vertices correspond. Consider the pair of opposite sides of @ which correspond
to the sides of length a@. The modulus of ¢ with respect to this pair of sides
is defined as a/b; the modulus of ¢ with respect to the other pair is then
bla. We denote either of these moduli by mod @.

An inequality due to RENGEL [14] allows us to obtain convenient estimates
for this modulus. Let A(@) denote the area of ¢, let L,(@) denote the
distance in @ between the pair of sides with respect to which the modulus
is taken, and let L,(@Q) denote the corresponding distance between the other
pair of sides. RENGEL’s inequality states that

L,(Q)* A@)
———<modQ = —~5 . 1
aQ) ="49=T qp )
The geometric definition for K-quasiconformal mappings, due to PFLUGER
[11] and AHLFORS [1], is as follows. A sense-preserving homeomorphism w(z)
of a domain G onto a domain G’ is said to be K-quasiconformal if

mod Q' < K mod @ (2)

for each quadrilateral ¢ whose closure @— lies in G, where the moduli are
taken with respect to corresponding pairs of sides?!). A quasiconformal mapping
is defined as one which is K-quasiconformal for some K.

It is natural to ask what happens if we replace the quadrilaterals @ in the
above definition by a family of other figures possessing conformal moduli.
For example, we might consider ring domains or alternatively some subclass
of quadrilaterals such as rectangles, oriented rectangles, or squares2?). We
devote the first part of this paper to such questions.

In the second part we present a proof for the measurability of quasicon-

1) @ and @’ will always denote finite plane domains, K a number satisfying 1 = K < oo
and Q’ the image of Q. Given any set £ C G we let E’ denote its image under w(z).
2) A rectangle is oriented if a pair of its sides are parallel to some fixed line.
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formal mappings based directly on the geometric definition given above. This
argument is very simple and illustrates the advantages of using this definition
when proving some of the fundamental properties of quasiconformal mappings.

1. Modifications of the geometric definition

2. Analytic definition. Let us first recall the analytic definition for quasi-
conformal mappings. We say that a complex-valued funetion w(z) is ACL
(absolutely continuous on lines) in a domain @ if for each oriented rectangle

@, Z) c @, w(z) is absolutely continuous on almost all lines in @ which are
parallel to the sides of @.

By the analytic definition a sense-preserving homeomorphism w(z) of a
domain @ is K-quasiconformal if w(z) is ACL in G and

max | D,w(2) |2 = KJ(2) (3)
L4
a.e.in G. Here D,w(z) denotes the directional derivative of w(z),
D,w(z) = we(2) cos ¢ + wy(2) sing,

and J(z) the Jacosian of the mapping.

The equivalence of the geometric and analytic definitions has been proved
by Mok [8], Bers [2], PFLUGER [12] and in the above form by GEHRING and
LerTo [6].

3. Rectangles. We begin by proving that it suffices to consider only rec-
tangles in the geometric definition.

Theorem 1. Let w(z) be a sense-preserving homeomorphism of a domain G
and let mod @' £ K mod ¢ (4)

for each rectangle @, 6 c G. Then w(z) 18 a K-quasiconformal mapping.
In the proof we will make use of the following three lemmas.

Lemma 1. Let w(z) be a homeomorphism of a domain G and let (4) hold
for each oriented rectangle @, Q < G. Then w(z) ts ACL in G.

Lemma 2. Let w(z) be a homeomorphism of a domain G and let w(z)
possess finite partial derivatives a.e. in Q. Then w(z) is differentiable a.e.
m G.

Lemma 3. Let w(z) be a sense-preserving homeomorphism of a domain G

and let (4) hold for each square @, 5 c G. Then (3) holds at each point where
w(z) 18 differentiable.
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For Lemma 1 see either PFLUGER [12] or STREBEL [16], and for Lemma 2
see GEHRING and LEnTO [6]. We give here a complete proof for Lemma 3
because we will want to refer.to the argument later on.

Proof for Lemma 3. Let 2, be a point of differentiability for w(z) and
assume, for convenience of notation, that z, = 0, w(z,) = 0. We must show
that (3) holds for z = 0. There are two cases to consider depending on whether
or not the JAcoBIan vanishes at z = 0.

First assume that J(0) = 0. If (3) does not hold, there exists an angle «
for which

Dw(0) #£0, D,y uw(0) =0,

and, by first performing a preliminary rotation, we can assume that
w,(0)=a>0, w,(0)=0.

Next for 2> 0 let @ denote the square with vertices at 0, h, ¢h, b + ©h.
Then for 0 < ¢ < a/2 we can find a 6 > 0 so that

|w(z) —ax| < eh (5)

for z€Q,0<h < 8. We now use the first part of (1) to estimate the modulus
of @' taken with respect to the “horizontal” sides. By (5)

AQ')=2ch(ah + 2¢h), L,(Q)=ah — 2¢ch,
and hence
(@ — 2¢)2

mod @' = 2¢e(a + 2¢)

for 0 <h < 6. Thus lim mod @ = co. On the other hand, by hypothesis
h—>0
mod @' < K mod @ = K for all > 0. We obtain a contradiction and hence

(3) holds for z = 0.

Now suppose that J(0) > 0. By performing a preliminary similarity map-
ping, we may assume that w,(0)=D=1, w,(0) =3:. Nextlet @ be an
arbitrary square and let @, be the image of @ under the mapping w,(z) =
= nw(z/n). The @, are defined for sufficiently large n and the sides of
@, converge uniformly3) to the sides of @, the image of @ under the affine
mapping wy(z) = Dz + iy. Hence mod @, = lim mod @,,. (See, for example,

n—>00
PrrLuGER [12].) Since the mappings w,(2) all satisfy the condition (4), we
have mod @, < K mod Q for sufficiently large n and we conclude that

mod @, < K mod @ = K for all squares Q. Thus to establish (3) it is suffi-
3) A sequence of sets {E,} is said to converge uniformly to a set E if for each &> 0 there

exists an N such that n > N implies each point of E, lies within distance & of F and each
point of E lies within distance & of E,.
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cient to consider the special case where w(z) is itself the affine mapping
w(z) = Dx + 1y and show that D < K. This follows immediately from
applying (4) to any square with sides parallel to the coordinate axes and the
proof for Lemma 3 is complete.

We turn now to the proof for Theorem 1.

Proof for Theorem 1. From Lemma 1 it follows that w(z) is ACL in @.
Thus w(z) possesses finite partial derivatives a. e. in G and hence is differen-
tiable a. e. by Lemma 2. Next applying Lemma 3 we see that w(z) satisfies
the dilatation condition (3) a.e. in G. Hence w(z) is K-quasiconformal by
the analytic definition as desired.

4. Oriented rectangles. If the rectangles in Theorem 1 are supposed to be
oriented, the theorem does not hold and must be replaced by the following
result.

Theorem 2. Let w(z) be a sense-preserving homeomorphism of a domain G
and let
mod @' < K mod @ (6)

for each oriented rectangle @, 6 c G. Then w(z) isa (K -+ VK> — 1)-
quasiconformal mapping. The bound is best possible.

Proof. We begin with the special case where w(z) is the affine mapping
wi)=Dzx+1y, D=1, (7)
and show that the modulus condition (6) implies

D<K+ VEK—1. (8)

For h> 0 let @ be the rectangle with vertices at the points 0, e, 1he®®,
€ 4 the'?, and fix | @ | < m/4 so that @ is one of the oriented rectangles
for which (6) is assumed to hold. The modulus of @ with respect to the sides
of length 1 is 1/A. Estimating the corresponding modulus for @' we have

A(Q) = Dh, Ly(Q') = V D2 cos?ep + sin2¢p — ¢,
where ¢ = ¢(h)— 0 as h— 0, whence by (1)

2 cog? ino —
Dcosqy—{]—)sm(p £ modQ .

Applying (6) and then letting A 0 yields D2 cos?p + sin2¢ < K D. Since
| ¢ | =< n/4, this means D2? 4+ 1< 2KD which in turn implies (8) as desired.
Now let w(z) be an arbitrary sense-preserving homeomorphism of G which

mod @' =
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satisfies (6) for oriented rectangles @, Q— c @. By Lemmas 1 and 2 w(2) is
ACL and a.e. differentiable. Hence to complete the proof it is sufficient to
show that

max | D,w(z) |* < (K + VK — 1)J (2, (9)

at each point of differentiability z,.

Fix such a point 2z, and assume, for convenience of notation, that z, = 0,
w(2,) = 0. As in the proof of Lemma 3, we consider two cases depending on
whether or not the JacoBIan vanishes at z,.

Suppose first that J(0) = 0 and that (9) does not hold. Then as in Lemma 3
we can assume that

w,(0) =a>0, w,(0)=0.

For 2> 0 let @ be the rectangle with vertices at 0, 2he? ihe’?, 2he!? | thet?,
and fix |¢|<x/4 so that @ is one of the rectangles for which (6) holds.

Then for 0 < e < a,/2l/§ we can find a 6 > 0 such that |w(z) —ax|=Zeh

for zeQ, 0 <h < 8. The modulus of @ with respect to the longer sides is
2 and estimating the corresponding modulus for @’ by (1) yields

(a|V2 — 2¢)2
2¢(V5a + 2¢)
for 0 <h < 8. Hence lim mod @' = oo.

h—>0
But this contradicts the inequality mod @' < K mod @ = 2K, and hence

(9) holds for z, = 0. Now suppose that J(0) > 0 and assume, as we may,
that w,(0) =D =1, w,(0) = ¢. Then arguing as in the proof of Lemma 3
we conclude that mod Q) < K mod @ for all oriented rectangles @, where
Q, is the image of @ under the affine mapping wy(z) = Dz + iy. Hence
(8) holds, we again obtain (9) for 2z, =0, and w(z) is (K + VK? — 1)-
quasiconformal.

To show that the bound K 4 V' K2 — 1 is sharp we consider the mapping
w(z) = Dx + 1y, D= K+ V K* — 1, and prove that (6) holds for all
rectangles @ whose sides meet the coordinate axes at an angle z=/4. For
this it suffices to consider, for 4 > 0, a rectangle @ with vertices at 0,
14+%, —h—+4th, 1 —h+ 1+ th, where the modulus is taken with re-
spect to the sides of length V2. Then for Q' we have A(Q')= 2Dh,
L (Q)=2Dh|/VD?+ 1 and (1) yields

D411

mOdQlé——é-D——*"—b-= Kmon

mod @' =

as desired.
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b. Squares. In view of these two results it is natural to ask what can be
said about the quasiconformality of a homeomorphism which satisfies the
modulus condition (2) for all squares . From Lemma 3 it follows that such
a mapping will satisfy the dilatation condition max | Dyw(z) 2= KJ(z) at

every point of differentiability. Hence, in view of Lemma 2, the problem of
deciding whether or not such a mapping is K-quasiconformal is reduced to
the following open question:

Let w(z) be a homeomorphism of a domain G and let (2) hold for all squares

@,QcG. Is wiz) ACLin G*?

Unfortunately the methods used in the proof of Lemma 1 do not help to
settle this question, for both PFLUGER and STREBEL require that the modulus
condition hold for long thin rectangles. However, it is easy to see that the
answer must be in the negative if we restrict our attention to oriented squares
Q. Forlet f(x) be a continuous singular function which is strictly increasing
for all # and consider the mapping w(z) = f(z) 4+ ¢y. If @ is any square
whose sides meet the coordinate axes at an angle of z/4, then @' will be
symmetric in its horizontal diameter and hence mod @' = mod @ = 1. On
the other hand it is clear that the mapping is not ACL.

6. Rings. A doubly-connected domain is called a ring. An annulus is a ring
whose boundary components are two concentric circles, possibly degenerate.
It is well known that each ring R can be mapped conformally onto an annulus

0<a<]|z|<b= oo, and the conformal invariant mod R = log-2 is called
the modulus of R. @

By means of extremal lengths we obtain inequalities for the modulus of a
ring which correspond to RENGEL’s inequality (1) for quadrilaterals. Let o (2)
be any continuous non-negative function in R and let

A(R, o) = [fo*do, L,(R,p)=inffpds, L,(R, )= inffeds, (10)
R "1 7 Y2 72
where y, is any curve in R which separates the boundary components of

R and where y, is any curve in R which joins these components. Then

L,(R, 0)* A(R, o)
A(R’ Q) Ll(Ra 9)2

for each such function p(2). (See, for example, JENKINS[7], pp. 17-19.)
When p(2) =1 we denote the quantities in (10) by A4 (R), L,(R) and L,(R)
respectively.

Now it is well known that under a K-quasiconformal mapping w(z) the
image of aring R isaring R’ for which (1/K) mod R < mod R’ < K mod R.
We show that the converse is true by establishing the following result.

2n <modR<2=n (11)
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Theorem 3. Let w(z) be a sense-preserving homeomorphism of a domain G
and let
mod R’ < K mod R (12)

for all rings R, R c Q. Then w(z) 8 a K-quasiconformal mapping.
We consider first the following preliminary result.

Lemma 4. Let w(z) be a sense-preserving homeomorphism of a domain G
and let

1
> "
mod R' = 7 mod R (13)

for all annuli R, R c G. Then w(z) 18 a quasiconformal mapping.

Proof. It is sufficient to show that the inverse mapping z(w) is quasicon-
formal. For this fix w e G’ and, for sufficiently small » > 0, let

M(w,r) = max |z(w)—z(w')],
jw—w'|=r

m(w,r) = min |z(w) — z(w')].
|w—w’|=r

Then from an argument due to Mor1 (Lemma 4 of [8]) it follows that

. M(w, r)
= 22! <L pmK
Hw) =bmsup S =¢
at each point w e @'. This, in turn, implies that z(w) is ¢*%-quasiconformal
as desired. (See GEHRING [4].)

We turn now to the proof for Theorem 3.

Proof for Theorem 3. We consider first the special case where w(z) is the
affine mapping
w(z)=Dx +1y, D=1

and show that the modulus condition (12) implies that D < K.

For each >0, d> 0 let R denote a ring bounded by two concentric
rectangles with horizontal sides of & and A 4 2d and with vertical sides
of 1 and 1 + 2Dd, respectively. Then

A(R) = 2d(1 + Dh + 2Dd), Ly(R) = 2(1 + h)> 2,
A(R') = 2Dd(1 + Dh + 2Dd), L,(R') = Dd,

and hence (11) yields

, nDd
mod R < =d(1 + Dh + 2Dd), mOngl—i—Dh-l—ZDd'
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Condition (12) implies that D < (1 + Dk + 2Dd)2K, and letting A, d— 0
yields the desired result D < K.

Now consider the general case where w(z) is an arbitrary homeomorphism
satisfying (12). Since the inverse mapping satisfies (13) we conclude from
Lemma 4 that w(z) is quasiconformal. Hence, by virtue of the analytic
definition, it suffices to prove that

max | D,w(z) |* = KJ (2) (14)
a.e.in @G. ¥
Pick a point z, where w(z) is differentiable and where J(z,) > 0. Since
w(z) is quasiconformal, J(z) >0 a.e. in G*%) and it will be sufficient to
establish (14) for such points z,. We can thus assume without loss of gener-
ality that z, =0, w(z,) = 0 and that w,(0)=D=1, w,(0) = 7. Now let
R be the ring bounded by concentric rectangles described above and consider
its images R, under w,(z) = nw(z/n). The R) are defined for large =
and their boundary components converge uniformly to those of R,, the
image of R wunder the affine mapping w,(2) = Dx + 1y. Arguing directly
it is easy to verify that
mod Ry = lim mod R), %) (15)
Nn—> oo
and, since the R, satisfy (12), we conclude that mod R, < K mod R. By
the first part of the proof, this means D < K and hence (14) holds for z, = 0
as desired.

7. Annuli. If w(z) is a homeomorphism which satisfies the inequality

mod R’ = —1-1(—- mod R (16)

for all annuli R, then Lemma 4 tells us that w(z) is e™%-quasiconformal.
We now replace ™%X by the best possible bound.

Theorem 4. Let w(z) be a sense-preserving homeomorphism of a domain G
and let (16) hold for all annuli B, R = @. Then w(z) isa (K + VK2 — 1)-
quasiconformal mapping. The bound is best possible.

The proof requires the following estimate for the modulus of an elliptical
ring.

Lemmab. Let D=1, h>1 and let R be the ring bounded by the two
ellipses

x? x? 5
=1 ppty=»~.
4) This is an immediate consequence of Theorem 6. Alternatively see, for example, Lemma 6
of [4].

8) See also the following paper [5].
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Then
2D
mod R > ——— D1 log A (17)

and
lim mod 2 =2l (18)
r—>1 logh D2+ 1
Proof. We obtain these estimates by choosing a special function o(z) and
applying the inequality (11). For this let

u(z) = Ylog (g7 + 1)

(5
e |

and set

e(@) = | Vul)| =

Making the change of variables x = Dr cos ¢, y = rsin ¢ we see that

2% A

B 1, L \dr . Dy
A(R,@——ff(-ﬁcos ¢ + Dsin <p) - dzp——n—————————D logh. (19)
0 1

Next since u#(z) is 0 on the inner boundary component and equal to log &
on the outer,

fods = (|Vu|ds=logh

72 73

for each curve y, in R which joins these components. Hence
Ly(R, o) =1logh, (20)
and combining (19), (20) and the first half of (11) yields

L,(R,0* 2D
AR,0) D2+1

mod R = 2= log .
This is the inequality (17).

For (18) we must obtain an asymptotic estimate for L,(R, p) as h—1.
For this let I' denote the inner boundary component. Setting =z = D cos ¢,
y = sin ¢ yields

2
fgds f(——-0082 + D sin? )d«p:anl ;

Next it is not difficult to show that for each &> 0 there exists a § > 1
with the following property: If 1 <h < d and if y; is a curve in R which
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separates the boundary components, then

feds= (1 — &) fods.
Hence, n o

L(R, o) = (1 — g)n 21

> ) (21)

for 1 <h < 6 and combining (19), (21) and the second half of (11) we have

A(R, o) ., 2D
LR or =" 9
for 1 <h < 6. This together with (17) yields (18).

We turn now to the proof for Theorem 4.

mod R< 2xn

Proot for Theorem 4. The mapping is already quasiconformal by Lemma 4.
Hence the argument in the proof for Theorem 3 shows it is sufficient to estab-
lish the theorem for the special case where w(z) is the affine mapping

wiE)=Dx+1y, D=1.

Now let R be the annulus 1< |z|<h. Then its image under w(z) is
the ring described in Lemma 5, and (16) and (18) yield

2D — lim mod R’ im mod B’ _ 1
D*+1 3,5, logh 1 Mmod R — K~

Hence D<K+ VK2 —1 and w(z) is (K + VK: — 1)-quasiconformal.

To show that the bound is sharp, consider the above affine mapping with

D=K4 VK2 —1. We want to show that (16) holds for all annuli R. It

is clear we need only consider annuli R of the form 1< |z|<h. Then R’

is again the ring of Lemma 5 and (17) yields mod R’ = —1)—222—i-logh =
1 . +
=% mod R as desired.

8. Remarks. Since the modulus of a quadrilateral taken with respect to
one pair of sides is the inverse of that taken with respect to the other pair,
Theorems 1 and 2 are valid if the modulus conditions are replaced by
mod @’ = (1/K) mod @ . We see also in Theorem 3 that the condition (12) can
be replaced by mod R' = (1/K) mod R since the inverse mapping z(w) will
then satisfy (12).

It is therefore reasonable to ask if Theorem 4 is valid with (12) in place of
(16). The answer here is no and it turns out that requiring a homeomorphism
to satisfy (12) for annuli R says nothing about the quasiconformality of the
mapping. We have, for example, the following result.
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Theorem 6. Let w(z) be a continuously differentiable homeomorphism of a
stmply connected domain G and let the absolute value of the Jacosian be super-
harmonic in G. Then ‘

mod R’ < mod R (22)
for all annuli R, R < G.

Proof. The proof is based on the following important estimate, due to
CarRLEMAN, for the modulus of a ring.

Lemma 6. Let R be a ring bounded by two disjoint rectifiable curves B,
and B,. Choose concentric circles By and B} so that By and BY bound
the same areas as B, and B,, respectively, and let R* be the annulus bounded
by By and BY. Then

mod R < mod R*. (23)

For a direct proof of this lemma see CARLEMAN [3]. Lemma 6 can also be
established by a symmetrization argument, using the fact that

27
mod R

= Vu|3do,
fJ1 vl

where «(z) is harmonic in B with boundary values 0 and 1 on B, and B,,
respectively. (See, for example, PoryA and Szeeo [13].)

Now for Theorem 5 let R be the annulus 0<a<|z —2z|<b< o
with B c @. Since @ is finite and simply connected, G' contains the closed
disk |z —2,] <b and we can pick 0 <ax < f < oo so that

mat= [f |J@)|do, =npr= [f |J(2)]|do.

lz—2z0l<a lz—2zo| <

Since |J(z)| is superharmonic in @,

I(r) = H | J(2) | do

4 7'2 z—20|<T
is non-increasing in ¢ < r < b. Hence f/x < bj/a and with Lemma 6 we con-
clude that mod R’ < log /x < log bja = mod R as desired.

From Theorem 5 it is clear we can conclude nothing about the quasicon-
formality of a sense-preserving homeomorphism which satisfies (12) for all
annuli. For example, all affine mappings have constant Jacosrans and hence
satisfy this condition. Alternatively consider the mapping w(z) = x2® + iy
of x>0 onto u> 0. Here J(z) = 22 is harmonic and (12) holds for all
relevant annuli R. On the other hand the dilatation D(z) = max(2x, 1/2%)
is unbounded in z > 0 and hence w(z) is not quasiconformal.



30 F.W.GEHRING | JUsSI VAISALA

2. An elementary proof for the measurability of quasiconformal mappings

9. A homeomorphism of a plane domain is said to be measurable if the
image of every (plane) measurable set is itself measurable. It is well known
that this is the same as asking that every closed set of measure zero map onto
a set of measure zero.

We conclude this paper with an elementary proof of the following result.

Theorem 6. A quasiconformal mapping is measurable.

This theorem is usually proved with the aid of the analytic definition and
a general form of GREEN’s theorem due to MoORREY [9]. (See, for example
GEHRING [4].) Another argument, due to PESIN [10], uses both definitions
to prove that the JacosIan of a quasiconformal mapping is a.e. positive.
This fact, taken in conjunction with a familiar distortion theorem (Morr [8],
Lemma 4) and the pE LA VALLEE Poussin Decomposition theorem (Saxs [15],
p. 125), implies that the mapping is measurable.

We give here a direct proof for Theorem 6 which was suggested by PEsIN’s
argument but which is based on the geometric definition and uses only the
Density theorem and RENGEL’s inequality.

Proof. Let w(z) be a K-quasiconformal mapping of a domain @. In order
to prove that the inverse mapping z(w) is measurable, we assume the anti-
thesis that there exists a closed set F' ¢ G' with m(F') = 0 whose image
F c @ is of positive measure. (We let m denote plane measure.) Then F
has a point of density and, for each &> 0, we can find a square S, Sca@,

such that
m(F ~8) > (1 — e2)m(8) . (24)

By conformal mapping, we may assume that the image S’ of § is itself

a rectangle, that 8§ and S’ have horizontal and vertical sides which corre-

spond under the homeomorphism w(z), that S has side 1 and that S’ has

height 1 and base M. We can further assume that F — S, in which case
(24) becomes just

m(F)>1— &. (25)

For each pair of positive integers + and j we divide 8 by horizontal and
vertical lines into ¢j disjoint open rectangles ¢ with height 1/i and base

1/j. We let F, denote the union of the rectangles @ for which Q~F is
not empty and G, the union of the rectangles which do not have this prop-

erty. Then 3—‘1 O F and, by (25),
m(G,) < 2. (26)
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Now let B’ be any open set which contains F’. Since F' is closed, it
follows from the uniform continuity of w(z) that F, will lie in B’ for suf-
ficiently large + and j. Hence we see that

lim m(F}) =0. (27)
Tyf—>00
Next for each rectangle @ let b denote the distance between the images
of the endpoints of the base of ¢ and ! the distance between the images of
the vertical sides. Again by continuity given any ; we can pick an ¢ so that
M

b<l+—7— (28)

for all rectangles @.

Fix ¢+ and § so that (28) holds and let ¢, = [(1 — ¢)¢], the integral part
of (1 — &)¢. By (26) there exist 7; rows in S, each of which contains no
more than [ej] rectangles @ of G,. Consider such a row. Its image is a
strip which connects the vertical sides of S’ and hence from (28)

v<sm<¥ 51,
Q 2 Q

where the sum is taken over the j rectangles in the row. Appealing to the
SCHWARZ inequality we have

2 (= h (2, b
8 QCF, QC Gy
(2 N2 PB4+ 1z (29)
QCF, QCF, QC & QC 4
<9( 2 B +ei( X D).
crn QC &

Here the first sums are taken over the rectangles which lie in ¥,, the second
sums over those which lie in G,.

The modulus of each @ with respect to the horizontal sides is ¢/j. Esti-
mating the corresponding modulus for @’ yields

L(@» . B
A(Q) — m(@)°

and, since the mapping is K-quasiconformal, we obtain I2< K fi—m(Q’ ). This,
together with (29) yields !

mod Q' =

M _ki( Z m@)+e = m(@) (30)
8 QC P QC &
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and, summing over the ¢, rows for which (30) holds, we have

P SK - mF) + o 1.
41

Finally, let ¢, j— oo so that (28) holds. Then 7,/s— 1 — ¢ and with (27)

we conclude that
M< _8eK .
- 1—c¢

But 1/M is the conformal modulus for the rectangle S’ taken with respect
to the vertical sides. Hence 1/M < K,

1 —¢
8¢ ’

K2

IV

and we obtain the desired contradiction for 0 < ¢ < (8K2 4 1)1,
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