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KoEBE Arcs and FATtou Points of Normal Functions

by F. BAcemIEL and W. SEIDEL?), Detroit, Michigan (USA)

Let C be the unit circle and D be the open unit disk in the complex
z-plane, and C,, D, be the corresponding entities in the complex w-plane.

The closure of a point set S will be denoted by S, and the LEBESGUE mea-
sure of a measurable set £ by m(Z).
We begin by setting down some definitions.

Definition 1. Let 4 be an open arc of C, possibly C itself. A KoEBk
sequence of arcs (relative to A) is a sequence of JOrRDAN arcs {J,} in D such
that (a) for some sequence {¢,} satisfying the conditions 0 <¢, <1 (n =1,
2,3,...) and ¢,— 0 as n— oo, J, liesin the ¢,-neighborhood of 4 (» =1,
2,3,...), and (b) every open sector 4 of D subtending an arc of C that
lies strictly interior to 4 has the property that, for all values of n except
at most a finite number, the arc J, contains at least one JORDAN subarc
lying wholly in 4 except for its two end points which lie on distinct sides
of A.

The terminology in Definition 1 is suggested by the appearance of such arcs
in KoEBE’s lemma [2, p. 19].

Definition 2. A strong KoEBE sequence of arcs is a KoEBE sequence of arcs
{J,} with the property that, to every ¢ eC, there corresponds a rectilinear
segment extending from { to a point of D, which is intersected by infinitely
many of the ares J,(n =1,2,3,...).

. It is easily verified that a strong KoEBE sequence of arcs is a KOEBE sequence
of arcs relative either to C itself or to C minus a single point of C.

Definition 3. If f(z) is a meromorphic function in D and ¢ is a constant,
finite or oo, we say that f(z) >c along a KOEBE sequence of arcs {J,},
provided that, for some sequence of positive numbers {z,}, where #,—0
as m— oo, we have, for every zeJ,(n=1,2,3,...), |f(z)—c|<m, or
| f(z)l > 1/y,, according as c is finite or infinite.

Definition 4. If f(z) is a meromorphic function in D, we say that f(z)
18 bounded by M on a KOEBE sequence of arcs {J,}, provided that there

1) W. SEIDEL’s contribution to this paper was supported by National Science Foundation
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10 F. BacEMIHEL | W. SEIDEL

exists a finite positive constant M such that | f(z) | <M for every zed,
n=1,2,3,...).

Definition 5. Let 2z’ = S(2) denote an arbitrary one-to-one conformal
mapping of D onto itself. A function f(z), meromorphic in D, is said to
be normal in D [5, p. 53], if the family of functions {f(S(z))} is normal in
D in the sense of MONTEL, where convergence is defined in terms of the
spherical metric.

Detinition 6. A FAToUu point of a meromorphic function in D is a point
¢ € C such that, for some complex number ¢ (possibly o0), as z— { in any
StoLz angle at {, f(z) > c¢; c is then called a FaTou value of f(z).

We show first (Theorem 1) that a normal meromorphic function that tends
to a constant along a KoEBE sequence of arcs is identically constant. This
generalizes a result due to Gross [4, pp. 35-36] as well as a result due to the
present authors [1, Corollary 1, p. 266]. Next we prove (Theorem 2) that a
normal holomorphic function that is bounded on a strong KoEBE sequence of
arcs must be a bounded function. This generalizes [1, Corollary 2, p. 266].
(The two results in [1] alluded to involve ‘“boundary paths’ instead of KoEBE
sequences of arcs.)

Theorem 3 asserts that if the set of FaTou points of a normal holomorphic
function in D is of measure zero on an arc of C, then that arc contains an
everywhere dense set of FaTou points of the function at each of which the
corresponding FATOU value is co. This generalizes [1, Theorem 5, p. 267]. It
follows immediately that the set of FATou points of a normal holomorphic
function in D is everywhere dense on (', which sharpens [1, Theorem 4,
P- 267]. This result is to be contrasted with one given in [5, p. 58], according
to which there exist normal meromorphic functions in D possessing no Fatou
points. (Cf. also [1, Remark 4, p. 267].) Theorem 4 shows that a normal holo-
morphic function in D can have its set of FAToU points of arbitrarily small
positive measure without having oo as a FaTou value. This leads us to pose
the following problem, which we have not solved.

Problem. Let f(z) be a normal holomorphic function in D. Suppose that
an arc A of C exists such that the measure of the set of FAToU points of
f(z) on every subarc of A is less than the length of that subarc. Does A
contain a FATOU point of f(z) at which the corresponding FATou value is oo ?

We proceed now to the proofs of our theorems.

Theorem 1. Let f(z) be a normal meromorphic function in D. If f(z)—c
along a KOEBE sequence of arcs {J,}, then f(z) =c.
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Proof. We may assume that ¢ = 0, for otherwise we can replace the normal
meromorphic function f(2) by the normal meromorphic function f(z) — ¢
if ¢ is finite, or 1/f(z) if ¢ = oo.

Let the given sequence {J,} be a KOEBE sequence relative to the arc 4
(see Definition 1), and consider an arc B= {z:|z| =1, ¢, <arcz <g,}
strictly interior to A. Denote by A the open sector of D with vertex at
the origin and vertex angle f, subtending the arc B. The sides of A4 will
be called s;,s,, where these segments terminate in e'%1, e'%: | respectively.
In view of (b) in Definition 1, there is no loss of generality in asserting now
that for every n the arc J, contains a JORDAN subarc I', lying wholly in
A except for its endpoints P, P?® which lie on s,, s,, respectively. It is
obvious that {I',} is a KoEBE sequence of arcs relative to B.

Set

r,=min|z|, BR,=max|z| ®=1,2,3,...).
zelp z2€l'n
It follows from (a) in Definition 1 that
limr, =limR, =1. (1)
7n > n-—> oo
For n=1,2,3,..., we now define a JORDAN curve K,. Let the circle
| z| = R, intersect s; and s, in the respective points Q% , Q¥ , and denote

the radial segments P QP, P® QP by tD, t®, respectively (these seg-
ments may reduce to single points). Then, if B, is the open arc of the circle
| z| = R, which liesin 4 and B} is the complementary arc, we put

K,=tDUB*ut®ur, .

The interior of K, will be called £2,, and we set G, = {z:|z2| < R,}.
CarLEMAN’s Extension Principle for harmonic measure implies [7, p. 70]
that

w0, vt® Q)=w(,B,,4,) = -2%- .

We have [7, p. 26]
©(0,t0 v T, v1®,2,) = 0(0,tD v, 2) + (0, I, 2,).

An inequality due to OSTROWSKI [3, p. 42] shows that

4 . 2 ) 2 4 . VR, — 2
1) @ . ; ——— el M.
(0,85 1%, 2,) =— are sin —7—- T —arc sin j

2 2
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and (1) implies that lim w (0, % v ¢t® Q)= 0. Hence

n—> oo

lim inf 00, T, Q) =P

n—> o 27
Consequently, if D, is mapped conformally onto 2, by means of the
function z = y,(w), where 9,(0) = 0 and the point w = ‘%1 corresponds
to the point z = P, then each arc I',, for n sufficiently large, is the image
of an arc of C,, of length at least f/2 with its end point of smaller argument
at et

If we set
gn(w) = f(p@) (=1,2,3,...), (@)

then [5, p. 57] ¢,(w) is a normal meromorphic function in D,,. Since f(z)
is normal in D, there exists [5, p. 56] a finite positive constant y such that
for every z e D,

lfl ()| _ 2
1+[f(z)[2(l |z]?) =7y. (3)
Now from (2) we obtain
Il 1 — gy = LD ey g

1+ |gn ()P 14 [f(ya(w)) 2

According to[9, p. 133], if D,(z) denotes the radius of univalence at the point
z = y,(w) of the region 2,, we have

(1 —|w[®) | yulw) | <4D1(2), (5)
and since 2, liesin D,

Diz) =1 —|z|=1—]z]*. (6)
Combining (3) to (6), we find that

194 (w)] 2 41 (2)]
1+ [ga(w)]? 1 =lw) = 1+ [f()]? =4y (7)

Let S denote the subarc of C,, whose end point of smaller argument is
¢!t and whose length is 8/2. The hypothesis that f(z) > 0 along the KoEBE
sequence {J,} implies that lim g,(w) = 0 uniformly on §. This together

n-—> oo

with (7) shows, in view of [5, p. 64], that the sequence {g,(w)} tends uni-
formly to zero on every compact subset of D,,.

We shall now show that f(z) = 0. Suppose that, on the contrary, f(z,) # 0
for some z, e D. By (a) in Definition 1, z, e 2, for all sufficiently large values
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of n. Let w = ¢,(2) be the inverse of the function z = y,(w). Then, accord-
ing to (2),

for all sufficiently large values of n. Since {g,(w)} tends uniformly to zero
on every compact subset of D,,, but f(z,) 70, we must have lim | ¢, ()| = 1.

n-—> oo

But this is impossible; for if we fix p so that |z,| <p <1, then Scawarz’s
lemma yields

[zl

for all sufficiently large values of ». Our supposition has thus led to a con-
tradiction, and the theorem is proved.

Theorem 2. Let f(z) be a normal holomorphic function in D. If f(z) is
bounded by M on a strong KOEBE sequence of arcs {J,}, then f(z) is bounded
by M throughout D.

Proof. If f(z) is bounded in D, then Definition 2 implies that none of
its radial limits, except perhaps one, is greater than M in modulus, and the
representation of f(z) by its Poisson integral shows immediately that
| f(2) | < M throughout D.

We shall now suppose that f(z) is unbounded in D, and show that this
leads to a contradiction of the hypothesis that {J,} is a strong Korrr
sequence. The set of all points z e D at which | f(z)| > M + 1 is open and
not empty; let R, be some component of this set. At all boundary points of
R, that liein D, we have |f(z)| =M 4+ 1, and the maximum principle
implies that R, cannot lie wholly in some disk |[z| <p¢ < 1. Hence, the
boundary of R, contains at least one point of C'. The region R, cannot
have more than one accessible boundary point on C, for if it had two such
points ¢, and {,, they could be connected by a JorpAN arc I lying, except
for its end points ¢; and {,, in R,, and I' would decompose D into two
subregions. But R,, and hence I, meets none of thearcsJ,(n = 1,2, 3,...),
and therefore infinitely many of these arcs would have to lie in one of the two
subregions of D, contradicting the remark following Definition 2 and (b)
in Definition 1.

We now map D,, conformally onto the universal covering surface R} of
R, by means of the single-valued function z = ¢(w), and set

g(w) = [ (p(w))

in D,. We have |¢(w)| <1 in D,. The Farou values of ¢(w) are of
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modulus 1 on at most a subset of measure zero of C,; this follows from the
Rigsz uniqueness theorem [7, p. 209] and the fact that R, has at most one
accessible boundary point on C. Since R is unbranched over R,, almost
all the FAToU values of ¢(w) are points in D that lie on the boundary of
R,. Hence, g(w) possesses limits of modulus M 4 1 along almost all radii
of C,. It follows that f(z) is unbounded in R,, because otherwise we
should have |g(w)| <M + 1 throughout D,, contradicting the definition
of R,.

The set of all points z e R,, at which | f(z)| > M + 2 is open and not
empty; let R, be some component of this set. Then R, ¢ R,, and if we
apply to R, the foregoing argument for R,, we arrive at the conclusion
that f(z) isunboundedin R,. Proceeding in this manner, we obtain a sequence
of nested regions

R,>R,>Ry»> ...
such that, for n =1,2, 3,...,
[f@) | >M +n (2¢R,). (8)
Now take
21eRy, e Ry — {2}, 3¢ Rg — {2,,%},...,2, e R, — {,2,...,2,1},...,

and join 2z, to 2, by means of a JORDAN arc K; lying in R,, join 2, to 2z,
by means of a JOrRDAN arc K, lyingin R, and having no point except z, in
common with K,,..., join 2, to z,,, by means of a JORDAN arc K, lying
in R, and having no point except z, in common with K, v K,v...v K, ,,....
We thus obtain a path

P= U K,
n=1
in D. Itsinitial point is 2;, and its “end’” lies on C because, due to (8) and
the fact that K, c R, (n=1,2,3,...),

lim min | f(z) | = oo,

n->w z2€Kn
and f(z), by hypothesis, is holomorphicin D. The path P thenis a “bound-
ary path” in D along which f(z) - co. According to [1, Corollary 1, p. 266],
the end of P is a single point ¢ ¢ C'. Since f(z) isnormalin D, { is a FaTou
point of f(z) with oo as the corresponding FaTou value [5, p. 53]. But, in
view of Definition 2, this contradicts the hypothesis that {J,} is a strong
KoEBE sequence, because f(z) is bounded on {J,}; and the theorem is
proved.
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Theorem 3. Let f(z) be a normal holomorphic function in D and A be an
open subarc of C. If the set of FATOU points of f(z) on A s of measure zero,
then A contains a FATOU point of f(z) at which the corresponding FATOU value
18 ©oo.

Proof. Take a point e A. The function f(z) cannot be bounded in any
neighborhood of (, because otherwise, by a simple extension of Fatou’s
theorem, the set of FATOU points of f(2) on A would be of positive measure,
contrary to hypothesis. Hence, there exists a number 4 > 0 such that the

region H= D~ {z:|2 — (| <6} satisfies the conditions that H~CcA
and f(z) is unbounded in H. Consequently there exists a sequence of points
{z,} in D such that z,—-( and M, =|f(z,)|—> oo as m—> oo, where
l<M,<M,<---<M,<---. For n=1,2,3,..., let V, be the open
set of all points of D at which | f(z)| > M, — 1, and denote by R, that
component of V, which contains the point z,. Evidently | f(z)| = M, — 1
at all boundary points of R, that lie in D. The maximum principle implies

that Ti’-n ~ C is not empty. As n— oo, the diameter of R, tends to zero.
For if r, = min|z|, the hypothesis that f(z) is holomorphic in D implies

z2€Rpn

that lim », = 1, so that if the diameter of R, did not tend to zero as n— oo,

Nn—=> o

one could obtain a KoEBE sequence of arcs along which f(z) - co, which is
impossible in view of Theorem 1. Thus there exists a natural number N such
that Ry ¢ H, and we set G, = Ry.

We shall show that f(z) is unbounded in @,. Let @} be the smallest
simply connected region containing G,, and z = @(w) be a function that

maps D, conformally onto Gi. The set B* =~(—¥f ~ C is not empty; we
denote by B} the set of all points of B* that are accessible from the region
G%. According to FaTou’s theorem, ¢(w) has a radial limit at almost all
points of C,; we put

@* (e#) = lim @ (re®)

r>1

for every u for which the limit exists. The set
By, = {on: | g*(ei) | = 1}

is a BOREL set, and is therefore measurable, and we have
B = {p*(e™): e c By} .

Consider the function

g(w) = f(p(w))
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in D,,. We are going to show that g(w) is unbounded in D,. Assume that
g(w) is bounded in D,,. We have either m(E,) >0 or m(E,) = 0.

Suppose first that m(#,) > 0. Let E, be the BorEL subset of positive
measure of E; at each point of which g(w) possesses a radial limit, and B}
be the image of E, under the mapping z = ¢(w). An application of an exten-
sion of LOWNER’s theorem [10, p. 322] shows that B} is a measurable subset
of B} with m(B}) > 0. Let {,¢ By. Then thereis a pathin G% terminating
in {,, and this path is the image, under the mapping 2z = ¢(w), of a path
in D,, that terminates in a point e ¢ B,. Now ¢*(ei*) = {,, and g(w)
has a radial limit at the point e’ ; therefore f(z) tends to a limit along a
path in G% terminating in {,. By hypothesis, f(z) is normal in D, and
consequently [5, p. 53] {, is a FAToU point of f(z). Since {, was an arbitrary
point of B}, and m(B}) >0, we have arrived at a contradiction of the
hypothesis that the set of FaATou points of f(z) on A is of measure zero.

Suppose next that m(E;) = 0. Since every boundary point of G} is a
boundary point of @, the italicized remark in the first paragraph of the
proof implies that the FATou values of g(w) are equalto My — 1 in modulus
almost everywhere on C,,. The representation of g(w) by its Poisson inte-
gral shows that |g(w)| < My — 1 throughout D,, which implies that
|f(2)| = My — 1 = L throughout G; = Ry, contrary to the definition of
Ry.

Thus g¢g(w) is unbounded in D,, which implies that f(z) is unbounded
in G and hence in G,. It follows that the open set of all points of G, at
which |f(z)| > L + 1 is not empty, and letting G, denote a component of
this set, we conclude as above that f(z) is unbounded in @,. Continuing in
this manner, we obtain a sequence of nested subregions G,> G,> Gy»> ...
of H, and now an argument employed in the proof of Theorem 2 enables us
to infer the existence of a FAToU point of f(z) on A at which the correspond-
ing FaToU value is oo, thus completing the proof of the theorem.

Corollary 1. The set of FATOU points of a normal holomorphic function in D
18 everywhere dense on C'.

Theorem 4. Given &> 0, there exists a normal holomorphic function f(2)
in D whose set of FATOU points s of measure less than ¢ but for which oo is
not a radial limit.

Proof. Consider first the function ¢(w)=g(w)+ h(w) in D,, where
g(w) is the elliptic modular function, holomorphic and normal in D,,, whose
set of FATOoU points E is enumerable and whose FATOU values are 0,1, oo,
and %(w) is bounded and holomorphic in D,, and possesses a radial limit at
every point of C,, — E but no radial limit at any point of £ [6, Theorem 6,
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p. 14]. Now ¢(w) is holomorphic and normal in D, [5, p. 53]; its set E, of
Farou points is enumerable, and oo is its only FaTou value.

Choose a positive number ¢ so small that, if ¢ = cos ——g—, then
L

CHE

where L is a certain positive absolute constant to be specified later. Let P
be a perfect nowhere dense set on C,, that contains no point of ¥, and for
which m(P) > 2n — §, and set H = C, — P. Denote by R the simply
connected subregion of D, whose boundary consists of the points of P and
the open chords of C,, that subtend the components of the open set H. The
boundary of R is evidently a rectifiable JORDAN curve of length less than
2n. Since each component of H is of length less than 4, the region R con-
tains the disk |w| <. Let the function w = A(2z) map D conformally
onto R so that A(0) = 0, and let 8 be the set of all points on C that cor-
respond under this mapping to points on the chords of C,, subtending com-
ponents of H. Since the sum of the lengths of these chords is less than 4,
we have, by a theorem of LAVRENTIEV [8, p. 125],

L
6 »
llog?l +1

m(8) < (10)

Now consider the function f(z) = ¢ (4(2)) in D. It is holomorphic and
normal in D [5, p. 57], does not have oo as a FATOU value, and its set of
FatovU points is S. According to (9) and (10), m(S) < ¢, and this completes
the proof of the theorem.
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