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Ûber die subnormalen Lôsungen der Differentialgleichung
w" + er* • wf + konst. • w 0

von Margrit Frei, Zurich

Herrn Rektor Dr. W. Rotach zum 60. Geburtstag gewidmet

In meiner Dissertation1) wird der Begriff «subnormale Lôsung» einer Unea-

ren Differentialgleichung eingefûhrt. Wir verstehen darunter ein partikulâres
Intégral, das wesentlich schwâcher wâchst als die allgemeine Lôsung.

Nach dem dort bewiesenen verschârften Hauptsatz ist die allgemeine Lôsung
einer Differentialgleichung

w" + e-z-w' + ocw 0 oc konst. ^ 0 (1)

eine ganze Funktion unendlicher Ordnung. Und es gibt 2 positive Konstante
cx und c2, so da8 cxr < log T(r) < c2r gilt. (T(r) ist die charakteristische
Funktion der allgemeinen Lôsung.) Die Differentialgleichung (1) besitzt hôch-
stens 1 unabhângiges part. Intégral w0 mit T(r, w0) exp. o(r), das ist
eine subnormale Lôsung. Solche schwach wachsende Intégrale kommen tat-
sâchlich vor. Zum Beispiel ist w0 ez + 1 (mit T(r, w0) rjn + 0(1))
ein part. Intégral der Differentialgleichung

w" + e~z-wr — w 0 (oc — 1) (2)

Aber wir kônnen zeigen, da8 (2) einen Ausnahmefall darstellt.
Wirwerden feststellen, daB die Differentialgleichung (1) nur fur bestimmte,

seltene Werte von oc eine subnormale Lôsung zulâBt. Dabei zeigt sich eine

merkwurdige Analogie zu den linearen Differentialgleichungen mit Polynomen
als Koeffizienten. Ftir dièse nâmlich kann die Frage nach der Existenz eines

subnormalen Intégrais allgemein beantwortet werden. Denn aus einer Arbeit
von Poschel [l]2) folgt, daB eine subnormale Lôsung einer linearen
Differentialgleichung zweiter Ordnung mit Polynomen als Koeffizienten entweder ein
Polynom oder eine ganze transzendente Funktion endlicher Wachstumsord-

nung ohne Nullstellen ist. Eine transzendente subnormale Lôsung ist also nur
môglich, wenn die Differentialgleichung reduzibel ist (vgl. Pôlya [1]), ist doch
eine nullstellenfreie ganze Funktion endlicher Wachstumsordnung schon

*) Siehe Comm. Math. Helv. Bd. 35, Jg. 1961, S. 201.
2) Fur aile Zitate vgl. Literaturverzeichnis meiner oben erwâhnten Dissertation.
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2 Mabgrit Frei

Lôsung einer linearen Differentialgleichung erster Ordnung mit Polynomen als
Koeffizienten.

Aus der Existenz der subnormalen Lôsung w0 ez + 1 der Differential-
gleichung (2) folgt zwar nicht, da8 die Differentialgleichung (2) reduzibel ist,
derm wQ ist nicht Lôsung einer linearen Differentialgleichung erster Ordnung
mit ganzen Funktionen als Koeffizienten. Aber w0 ist ein «Polynom in ez».

Und wir werden zeigen, daB jede subnormale Lôsung der Differentialgleichun-
gen (1) ein Polynom in ez ist. Wir beweisen nàmlich den

Satz. Die Differentialgleichungen

w" + e~~z-wf + <Z'W 0 oc konst., ^ 0

besitzen dann und nur dann eine subnormale Lôsung, wenn die Konstante
a. — n2, n nattirliche Zahl, ist. Dièse subnormale Lôsung wQ ist dann ein

n

Polynom w-ten Grades in es : w0 Zakekz.

Beweis. Man sieht leicht ein, da8 die Differentialgleichungen (1) nur trans-
zendente Lôsungen besitzen. Sie sind sâmtliche mindestens vom Mitteltypus
erster Ordnung, wobei sogar

liminfr(r,i«?)/r>0 (3)
r=oo

gilt, weil der einzige transzendente Koeffizient von (1), e~z, von vollkommen
regelmâBigem Wachstum ist.

Das Wachstum einer eventuellen subnormalen Lôsung w0 schâtzen wir mit
Hilfe der «charakteristischen Gleichung» von Wiman ab. Nach den Ausfuh-

rungen in § 1 meiner Dissertation gilt fur eine Lôsung der Differentialgleichung

(1) fur aile r, r > 0, auBerhalb einer r-Menge von endlichem logarith-
mischem MaB

[v(r)ICT-(l + %(«) + e-Ci-(r)/C.(l + Vl(Ç)) + <x 0 (4)

Dabei ist £ r-é9 eine Stelle auf dem Kreis \z\ r, wo der Betrag von
wQ das Maximum MQ(r) erreicht, das heiBt | wo(Ç) \ Max | wo(z) |; v(r)

der Zentralindex. Wegen (3) werden die GrôBen | ^ | 0 (r~lfé+e), e > 0, also

beliebig klein.
Fur eine subnormale Lôsung wQ ist

lim sup log2 M0(r)/r 0, das heiBt log2 M (r) o(r) (5)
fa»

AuBerhalb einer r-Menge von endlichem logarithmischem MaB unterliegt der
Zentralindex v(r) der bekannten Bedii^ung :
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v(r)<[logM(r)]1+e, e>0. Also gilt fur wQ:

log v (r)/r < log2 M0 (r) o (r) (6)

Maximalrichtungen einer subnormalen Lôsung von (1) kônnen also nach (4)
auBerhalb einer r-Menge von endlichem logarithmischem MaB nur im Gebiet

-\n- s(r) < <pm&x < + \n + e(r) lim e(r) 0 (7)

liegen.
Weil in den Richtungen — \n <<p < -{- \n sàmtliche Koeffizienten der

Gleichung (4) beschrânkt sind, sind dort auch die Quotienten v(r)/r
beschrânkt.

Nur in den Intervallen \ti < <p < \n -f e(r) [bzw. — \n > y > ~ \n — e]

kann v(r)jr unbeschrankt sein.

Flir dièse Richtungen vergleichen wir unter der Annahme, daB v(r)jr
unbeschrankt sei, die Betrâge in (4) und bekommen ohne prinzipielle Schwierig-
keiten durch Rechnung fur v/r auBerhalb einer r-Menge von endlichem
logarithmischem MaB die Abschâtzung

1 - tfx(r) < -^-^ < 1 + #,(r) lim#< (r) 0 (8)

Und ebenso durch Vergleich der Realteile der Glieder von (4) unter denselben

Voraussetzungen und auBerhalb derselben Ausnahmemenge

pr ' sin e

.— cos r ô(r) lim ô(r) 0 (9)
vjr w

«>
w

(8) und (9) sind aber fur ein e> 0 nur vereinbar, wenn cos r o(l), das
heiBt fur diejenigen r, die einem ungeraden Vielfachen von \n benachbart
liegen. Dièse r bilden eine Menge, die aus Teilintervallen Arn zusammen-
gesetzt ist. Der Mittelpunkt von Arn liegt ungefâhr bei rn (2n + 1) \n.
Das heiBt in Arn gilt

rn-o(l)<r<rn + o(l), wo cos r 0[sin(o(l))] o(l). (10)

AuBerhalb der WiMANschen Ausnahmeintervalle und der Intervalle Arn
sind (8) und (9) unvereinbar, solange e > 0 und vjr unbeschrankt verlangt
werden. Fur e < 0 ist aber v/r nach oben gleichmâBig beschrânkt. Also ist
auBerhalb den WiMANschen und den A rW-Intervallen

v/r beschrânkt. (11)

Im Innern eines Intervalles, das zwischen zwei Punkten liegt, wo vjr
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gleichmâBig beschrânkt ist, lâBt sich vjr abschàtzen, weil v(r) eine nicht
abnehmende Funktion von r ist, nâmlich
r1 liège im Intervall (rt_t,rt), also rt_x<r' <rt, mit v(rt_1)/rl^1 < cQ und
v(rt)/rt<c0, dannist v(rf)jrr < v(r,)/rt-rjrr < virj/r^rjr^.
Ist nun das betrachtete Intervall ein WiMANsches, so gilt lim rtjrt_1 1.

1=00
Ist das betrachtete Intervall ein A rn, so gilt lim rjrl_1 1 ebenso, weil

Also sind die Quotienten rjrr in beiden Fâllen gleichmâBig beschrânkt,
also ist vjr auch innerhalb der Ausnahmeintervalle gleichmâBig beschrânkt,
wenn ihre Endpunkte nicht zur andern Ausnahmemenge gehôren.

Wie steht es aber fur ein r innerhalb einer Vereinigungsmenge der Arn
und der WiMANschen Intervalle? - Wenn das logarithmische MaB aller Arn
zusammen auch endlich wâre, so diirften wir schlieBen, daB auch die Vereini-
gungsmenge der beiden Ausnahmemengen von endlichem logarithmischem
MaB ist, und nach unsern tîberlegungen oben wâre dann vjr ûberall gleichmâBig

beschrânkt. Aber die Voraussetzung fur e bzw. ô(r) ist zu schwach,
daB daraus folgen wurde, auch das logarithmische MaB der Arn ist endlich.

Es bleibt uns aber eine andere Môglichkeit, vjr abzuschâtzen : Zu untersuchen,
wie groB die Intervalle sind, die durch die Vereinigung von Komponenten
der beiden Ausnahmemengen entstehen. Nach oben ist vjr dann beschrânkt,
wenn der Quotient rtjr^ly der in dieser Abschâtzung wesentliche Faktor,
beschrânkt ist. Unsere Frage lautet also: Kônnen durch die beiden Sorten
von Ausnahmeintervallen soviele aufeinanderfolgende Intervalle aneinander-
gehângt werden, daB das entstehende zusammengesetzte Intervall so groB ist,
daB der Quotient r*jr*_x beliebig groB wird? (Wenn r*_x und r* die
Endpunkte dièses Intervalles sind.) - Der Logarithmus dièses Quotienten ist aber
das logarithmische MaB der Vereinigungsmenge der aneinandergehângten
Intervalle (beider Sorten) ; er ist also hôchstens so groB wie die Summe der loga-
rithmischen MaBe der einzelnen Intervalle, die das neue Intervall bilden, also
endlich, wenn dièses von endlich vielen Intervallen beider Sorten zusammen-
gesetzt worden ist.

Kônnte aber der Fall eintreten, daB von einem gewissen r > r0 an, die
WiMAKschen Ausnahmeintervalle durch die Arn zu einem Intervall verbun-
den wiirden? - Das wâre der Fall, wenn von diesem r > r0 an die WiMANschen
Intervalle aile, zwei aufeinanderfolgende A rn trennende Zwischenrâume, das
ist die Komplementàrmenge der Arn ûberdeckten. Das wâre aber nur môglich,
wenn das logarithmische MaB dieser Komplementàrmenge endlich wâre. -
Schâtzen wir also das logarithmische MaB der Komplementàrmenge der A rn
ab!
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Es ist <rk + o(l), rk+1 — o(l)> das &-te Intervall dieser Menge, wenn
rfc (2k -\- l)^7t, k l, 2,.... Sein logarithmisches MaB also:

Damit ist das logarithmische MaB der Komplementârmenge der A rn grôBer als

00 / 1 \ °° 1
log II 1 4- \ y

das ist aber mit E divergent
k \ K -\- L J *a + 1

Also wird die Komplementârmenge der A rn von den WiMANschen Intervallen
nieht bedeckt.

Der Quotient r*lr*_x ist somit fur jedes ursprûngliche oder zusammenge-
setzte Ausnahmeintervall endlich und folglich gilt :

vjr ist fur aile r gleichmâBig beschrânkt. (12)

Das heiBt w0 ist hôehstens vom Mitteltypus erster Ordnung. (13)

(3) und (13) zusammen aber ergeben:

Wenn die Differentialgleichung (1) eine subnormale Lôsung besitzt, so ist
sie sogar endlicher Ordnung, nâmlich vom

Mitteltypus erster Ordnung. (14)

Warum muB nun aber eine Lôsung erster Ordnung der Differentialglei-
chungen (1) ein Polynom in ez sein?

Das kônnen wir zeigen, indem wir eine besondere Eigenschaft naehweisen,
die allen Lôsungen von endlicher Wachstumsordnung einer Differentialgleichung

w" + a1(z)-wl + ao(z)-w — 0 zukommt, wenn der transzendente Ko-
effizient ax(z) wesentlich stârker wâchst als ao(z).

Zur Vereinfachung der Untersuchung setzen wir noch voraus, daB der
schwâcher wachsende Koeffizient a0 ein Polynom sei.

Nehmen wir also an, die Differentialgleichung

w" + ax(z)^wf + P{z)-w 0 (15)

wo ax ganz-transzendent und P(z) ein Polynom ist, besitze ein partikulàres
Intégral endlicher Ordnung wQ.

Dann gelten folgende Beziehungen :

I. m(r, Wq/wq) O(logr) fur jedes r. Aus (15) folgt durch leichte Um-
formung
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und daraus nach Ûbergang zur Schmiegungsfunktion

II. m(r, wo/w'Q) < m(r, ax) + O(log r) fur jedes r, weil die Schmiegungsfunktion

einer rationalen Funktion O(log r). Andererseits kônnen wir (15)
auch umformen in

Pw0/w'o + Wq/wq — Oi also

m(r, wJwq) + m(r, P) + m(r, w^/Wq) >m(r, at) das heiBt

III. m(ry wJwq) >m(r,a^)— O(log r) fur jedes r.
Fur m{r,a-ù setzen wir noch Tir,^), denn ax ist ganz, und weil ax

transzendent ist, gilt limlogr/î7^, %) 0. Also durfen wir fur groBe r
r=oo

II. und III. zusammenfassen in

m{r,wo/w'o) ^T(ryat) fur r>r0. (16)

Nach den bekannten Eigenschaften der charakteristischen Punktion gilt
aber

m(w'0/w0) + N(w'jw0) T(^>0) T(v>M) + °(l)
m(wolw'o) + N(wo/w'o) + 0(1)

(wenn wir for m(r,w, oo) bzw. N(r, w, oo), m(w) bzw. N(w) schreiben).
Daraus bekommen wir

O(log r) + N(w'olwo) ** T(r, ax) + N(wo/w'o) fur r > r0,
also

N(r, w'0/w0, oo) « N(r, wo/w'o, oo) + T(r, ax) fur r > r0 (17)

Da w0 Lôsung einer linearen Differentialgleichung zweiter Ordnung ist,
deren Koeffizienten ganze Funktionen sind, so haben w0 und wfQ keine ge-
meinsame Nullstelle, weil die WRONSKische Déterminante dieser Differentialgleichung

nirgends verschwindet. Und da w0 und aile ihre Ableitungen ganze
Funktionen sind, haben w0 und wf0 keine Pôle. Folglich ist

N(r9 WqJWq, oo) N(r, l/wOi oo), das ist Nullstellenzahl von w0 in | z \ < r
und

N(r, Wq/w'q, oo) N(r, l/w'0} oo), das ist Nullstellenzahl von w'o in \z\ <r.
(17) bedeutet also

Nullstellenzahl von wQ ^ Nullstellenzahl von w'Q + T(r, ax). (18)

Das heiBt w'o hat weniger Nullstellen als w0. Es besteht ein Unterschied,
der etwa so groB ist wie T(r, ax).
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In den Differentialgleichungen (1) ist aber ï7^,^) T(r, erz) rjn.
Also verliert die erste Ableitung eines Intégrales endlicher Ordnung gegenûber
wQ rjn Nullstellen in \ z\ <r. Insbesondere wird also die Anzahl der Null-
stellen eines subnormalen Intégrais w0, das ja nach (14) vom Mitteltypus
erster Ordnung ist, beim Differenzieren wesentlich vermindert3). Und wir
haben

N(r, w'o, 0) N(r, w0, 0) + O(log r) - r\n (19)

Die Ableitung w'o ihrerseits genûgt aber der Differentialgleichung dritter Ord-

nUIlg wm + e~zw" -e-z-w'+ocw^O, (20)

die aus der Differentialgleichung (1) durch Differentiation hervorgeht.
Wenn wir w'o (w'olez) • ez w1 • ez setzen, so ist wx eine ganze Funktion

hôchstens vom Mitteltypus erster Ordnung. In (20) setzen wir die entspre-
chenden Ableitungen von w'o, ausgedrûckt durch Wj und ez, ein und be-
kommen nach Division durch ez

w" + (2 + e~z)-w' + {*+ l)-w 0 (21)

als Differentialgleichung fur wx. Dièse Differentialgleichung ist linear, zweiter
Ordnung, und ihre Koeffizienten erfûllen die Voraussetzungen der Differentialgleichung

(15). Sie besitzt in w1 ein partikulâres Intégral endlicher Ordnung,
daher verliert wx bei der Differentiation Nullstellen. Es ist

N(r, w[, 0) N(r, wl9 0) - T(r, 2 + er+) + O(logr)

Aber nach Définition ist N(r, wl9 0) N(r, w'o, 0) und wegen den bekann-
ten Regeln fur die charakteristische Funktion einer ganzen Funktion gilt
T(r, 2 + e~z) T(r, ez) + 0(1), also nach (19)

N(r, w'l9 0) - N(r, w0, 0) - 2-r/n + O(logr) (22)

Nun substituieren wir w[ mit ezw2 und wiederholen dièses Verfahren. Mit
Hilfe vollstândiger Induktion zeigt man, daB nach n-maliger Wiederholung
fur wn+1 folgende Differentialgleichung gilt :

w" + w'[2(n + 1) + e~z] + w-[(n + l)2 + oc] 0 (23)

Nach Seite 2 Mitte und wegen der Konstruktion der Funktion wn+1 muB

(23) ein partikulâres Intégral vom Mitteltypus erster Ordnung besitzen, des-

sen Nullstellenzahl gegenûber der Nullstellenzahl von w0 um (n + l)-rjn
vermindert ist :

N{r, wn+1, 0) N(r, w0, 0) - (n + l).r/w + O(logr) (24)

8) Man kann sogar zeigen, daB 0 defekter Wert von wrQ wird.
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Da wQ selbst vom Mitteltypus erster Ordnung ist, so gilt

(25)

Somit existiert eine Konstante c > 0, so daB N(r, w0, 0) < cr. Und also

gibt es eine natûrliche Zahl n, so daB

(n + \)-rjn > N(r, w0, 0) + 0(log r) gilt.

Das heiBt, nach endlich vielen Wiederholungen des oben beschriebenen Ver-
fahrens bekommen wir eine Differentialgleichung vom Typ (23), die ein part.
Intégral vom Mitteltypus erster Ordnung ohne Nullstellen besitzt.

Das sei nach genau i-maliger Ausfûhrung des Prozesses der Fall. Dann
heiBt das part. Intégral wk ePz, /?konst. Nach (23) ist wk Lôsung der
Differentialgleichung

w" + (2k + e~z)w! + (k2 + oc)-w 0 (26)

Darin setzen wir wk ePz ein und bekommen die Beziehung

p2 + (2k + e~z)-p + (k2 + oc) 0

Daraus folgt: (} 0, und deshalb k2 + oc 0.
Damit ein part. Intégral von subnormalem Wachstum existiert, muB also

notwendig
oc — n2, n natûrliche Zahl, sein. (27)

Dièse Bedingung ist aber auch hinreichend: Wenn nâmlich auf eine
Differentialgleichung

w" + e~zw' —n2-w 0 (28)

das oben beschriebene Verfahren n-mal ausgeubt wird, so erfullt wn die

Differentialgleichung

w" + (2n + e~z)w' + (n2 — n2)w 0 also

w" + (2n + e~z)w' 0.

Dièse hat das part. Intégral wn konst. ^ 0.
Sei wn c19 d.i. die erste Integrationskonstante. Dann gilt m;^ ct-ez,

also wn^x cx - ez + c2 (c% hangt von der entsprechenden Differentialgleichung
ab), w'n__2 ez* (cx-ez + c2) usw. Es resultiert eine Funktion w0, die wir

n
durch Ausmultiplizieren auf die Form wQ Zakekz bringen kônnen. Q.e.d.

(Eingegangen den 1. Juni 1960)
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