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Uber die subnormalen Lisungen der Differentialgleichung

w' 4+ e*-w + konst. - w =0
von MARGRIT FREI, Ziirich

Herrn Rektor Dr. W. Rotach zum 60. Qeburtstag gewidmet

In meiner Dissertation!) wird der Begriff «<subnormale Losung» einer linea-
ren Differentialgleichung eingefiihrt. Wir verstehen darunter ein partikuléres
Integral, das wesentlich schwicher wichst als die allgemeine Losung.

Nach dem dort bewiesenen verschdrften Hauptsatz ist die allgemeine Losung
einer Differentialgleichung

w +e?w +x-w=0, « konst.=£0, (1)

eine ganze Funktion unendlicher Ordnung. Und es gibt 2 positive Konstante
¢, und ¢;, so daBl c¢,r <log T'(r) < cyr gilt. (T'(r) ist die charakteristische
Funktion der allgemeinen Losung.) Die Differentialgleichung (1) besitzt hoch-
stens 1 unabhéngiges part. Integral w, mit 7'(r, w,) = exp.o(r), das ist
eine subnormale Losung. Solche schwach wachsende Integrale kommen tat-
séichlich vor. Zum Beispiel ist wy=1¢€*+1 (mit 7'(r, w,) = r/m + O (1))
ein part. Integral der Differentialgleichung

w +e*w —w=0 (x=—1). (2)

Aber wir kénnen zeigen, dal (2) einen Ausnahmefall darstellt.

Wir werden feststellen, dal die Differentialgleichung (1) nur fiir bestimmte,
seltene Werte von « eine subnormale Losung zuldfit. Dabei zeigt sich eine
merkwiirdige Analogie zu den linearen Differentialgleichungen mit Polynomen
als Koeffizienten. Fiir diese ndmlich kann die Frage nach der Existenz eines
subnormalen Integrals allgemein beantwortet werden. Denn aus einer Arbeit
von PoscHEL [1]2) folgt, dall eine subnormale Losung einer linearen Differen-
tialgleichung zweiter Ordnung mit Polynomen als Koeffizienten entweder ein
Polynom oder eine ganze transzendente Funktion endlicher Wachstumsord-
nung ohne Nullstellen ist. Eine transzendente subnormale Losung ist also nur
moglich, wenn die Differentialgleichung reduzibel ist (vgl. Pérya [1]), ist doch
eine nullstellenfreie ganze Funktion endlicher Wachstumsordnung schon

1) Siehe Comm. Math. Helv. Bd. 35, Jg. 1961, S. 201.
?) Fiir alle Zitate vgl. Literaturverzeichnis meiner oben erwithnten Dissertation.
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2 MARGRIT FREI

Losung einer linearen Differentialgleichung erster Ordnung mit Polynomen als
Koeffizienten.

Aus der Existenz der subnormalen Losung w, = ¢? + 1 der Differential-
gleichung (2) folgt zwar nicht, da die Differentialgleichung (2) reduzibel ist,
denn w, ist nicht Losung einer linearen Differentialgleichung erster Ordnung
mit ganzen Funktionen als Koeffizienten. Aber w, ist ein «Polynom in e?».
Und wir werden zeigen, dafl jede subnormale Losung der Differentialgleichun-
gen (1) ein Polynom in e? ist. Wir beweisen nimlich den

Satz. Die Differentialgleichungen
w +e*w +aw=0 « konst., %40

besitzen dann und nur dann eine subnormale Losung, wenn die Konstante

o« = — n?, n natiirliche Zahl, ist. Diese subnormale Losung w, ist dann ein
n

Polynom n-ten Grades in e?: w, = X'a,e*.
k=0

Beweis. Man sieht leicht ein, daf die Differentialgleichungen (1) nur trans-
zendente Losungen besitzen. Sie sind siémtliche mindestens vom Mitteltypus
erster Ordnung, wobei sogar

liminf T'(r, w)/r > 0 (3)
r=00
gilt, weil der einzige transzendente Koeffizient von (1), e, von vollkommen
regelmifigem Wachstum ist.

Das Wachstum einer eventuellen subnormalen Losung w, schitzen wir mit
Hilfe der «charakteristischen Gleichung» von WimanN ab. Nach den Ausfiih-
rungen in § 1 meiner Dissertation gilt fiir eine Losung der Differentialglei-
chung (1) fiir alle », » > 0, auBlerhalb einer »-Menge von endlichem logarith-
mischem Maf

[»(r)/C1*- (1 + 74(0)) + e %2 (r)/E- (1 + (L)) + &= 0. (4)

Dabei ist { = r-¢® eine Stelle auf dem Kreis |z | = r, wo der Betrag von

w, das Maximum M,(r) erreicht, das heiflt | w,({) | = Max | wy(2) |; »(r)
jzl=r

der Zentralindex. Wegen (3) werden die GroBen |7, | =0(r~"**), ¢>0, also
beliebig klein.
Fiir eine subnormale Losung w, ist
lim sup log, My(r)/r = 0, das hei3t log, M (r) = o(r) . (5)

7= 00

AuBlerhalb einer r-Menge von endlichem logarithmischem Mafl unterliegt der
Zentralindex »(r) der bekannten Bedingung:
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v(r) < [log M (r)]***, &> 0. Also gilt fiir w,:

log v(?')/r < logy, My(r) = o(r) . (6)

Maximalrichtungen einer subnormalen Losung von (1) kénnen also nach (4)

auBerhalb einer r»-Menge von endlichem logarithmischem Mafl nur im Gebiet

— 37— e() < Puax < + b+ (1) lime(r) =0 (7)

=0
liegen.

Weil in den Richtungen — iz < ¢ < + iz sdmtliche Koeffizienten der
Gleichung (4) beschrinkt sind, sind dort auch die Quotienten »(r)/r be-
schriankt.

Nur in den Intervallen in<o <im 4 e(r) [bzw. —dn>¢p > —in — €]
kann »(r)/r unbeschriankt sein.

Fiir diese Richtungen vergleichen wir unter der Annahme, da} »(r)/r un-
beschriankt sei, die Betrdge in (4) und bekommen ohne prinzipielle Schwierig-
keiten durch Rechnung fiir »/r auflerhalb einer »-Menge von endlichem loga-
rithmischem Ma@ die Abschitzung

er: sin &

1 —9(r) <

S1+3(r) limd,(r) =0 (8)

VT r=00

Und ebenso durch Vergleich der Realteile der Glieder von (4) unter denselben
Voraussetzungen und auBerhalb derselben Ausnahmemenge

er: sin &

e cos r = 4(r) }1:2 o(r)=0 (9)
(8) und (9) sind aber fiir ein ¢ > 0 nur vereinbar, wenn cos r = o(1), das
heif}t fiir diejenigen r, die einem ungeraden Vielfachen von 3z benachbart
liegen. Diese r bilden eine Menge, die aus Teilintervallen Ar, zusammen-
gesetzt ist. Der Mittelpunkt von A7, liegt ungefihr bei r, = (2n + 1)ix.
Das heiflt in Ar, gilt

r, —o(l)y<r<r,+ o(l), wo cosr = O[sin(o(1))] = o(1). (10)

AuBerhalb der Wimanschen Ausnahmeintervalle und der Intervalle Ar,
sind (8) und (9) unvereinbar, solange ¢> 0 und »/r unbeschrinkt verlangt
werden. Fiir ¢ < 0 ist aber »/r nach oben gleichmiBig beschriankt. Also ist
auBerhalb den Wimanschen und den Ar, -Intervallen

v[r beschrdnkt. (11)

Im Innern eines Intervalles, das zwischen zwei Punkten liegt, wo w/r
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gleichmédBig beschriankt ist, 148t sich »/r abschitzen, weil »(r) eine nicht
abnehmende Funktion von 7 ist, ndmlich

r" liege im Intervall (r,_,,7;), also r,_, <7 <r;,, mit »(r,_;)/r,_; < ¢ und
v(r)r; < ¢, dannist »(r')/r' K w(ry)[ry-rifr’ S w(r)/ririri,.

Ist nun das betrachtete Intervall ein Wimawnsches, so gilt lim7,/r,_, = 1.

Ist das betrachtete Intervall ein A7,, so gilt lim »,/r,_, = 1 ebenso, weil
ry =11+ o(1). P

Also sind die Quotienten r;/#' in beiden Fillen gleichmiflig beschrinkt,
also ist »/r auch innerhalb der Ausnahmeintervalle gleichméfig beschrinkt,
wenn ihre Endpunkte nicht zur andern Ausnahmemenge gehoren.

Wie steht es aber fiir ein r innerhalb einer Vereinigungsmenge der Ar,
und der WimaNschen Intervalle? — Wenn das logarithmische Mafl aller A7,
zusammen auch endlich wire, so diirften wir schliefen, dafl auch die Vereini-
gungsmenge der beiden Ausnahmemengen von endlichem logarithmischem
MaB ist, und nach unsern Uberlegungen oben wire dann »/r iiberall gleich-
mifBig beschrinkt. Aber die Voraussetzung fiir ¢ bzw. d(r) ist zu schwach,
daB daraus folgen wiirde, auch das logarithmische Maf3 der Ar, ist endlich.

Es bleibt uns aber eine andere Moglichkeit, »/r abzuschétzen : Zu untersuchen,
wie gro8 die Intervalle sind, die durch die Vereinigung von Komponenten
der beiden Ausnahmemengen entstehen. Nach oben ist »/r dann beschrinkt,
wenn der Quotient r,/r,_,, der in dieser Abschitzung wesentliche Faktor,
beschriankt ist. Unsere Frage lautet also: Konnen durch die beiden Sorten
von Ausnahmeintervallen soviele aufeinanderfolgende Intervalle aneinander-
gehingt werden, daB das entstehende zusammengesetzte Intervall so grof} ist,
daB der Quotient 7}/r;_, beliebig groB wird? (Wenn 7;_, und »; die End-
punkte dieses Intervalles sind.) — Der Logarithmus dieses Quotienten ist aber
das logarithmische Ma der Vereinigungsmenge der aneinandergehingten In-
tervalle (beider Sorten) ; er ist also hochstens so grofl wie die Summe der loga-
rithmischen Maf3e der einzelnen Intervalle, die das neue Intervall bilden, also
endlich, wenn dieses von endlich vielen Intervallen beider Sorten zusammen-
gesetzt worden ist.

Konnte aber der Fall eintreten, dall von einem gewissen r > r, an, die
Wimanschen Ausnahmeintervalle durch die A7, zu etnem Intervall verbun-
den wiirden? — Das wiire der Fall, wenn von diesem r > r, an die WimaNschen
Intervalle alle, zwei aufeinanderfolgende Ar, trennende Zwischenrdume, das
ist die Komplementirmenge der Ar, iiberdeckten. Das wire aber nur moglich,
wenn das logarithmische MaB dieser Komplementidrmenge endlich wire. —
Schitzen wir also das logarithmische Maf3 der Komplementéirmenge der Ar,
ab!
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Es ist <r, 4+ o(l), 7,4, —o(1)) das k-te Intervall dieser Menge, wenn
r. = (2k + 1)-3m, k = 1,2,.... Sein logarithmisches MaB also:
(2k + 3)in — o(1) 7 — o(1) ]
2k + iz + o(1) 2k + )iz + 1
1 —o(l) ] [ 1 ]
>1 1 1 1 . .
2 tog| 1y = e[ 4

Damit ist das logarithmische Mafl der Komplementédrmenge der Ar, grofler als

Trr1 — 0(1)

7, + o(1)

log = log > log [1 -+

divergent !

ki 1
loglg(l—l—%k_l_l), das ist aber mit {k—{-l
Also wird die Komplementidrmenge der Ar, von den WimMaNschen Intervallen
nicht bedeckt.
Der Quotient 7;/r;_, ist somit fiir jedes urspriingliche oder zusammenge-
setzte Ausnahmeintervall endlich und folglich gilt :

v[r ist fiir alle r gleichméBig beschriankt. (12)
Das heiflt w, ist hochstens vom Mitteltypus erster Ordnung. (13)
(3) und (13) zusammen aber ergeben:

Wenn die Differentialgleichung (1) eine subnormale Losung besitzt, so ist
sie sogar endlicher Ordnung, ndmlich vom

Mitteltypus erster Ordnung. (14)

Warum muBl nun aber eine Losung erster Ordnung der Differentialglei-
chungen (1) ein Polynom in e? sein?

Das kénnen wir zeigen, indem wir eine besondere Eigenschaft nachweisen,
die allen Lt')sungen von endlicher Wachstumsordnung einer Differentialglei-
chung w" 4+ a,(2)-w' + a4(2)-w = 0 zukommt, wenn der transzendente Ko-
effizient a,(z) wesentlich stirker wichst als a,(2).

Zur Vereinfachung der Untersuchung setzen wir noch voraus, daf der
schwicher wachsende Koeffizient @, ein Polynom sei.

Nehmen wir also an, die Differentialgleichung

w" + ay(z)-w' + P(z)-w =0, (15)

wo a, ganz-transzendent und P(z) ein Polynom ist, besitze ein partikulires
Integral endlicher Ordnung w,.
Dann gelten folgende Beziehungen:

I. m(r, w)w,) = O(logr) fiir jedes r. Aus (15) folgt durch leichte Um-
formung
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wolwy = @y (— 1/P) 4 wyfwy-(— 1/P),
und daraus nach Ubergang zur Schmiegungsfunktion

II. m(r, wefwy) < m(r,a,) + O(logr) fiir jedes », weil die Schmiegungs-
funktion einer rationalen Funktion = O(log r). Andererseits konnen wir (15)
auch umformen in

P.wyJwy + wjjjwy = — a,, also

m(r, wofwg) + m(r, P) 4+ m(r, wyjwy) > m(r, a,) das heiBt
II. m(r, wy/wy) > m(r,a,) — O(logr) fiir jedes 7.

Fir m(r, a,) setzen wir noch 7'(r,a,), denn a, ist ganz, und weil a,
transzendent ist, gilt limlog /7T (r, a,) = 0. Also diirfen wir fiir grofle r

=00

IT. und IT1. zusammenfassen in
m(r, wy/wy) ~ T(r,a,) fir r>r,. (16)

Nach den bekannten Eigenschaften der charakteristischen Funktion gilt
aber

m (wyfwe) ~+ N (wofwo) = T (wfwo) = T (wofw) + O(1)
= m (wo/wg) + N (wofwy) + O(1)
(wenn wir fiir m(r, w, oo) bzw. N(r,w, oo), m(w) bzw. N (w) schreiben).
Daraus bekommen wir
O(log r) + N(w)jwy) ~ T(r, a,) + N(wejw) fiir » > ry,
also
N(r, wijwy, 00) ~ N (r, wofwy, 00) + T'(r, a,) fir r>r,. (17)

Da w, Losung einer linearen Differentialgleichung zweiter Ordnung ist,
deren Koeffizienten ganze Funktionen sind, so haben w, und w, keine ge-
meinsame Nullstelle, weil die WrRoNSKIsche Determinante dieser Differential-
gleichung nirgends verschwindet. Und da w, und alle ihre Ableitungen ganze
Funktionen sind, haben w, und w, keine Pole. Folglich ist

N (r, wgfw,, o0) = N(r, 1wy, o), das ist Nullstellenzahl von w, in |z | <7
und
N (r, wo/w), 00) = N (r, 1/w), co), das ist Nullstellenzahl von w; in |z| <r.
(17) bedeutet also

Nullstellenzahl von w, ~ Nullstellenzahl von wy + T'(r,a,). (18)

Das heiBt w, hat weniger Nullstellen als w,. Es besteht ein Unterschied,
der etwa so grof} ist wie 7'(r, a,).
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In den Differentialgleichungen (1) ist aber 7'(r,a,) = T(r,e?) = r/xn.
Also verliert die erste Ableitung eines Integrales endlicher Ordnung gegeniiber
w, 7/ Nullstellen in |z | <. Insbesondere wird also die Anzahl der Null-
stellen eines subnormalen Integrals w,, das ja nach (14) vom Mitteltypus
erster Ordnung ist, beim Differenzieren wesentlich vermindert?). Und wir

haben N(r,wh, 0) = N(r, w,, 0) + O(log r) — 7/ . (19)

Die Ableitung w, ihrerseits geniigt aber der Differentialgleichung dritter Ord-
nung w”,“l— e_z,u)h' — e_z.wl + “wl = 0 , (20)
die aus der Differentialgleichung (1) durch Differentiation hervorgeht.

Wenn wir w] = (wg/e?)-e* = w,-e?* setzen, so ist w, eine ganze Funktion
hochstens vom Mitteltypus erster Ordnung. In (20) setzen wir die entspre-
chenden Ableitungen von w,, ausgedriickt durch w, und e?, ein und be-
kommen nach Division durch e?

w4 (24 e#)-w + ( + 1)-w =0 (21)

als Differentialgleichung fiir w,. Diese Differentialgleichung ist linear, zweiter
Ordnung, und ihre Koeffizienten erfiillen die Voraussetzungen der Differential-
gleichung (15). Sie besitzt in w,; ein partikuldres Integral endlicher Ordnung,
daher verliert w, bei der Differentiation Nullstellen. Es ist

N(r,w;,0)=N(r,w,,0) —T(r,2+e* + O(logr).

Aber nach Definition ist N (r, w;, 0) = N (r, w,, 0) und wegen den bekann-
ten Regeln fiir die charakteristische Funktion einer ganzen Funktion gilt
T(r,2 4 e?®)=T(r, ) + O(1), also nach (19)

N(r,w;,0) = N(r, w,, 0) — 2.7/ + O(log7) . (22)

Nun substituieren wir w, mit e?.w, und wiederholen dieses Verfahren. Mit
Hilfe vollstindiger Induktion zeigt man, daB nach n-maliger Wiederholung
fir w,,, folgende Differentialgleichung gilt:

w' + w2+ 1)+ e*]+w[(n+ 1)+ a]=0. (23)

Nach Seite 2 Mitte und wegen der Konstruktion der Funktion w,, , muB
(23) ein partikulires Integral vom Mitteltypus erster Ordnung besitzen, des-
sen Nullstellenzahl gegeniiber der Nullstellenzahl von w, um (n + 1)-r/n
vermindert ist:

N(r,w,.,,0)=N(r,wy, 0) —(n + 1).7/n 4 O(log r) . (24)

3) Man kann sogar zeigen, daB 0 defekter Wert von w} wird.
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Da w, selbst vom Mitteltypus erster Ordnung ist, so gilt
N(r,wy, 0) = O(r). (25)

Somit existiert eine Konstante ¢ > 0, so dafl N (r, w,, 0) <c-r. Und also
gibt es eine natiirliche Zahl n, so dag

(n + 1)-r/m > N(r, w,, 0) + O(logr) gilt.

Das hei3t, nach endlich vielen Wiederholungen des oben beschriebenen Ver-
fahrens bekommen wir eine Differentialgleichung vom Typ (23), die ein part.
Integral vom Mitteltypus erster Ordnung ohne Nullstellen besitzt.

Das sei nach genau k-maliger Ausfiihrung des Prozesses der Fall. Dann
heiBt das part. Integral w, = ef?, Bkonst. Nach (23) ist w, Losung der
Differentialgleichung

w' + 2k +e?)w + (k24 x)-w=0. (26)

Darin setzen wir w, = ef* ein und bekommen die Beziehung

B+ (2k + e)-B + (B + o) =O0.

Daraus folgt: g = 0, und deshalb k%2 4 &« = 0.
Damit ein part. Integral von subnormalem Wachstum existiert, mufl also
notwendig
o = — n?, m natiirliche Zahl, sein. (27)

Diese Bedingung ist aber auch hinreichend: Wenn nidmlich auf eine Diffe-
rentialgleichung
w' +e*w —ntw=20 (28)

das oben beschriebene Verfahren n-mal ausgeiibt wird, so erfillt w, die
Differentialgleichung

w’ + (2n + e®)w' 4+ (n* — n*)w =0, also
w4+ (2n +eFHw' =0.

Diese hat das part. Integral w, = konst. 7= 0.

Sei w, = ¢;, d.i.die erste Integrationskonstante. Dann gilt w, , =c,-e*,
also w,_; = ¢,-€% + ¢, (c, hingt von der entsprechenden Differentialgleichung
ab), w,_, = €*-(c,-€®* 4 ¢;) usw. Es resultiert eine Funktion w,, die wir

durch Ausmultiplizieren auf die Form w, = Z'a,e** bringen konnen. Q.e.d.
k=0

(Eingegangen den 1. Juni 1960)
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