
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 36 (1961-1962)

Artikel: Approximation von Funktionen durch Linearkombinationen von
Eigenfunktionen STURM-LIOUVILLEscher Differentialgleichungen.

Autor: Scarpellini, Bruno

DOI: https://doi.org/10.5169/seals-515628

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-515628
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Approximation von Funktionen durch Linearkombinationen
von Eigenfimktionen STURM-LiouviLLEscher

Differentialgleichungen

von Bruno Scarpellini, Zurich

1. Einleitung

In dieser Arbeit werden Problème, die aus der Approximationstheorie stam-
men, betrachtet. Gewisse fur trigonometrische Polynôme giiltige Sâtze sollen
fur den Fall von Linearkombinationen STURM-LiouviLLEscherEigenfunktionen
verallgemeinert werden. Der Weg fuhrt iiber einige vorbereitende Sàtze, die an
sich von einem gewissen Interesse sind. Ausgangspunkt ist die Differential-
gleichung :

| + kQ(x)u{x) 0

Q (x) sei im abgeschlossenen Intervall [0, n] definiert, positiv und zweimal
stetig differenzierbar. ux{x), u2(x), un(x), seien die Eigenfunktionen,
die der Randbedingung u(0) 0, u(n) 0, genugen (Randwertproblem a).
Bekanntlich lâBt sich jede in [0,;r] stetige Funktion /(#), die den Rand-
bedingungen /(0) 0, f(n) 0 genûgt, beliebig genau durch Linear-

n
kombinationen 27 f^ approximieren. Genauer: Zu jedem e gibt es ein n

1 n
und eine Linearkombination 27 f,^, so daB die Ungleichung

î

\f(x)-hiUi{x)\<e
n

besteht. Halten wir n fest, so hat die Menge der Zahlen sup | f(x) — 27|twt(a:)|5
X 1

xe [097t], eine untere Grenze, wenn die |t- aile reellen Zahlen durchlaufen.
Dièse untere Grenze bezeichnen wir mit E^{f). Offenbar ist lim£*(/) 0.

Ziel dieser Arbeit ist es, aus der Geschwindigkeit, mit der die Zahlen E£(f)
gegen Null streben, auf gewisse Eigenschaften der Funktion / zu schliefien und
umgekehrt. Der Grund, weshalb wir uns hier mit der etwas unangenehm zu
behandelnden Form y" + XQy 0 der STUBM-LiouviLLEschen DifFerential-
gleichung auseinandersetzen, wird durch den letzten Abschnitt klar werden.
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Es ergibt sich, daB die Folge der Operatoren

dx ' Q dx2' dx Q dx2' \Q dx2

hier dieselbe Rolle spielt, wie die Folge der Operatoren

d d2 dz

~dx' ~dâ?' ~d¥

im Falle trigonometrischer Polynôme. Es wird sich zeigen, daB es eine zur Klasse
der analytischen Funktionen analoge Approximationsklasse von Funktionen
gibt, die zu den pseudoanalytischen Funktionen im Sinne von L. Bebs in
Beziehung stehen.

Natiirlich werden wir dauernd Gebrauch von der Tatsache machen, daB die
angegebene Differentialgleichung sich in die bekannte Normalform

9" + (r(x)
transformieren lâBt.

Wàhrend der Vorbereitung des Manuskriptes stellte es sich heraus, daB

I. P. Natanson in einem Artikel in Doklady Nauk SSSR 114, 1957, einige
Sàtze in dieser Richtung ohne Beweise verôffentlicht hat. Der Verfasser erhâlt

d2
in dieser Arbeit Sàtze, die sich auf den Differentialoperator -j-^ — r(x)

beziehen, und die in gewissem Sinne Analoga zu den hier in Abschnitt 6

bewiesenen Sâtze darstellen, die sich auf die oben angegebene Folge von
Differentialoperatoren beziehen. Soweit aus dem angegebenen Artikel ersicht-
lich ist, scheinen vôllig andere Beweismethoden zur Anwendung gekommen zu
sein.

2. Vorbereitungen

Zuerst sollen einige bekannte Dinge ûber STUBM-LiouviLLEsche Diflferential-
gleichungen zusammengestellt werden, die wir spàter dauernd benutzen. Ohne

Einschrànkung darf man annehmen, daB stets

ist.
Wie in ([1]) gezeigt wkd, geht die Differentialgleichung

un + XQv, 0 (1)

X

durch die Transformation tp AVQ *u t J VQ ds
o
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in die neue

-JL - r<p + X<p 0 (2)

ûber, wo

r (Qt)'Q-k
ist.

Die Eigenfunktionen von (1) bilden ein normiertes Orthogonalsystem bezûg-
lich der Dichte Q, das heifit, es ist:

n

lutUkQds^ ôik,
o

wàhrend die Eigenfunktionen <p{ von (2) den Bedingungen genugen:
n
J <Pi<Pkdt àih
o

Die Eigenwerte von (1) und (2) bilden wachsende Folgen, die keinen Hâu-
fungspunkt im Endlichen besitzen. Es gelten folgende asymptotischen Formeln :

K M* + ^n

sm(n$VQds)

n

n-cn*VQ cob (njVQds) + 0n{x)

wobei |i»J<-af,|enW|<Jf,|«tt(«)l<-*f|y«(*)l<^ imd \pn(x)\<M,
1 cn | < M ist. Dabei ist Jf eine nur von Q beziehungsweise r abhângige
Konstante. Aile Beweise fur das in diesem Abschnitt Erwàhnte und weitere
Détails findet man in [1].

SehlieBlich sei noch eine Eigenschaft stetiger Punktionen genannt, die wir
dauemd verwenden werden, ohne sie speziell zu erwâhnen. Sei f(x) stetig
in [a, b] und || / || sup | f(x) \ 0(x) sei eine eindeutige, stetige Ab-

X

bildung des Intervalls [a, b] auf sich. Dann ist, wie sofort ersichtlich :

lim sup | f(x) | lim sup | / (&(x)) |

X X
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das heifît

il/(*(*» h 11/h
*

Im vorliegenden Pall werden es die Funktionen t J VQds und deren Um-
o

kehrfunktion sein, die das Intervall [0, ri] auf sich abbilden.
In einigen wenigen Fâllen, in denen Zweideutigkeit moglich wâre, soll durch

die Schreibweise || / || * angedeutet werden, daB sich die Norm auf das Intervall

[a, 6] bezieht:

sup|/(a?)| xs[a, b].

Ableitungen nach der Variablen t werden stets durch einen Punkt gekenn-

zeichnet: -~- <p
Cut

3. Verallgemeinerung der BERNSTEiNschen Ungleichung

Bebnstein bewies, daB die Ableitung T'n(x) eines trigonometrischen Poly-
n n

noms Tn{x) a0 + E av cos px + £bp sin px der Ungleichung genùgt :

î î

\\T'%(x)\\±ï&n\\Tn(x)\\±Z. (3)

n n
Wenn Tn(x) von der Form aQ + Zavcoapx oder Ebp&inpx ist, so folgt

î î

sofort aus der Ungleichung (3) die folgende :

IIT^IIÎ^nlir.^llî. (4)

Im Folgenden soll eine analoge Ungleichung fur Linearkombinationen von
Eigenfunktionen einer STUEM-LiouviLLEschen DifiEerentialgleichung her-
geleitet werden. Sei (p{t) + (X — r(t))<p(t) 0 <p(0) 0 <p(n) 0 ein
STUEM-LiotJVtLLEsches Randwertproblem. r(t) sei stetig in [Q,n].

<Pn<P%> • • <Pn> • • • seien die normierten Eigenfunktionen und

kl9 Aa, An die Eigenwerte. Es soll gezeigt werden:

Satz 1: Es existiert eine Konstante KQ, die von n unabhângig ist, so daB
n

fur jede Linearkombination £<xp<pp die Ungleichung besteht :

i
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\\ZocPVP\\<Kon\\Z<x9<pp\\ (5)
1 1

Beweis : Aus der im Abschnitt 2 gegebenen asymptotischen Darstellung von
9? folgt mit Hilfe der Dreiecksungleichung :

II Z*pyP || < || SocpP l/ïcos pt || + || E*9d9(t) ||
î * n î

Auf Grund der Ungleichung (4) folgt aber

9 \\<n\\Ê ]f^ocp sin pt \\ + \\ Z*9d9(t) \\
1 l * 7C 1

^Indem man auf den zweiten Summanden rechts die ScHWARZsche

Ungleichung anwendet und | ep(t) \ < M beachtet, erhâlt man:

^ n || S ]f^-ocp sin pt\\+M- VIocl Vn
î tin y i

Da aber die asymptotische Darstellung

l/— sin pt + AW. Œ 99(t) mit | ôP(t) | < M
• 7t p

das heiBt :

gilt, folgt mit Hilfe von Dreiecks- und ScHWABZScher Ungleichung :

MII îP II || Il ]4 l|ï ^
Aus der Orthonormalitàt der Eigenfunktionen folgt aber :

\ /î p ^ Vn
i roi i

woraus sich schlieBlich ergibt :

71

Die Ungleichung (5) wurde schon von E. Cablson bewiesen ([2]), allerdings
unter der Voraussetzung der zweimal stetigen Differenzierbarkeit von r(t)
und mit grôBerem Aufwand.
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Jetzt sollen analoge Ungleichungen fur Linearkombinationen von Eigen-
funktionen des Randwertproblems u" + XQu 0,u(0) 0, u(n) — 0 her-
geleitet werden.

Satz 2: Es gibt eine Konstante Klf so daji fur jede Linearkombination
die Ungleichung besteht:

(6)

Beweis: Da ja Q(x) positiv und zweixnal stetig differenzierbar vorausgesetzt
ist, lâBt sich, wie in der Einleitung erwâhnt, die Differentialgleichung
u" + XQu 0 mittels der Transformation

q(x{t))-u(x(t)) <p(t) mit t J qHs g* Q
o

in die Form <p + (A — r(t)) <p 0 transformieren. Zwischen den normierten
Eigenfunktionen un(x) und <pn(t) besteht dann die Beziehung:

un{x) =- — q(x)

wo die cn die in der asymptotischen Darstellung von un(x) auftretenden
Faktoren sind (siehe Abschnitt 2). Aus der letzten Gleichung folgt:

und

q

Auf Grund von Satz 1 ist aber :

- || Z*9c9q>9(t) || <
1

£*,c,v,(t(z)) || < || q \\

Zx9c9ip9{t)

Unter Benutzung dieser letzten Ungleichung erhalten wir sofort :
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womit der Satz bewiesen ist, wenn wir den Klammerausdruck mit Kx be-
zeichnen.

Auf àhnliche Art, aber umstândlicher, zu beweisen ist folgender Satz :

Satz 3: Es gibt eine von n unabhângige Konstante K2, so dafi filr jede
n

Linearkombination Eocpup die Ungleichung gilt:
i

Der Beweis dièses Satzes soll durch einige einfache Hilfssâtze vorbereitet
werden, deren Beweise wir zum Teil nur skizzieren.

Hilfssatz a) Es ist

Beweis:

Hilfssatz b) Es gibt eine von n unabhângige Konstante A, so daB fur aile
w-tupel ocl9 oc 2i <%0 die Ungleichung besteht:

Beweis: Da aile Eigenwerte positiv sind, nach Hilfssatz a), gibt es eine von n
unabhângige Konstante a> 1, so daB fur aile Xi die Ungleichung besteht:
a À

i; > 1 Aus der asymptotischen Darstellung

folgt dann :

+ ME<x\< (1 + aM)
i

Indem wir A2 1 + aM setzen, folgt die Behauptung.

Jetzt kônnen wir ûbergehen zum

Beweis von Satz 3: Aus den asymptotischen Darstellungen von u^x) und
u\ (x) folgt :
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wo t

+ it
1

7i

Jetzt benutzen wir die BERNSTEisrsehe Ungleichung 4), femer die Schwarz-
sche Ungleichung und beachten, daB die Funktionen yt unddieZahlen fi€ und
c€ gleichm&Big beschrânkt sind, das heiBt | yt-1 < M, | M{ | < M, | c^• | < Jf

Das Kefert :

tcostl 24
î *

• Vn

Mit Hilfssatz b) folgt:

n
II f n

lz 4-
1 ^ F 1

cos

-II Jf2- l/fX + Jf ^n + if21/f 4-V-4
11 F i2 F i4 /

cos

wo

lf i2

gesetzt wurde. Aus der letzten Ungleichung folgt weiter:

n

1

Da:

1 ||2 » « n
cosi f q2d8 ds || + n*B

u\ (x) ic^g • cos i PAX)
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mit \pi(x)\<M gilt, folgt mit Hilfe der Dreiecksungleichung :

273

2 n
n'

Indem wir auf den zweiten Term rechts wieder die ScHWARZsche Ungleichung
anwenden, Hilfssatz b) benutzen und \ (}{(x) \ < M berueksichtigen, erhalten
wir sehlieBlich :

n
E oti*
1

<n>
1

n-B || E(XiUi
î

<n

Der Ausdruck in der Klammer stellt offenbar die gesuchte Konstante K2 dar.
Aus den beiden letzten Sâtzen erhalten wir die Folgerung :

Folgerung 1: Es gibt eine von n unabhàngige Konstante K, so dafi fur
n

jede ganze Zabi p und jede Linearkombination E èi^i die Ungleichungen
î

bestehen :

dx fiiU EïiUi
1

(8)

Beweis: Die Behauptung ergibt sich unmittelbar, wenn wir K max (Kx,
setzen, die Sâtze 3 und 2 benutzen und Induktion anwenden.

4. Eine Anwendung au! die Âpproximationstheorie

Die Sâtze, die im folgenden angegeben werden, sind Verallgemeinerungen
von Sâtzen, die von S. Bernstein fur den Fall von trigonometrischen
Funktionen bewiesen wurden. Die Beweise kônnen wôrtlich ûbertragen werden, da
sie lediglich aufder Gûltigkeit der BERNSTEraschen Ungleiehung beruhen (siehe
[3], pp. 89). Mit W bezeichnen wir im folgenden die Klasse derjenigen
Funktionen, deren Stetigkeitsmodul co{ô) sup \f(x) — f{y)\,\z — y\<â einer
Ungleiehung a)(ô)<A(l + | lnd\)ô genûgen. E*n(f) sei, wie in der Einleitung
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n
angegeben, die untere Grenze der Zahlen || / — JEf^H, wo die ^ aile

1

reellen Zahlen durchlaufen.

Définition 1: Eine auf [a, b] definierte stetige Punktion f(x) genugt einer
LiPSCHiTZ-Bedingung, wenn es Konstanten 0 < oc < 1, K gibt, so daB gilt :

\f(x)-i{y)\<K\x-y\"
fur x, ye[a, b]. Die Menge der Funktionen, die der zu oc, K gehôrigen Be-

dingung genugen, bezeichnen wir mit IÀpKoc.

4: f(x) sei eine in [0,n] definierte stetige Funktion, und /(0)
0, f(7t) 0. Gilt dann fur jede natûrliche Zahl n :

so lautet im Falle oc < 1 die Behauptung f{x)s hipoc, im Falle oc 1 aber

f(x)eW.
Der Beweis von Satz 4 soll hier nicht wiedergegeben werden, da er, wie

schon erwâhnt, vollkommen analog ist zu jenem fur trigonometrische
Polynôme, wie er im eben zitierten Buch auf Seite 89 zu finden ist.

Satz 5: Sei f(x) stetig im Intervall [057r] und /(0) f(n) 0. Ist dann

1 d2
so ist der Operator -7r~T~T Pmal auf f(x) anwendbar, und es gilt :

(^^) /()p fH) /P»l(») 0

fur oc < 1 und

/() /() f() 0

fur oc 1.

Beweis: Man geht wieder analog vor, wie im Falle trigonometriseher
Polynôme. Sei .Ln(#) eine Linearkombination der ersten w-Eigenfunktionen, die
der Ungleiehung genugt :

Wir setzen :

U0(x) L,(x) Un(x) Ln(x) - £,.,(*)
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Es ist: | Un(x) I < I L%%(x) - f(x) \ + | L^(x) - f(x) |

< A +A< B

wo B A(l -\- 22p+oc) gesetzt wird. Auf Grund der Folgerung 1 ergibt sich:

Das heifit aber, da8 die Reihe

1 *72

die durch p-fache formale Anwendung des Operators yr- 2
auf die Reihe

entsteht, konvergiert, und zwar gleichmâfiig. Daraus folgt aber, daB i-jr -j-A f
\CJ (IX J

existiert und daB

ist. Indem wir fur

die Abkûrzungen fl2p] und Un&p] einfuhren, erhalten wir

x) | < f
^

-A.<
das heiBt:

Fur jede natûrliche Zahl n bestimmt man nun ein m, so daB 2m < n < 2n+l
ist. Dann ist:

Das heiBt: /P^l erfûllt die Voraussetzungen von Satz 4, womit der Beweis
beendet ist.
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SchlieBlich lâBt sich auf die gleîche Art beweisen :

Satz 6: Sei f(x) stetig in [0, n] und /(0) f{n) 0. Ist dann

so existiert

und es ist :

d • d d
dx dx o dx n

wenn oc < 1, und

0,dx n

wenn oc 1.
Im weiteren soll gezeigt werden, daB auch die Umkehrungen der Sàtze 6 und

5 gelten.

5. HAARsche Système

In diesem Abschnitt sollen einige bekannte Eigenschaften HAABscher

Système zusammengestellt werden. Gegeben seien n-Funktionen f^x),
h(x), • • • fn(x)> <&& in ta> ^] definiert und dort stetig sind.

Définition 2: Man sagt, die n-Funktionen fx, /2, fn bilden ein HAABsches

System fur das Intervall [a, 6], wenn jede nicht identisch verschwindende
n

Linearkombination Ea^i hôchstens n — l Nullstellen hat in [a, 6],
î

([4]). Sei fi(%),h(%), fn(z) ein HAABsches System fur das Intervall
[a, 6]. a(t) sei eine Funktion, die das Intervall [c, d] eindeutig und stetig
auf das Intervall fa, 6] abbildet. Dann ist klar, daB fx (a(t)), /2 (<r(t)),

,/w(cr(O) ein HAABsches System fur das Intervall [c,d] ist. Ist ferner
g(x) eine in [a, 6] definierte, stetige Funktion und dort > 0, so ist auch

g{x)f1{x),g{x)f%{x)i g(x)fn(x) ein HAABsches System fur [a, 6].

Satz 7: Ist f(x) stetig in fa, 6] und ist fi(x)9f2(z), fn(x) ein HAABsches

System fur dièses Intervall, so gibt es genau eine linearkombination von der



Approximation von Funktionen durch Linearkombinationen 277

n
Form Zèjiix), fur welche die GrôBe

ein Minimum ist. Dièse Linearkombination ist durch folgende Eigenschaft
charakterisiert : Es gibt n + 1 Punkte a < xx < x2 < xn < xn+1 < 6,
in welchen die Funktion

i
den Wert d mit alternierendem Vorzeichen annimmt.

Einen Beweis dièses Satzes findet man in [4], pp. 74. Durch einige unwesent-
liche Modifikationen dièses Beweises ergibt sich dann ein solcher von :

Satz 8: Sei f^x), f2(x), fn{x) fur jedes e > 0 ein HAARSches System fur
das Intervall [a + e, b — é] und sei /, (a) /^ (6) 0 fur aile i. Ist dann
f(x) stetig in [a, b] und /(a) f(b) 0, so gibt es genau eine Linear-

n
kombination EÇifi, fur welche die GrôBe :

ein Minimum ist. Dièse Linearkombination ist wie folgt charakterisiert: Es
gibt n + 1 Punkte a < xx < xn< #n+1 < b, in welchen die
Funktion

i
den Wert d mit alternierendem Vorzeichen annimmt.

Der kurzen Formulierung wegen nennen wir ein Funktionensystem, auf
welches Définition 1 zutrifft, ein HAABsches System erster Art, und ein
Funktionensystem wie es in Satz 8 vorkommt, ein HAARsches System zweiter Art.
Im folgenden brauchen wir den

Satz 9: Seien fx(x), /2(#), fn(x) und gt(x)9g2(x), gn(x) zwei Haar-
n

scke Système gleicher Art filr das Intervall [a, 6]. Ist dann StXig^x) die beste
n niApproximation von Zfiifi(x)9 soistauchumgekehrt Sflif^x) die beste Approxi-

n 1 1

mation von E oc 4g4 (x).
i

Beweis: Handelt es sich zum Beispiel um Système erster Art, so folgt aus
Satz 7, daB es n + 1 Punkte xx < x2 < <xn< xn+x in [a, 6] gibt, so
daB die Differenz

18 CMH vol. 86
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n n

1 1

n n
in diesen Punkten den Wert d \\ Zf}Jt — Zoctgt\\ mit alternierendem

î î
Vorzeichen annimmt. Aus demselben Satz folgt dann aber, daB umgekehrt

ft n
auch Efi%fx(x) die beste Approximation von Zoclgt(x) ist. Auf dieselbe

î î
Weise schlieBt man im Falle zweier HAARscher Système zweiter Art.

6. Anwendung auf Linearkombinationen STURM-LiouviLLEscher

Eigenîunktionen

In diesem Abschnitt sollen die in den Abschnitten 3 und 5 angegebenen Sâtze
auf spezielle HAARsche Système angewendet werden. Zu diesem Zweck sei

zuerst ein Theorem zitiert, das von E. Prttfer bewiesen wurde. Einen Beweis
findet man in [8], Sei (p<pf)r + (A — q)Q<p 0 eine STURM-LiouviLLEsche

Differentialgleichung mit stetigen Koeffizienten p,q,Q in [a, 6] und sei

q > 0, p > 0 in [a, 6]. Dann gilt der

Satz 10: Die ersten w-Eigenfunktionen <Pi(x), <p2(x), (pn{x), die zum
Randwertproblem cp(a) 0, <p(b) 0 gehôren, bilden ein HAARsches

System zweiter Art fur das Intervall [a, b].
n

Dieser Satz besagt, daB eine Linearkombination Zoct(pt{x) hôchstens
î

n — 1 Nullstellen im Innern von [a,b] haben kann. Fur das Weitere be-
sehaffen wir eine Abschâtzung fur die erste Ableitung der wten normierten
Eigenfunktion q>n der Differentialgleichung çC+(Aw — r)<p 0, die zum
Randwertproblem gehôrt. Der Einfachheit halber setzen wir dabei voraus,
daB die Eigenwerte dièses Randwertproblems aile positiv sind. Da es sich nur
um Routine-Reehnungen handelt, soll die Herleitung der angekxindigten
Abschâtzung etwas gekiirzt wiedergegeben werden.

Satz 11: Fur die Ableitung q>'n der ntvn. normierten Eigenfunktion <pn

gilt die asymptotische Darstellung

Ox
x n \ si

f r(s) ds f r(s) ds) —
M 0 /

smnx

ris) sm 2nsds
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sin nx v
__ an. — j r(5) cos 2ns ds

+ anotnx>smnx -j-0 —\n
Dabei ist die Folge der Zahlen an gleichmàBig beschrânkt, das heiBt, es gibt

n
ein a > 0 und ein b, so daB a<an<b ist. Ferner gilt Zo?n< oo

î

Beweis: <pn geniigt, wie in [1] gezeigt wird, einer VoLTERRAschen Integral-
gleichung :

.1

wo VXn xn gesetzt wurde. Die Folge der Faktoren an ist beschrânkt,
das heiBt, es gibt zwei von n unabhângige Zahlen 0 < a < 6, so daB a < an < 6

gilt. Fur die Eigenwerte Xn erhalten wir die Gleichungen :

1 n

« C51H ^fi ^t | I i \ v ] H^fl \ v J Olll rCin \JL V \AJ V \J
xn o

oder etwas umgeformt :

$r(t)<pn(x) sinxnrdr
tgjzxn °-

In [1] wird gezeigt, daB xn von der Form ist:

wo die Folge der dn gleichmàBig beschrânkt ist, \ dn\< M. Indem wir dièse

Form von xn beriieksichtigen, erhalten wir:

nan + -JL^L + h(r) <pn(x) cos x

SchlieBlich beachten wir:

ç>n(x) an.8innx + 0 \^—J
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und
a8

arctg x x — +
o

Dies ailes zusammen ergibt nach kleiner Rechnung :

oder etwas umgeformt :

A-^—L- ]y(x)dx ~-^— ] r(x) cos 2nxdx + O (-^-)

Um eine Abschâtzung fur q>'n zu erhalten, differerurieren wir die angegebene
Integralgleichung einmal :

X

<p'n(x) anxn'Cosxnx + §r(x)<pn(T)co8xn(x — r)dr9
0

woraus sofort folgt :

* / 1 \
epn(x) anxn cos xnx + anf r(r) sin^nTCos xn(x — r) dt + 01—

o \nj
Jetzt beachten wir:

xn cos xnx (n H—^J cos (n -\—-\x

[n -\—M Icosna; x-ainnx + 0[—-)\

Indem wir den Ausdruck, den wir fur —^ gefunden hatten, oben einsetzen,

erhalten wir:

U'Co&nx —r—
x n 11 \

xn cos xnx U'Co&nx —r—/r(r) dx*minx + <xnx&m nx + Ol—)

Dabei ist
1 n

<xn y~ f r(r)co
oo n

also 27^ < 2n J r (t)2cït < oo nach der PARSEVALschen Ungleichung.
i o

In der Gleichung

<pn(x) anxn cos ?cna; + anjr(x) sin «nr cos xn(a: - x)dx + ol—\
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kônnen wir den ersten Term rechts durch den asymptotischen Ausdruck fur

anxn cos xn x ersetzen. Indem wir xn n + 0 — J beachten und unter dem

Integralzeichen auoh noch entwickeln, erhaiten wir:

<Pn(%) 2nn coanx ~— (r(r)dt'amnx + anocnx8Ïnnx
471 S

H X

+ a>n cos nx f r(r) sinn Tcomrdr + ansin nx f r(r)sin2nrdT
o o

Durch eine kleine trigonometrische Umformung erhâlt man jetzt sofort :

' / \ / / \j x " SJ \ ainnx
cpn(x) ann cos nx + anU r{r)dr - — ^ r(r)dr\ —-—

awcosna; v rt an8innx ; v rt_j n— j r(T) sm 2nrdr 2—^ /^(t) cos 2wrar

was die gesuchte Darstellung ist.
Hier sei noch auf einige Détails aufmerksam gemacht. Die zuletzt erhaltene

Gleichung làBt sich auch in der Form schreiben :

sinna;/? u x J \ si
an( \ r(r)dr J r(r)dr)—\o no I

v _ ansinwa; v rtJ r(r)sm 2nrdr —-z J r(r) cos 2nrdr

anocnx sin nx H

wobei die Funktionen An(x) gleichmâBig beschrânkt sind, | An(x) | < M.
Die Normierungsfaktoren an sind, wie schon erwâhnt, ebenfalls beschrânkt,
I «„ I < M.

Setzt man
X X

An(x) Jr(r)sin 2nrdr 5w(a?) J r(r) cos 2nrdr,
o o

so gilt, auf Grund der PABSEVALschen Ungleichung:

ZAn(xf < n ] r(tfdx < oo EBl(x) < n J r(tfdt < oo10 10
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00

Aus demselben Grund gilt, wie schon erwâhnt, auch Eo?n < oo. Ist ferner
1

r(x) einein [— ti,7Î\ stetige, gerade Funktion, so ist <pn(x) ungerade, (pn{x)
gerade. Die asymptotische Darstellung von (pn (x), die durch Satz 11 gegeben
ist, gilt dann, wie leicht ersichtlich, nicht nur fur das Intervall [0, tz], son-
dern fur das ganze Intervall [— n,n~\. Obwohl wir uns hier nur fur das
Intervall [O,tv] interessieren und die Funktion r(x) vorerst auch nur in
diesem Intervall bekannt ist, wird es im folgenden nûtzlich sein, r(x) auf
[—n, ni auszudehnen durch die Festsetzung r(—x) r(x). Dadurch
erhâlt man auch eine Fortsetzung der Eigenfunktionen cpn (x) und deren Ab-
leitungen <p'n(x) in das Intervall [—^,0] hinein, wobei <pn{— x) — cpn(x)
und (p'n(— x) (pn{x) gilt. Ferner ist dann, wie schon bemerkt, die
Darstellung fur cp'n, wie sie in Satz 11 gegeben ist, auch im Intervall [— tz, 0]
gultig. Durch dièse Festsetzung wird jede Eigenfunktion und deren Ableitung
zu einer 2;7z-periodischen, geraden beziehungsweise ungeraden Funktion
erweitert.

Bevor wir zum Hauptsatz (Satz 15) dièses Abschnittes gelangen, mussen wir
noch zwei bekannte Sâtze zitieren, deren Beweise man zum Beispiel in ([3])
findet. Der erste lautet wie folgt:

Satz 12: Zu einer stetigen, periodischen Funktion f(x) mit der Période
2tz und zu einer naturliehen Zahl n gibt es genau ein Polynom

n n
Tn(x) a0 + Sai cos ix + Zb{ sin ix

î î

welches von f(x) minimalen Abstand hat (den wir fortan mit En(f) be-

zeichnen). Dieser ist wie folgt charakterisiert : Es existieren 2w -f 2 Punkte
— n < x1< < #2n+2 ^ ^> i11 welchen die Funktion Tn(x) — f(x)
den Wert d || Tn(x) — f(x) \\ mit alternierendem Vorzeichenannimmt.

Daraus ergibt sich unmittelbar eine Folgerung.

Folgerung 2: Ist f(x) eine ungerade periodische Funktion, /(— x) — /(#),
so ist das trigonometrische Polynom bester Approximation ein reines Sinus-

polynom.
Ist f(x) eine periodische gerade Funktion, f(—x)=f(x), so ist das

trigonometrische Polynom bester Approximation von der Form :

Tn(x) — a0 + %a>i cos ix
î

Um den zweiten der erwâhnten Sâtze formulieren zu kônnen, sei noch eine

Bezeichnung eingefûhrt. Mit en(f) bezeichnen wir die untere Grenze der Zahlen



Approximation von Funktionen durch Linearkombinationen 283

II Tn — / ||, wo Tn die Polynôme ohne konstantes Glied durchlâuft. Der zweite
Salz, dessen Beweis ebenfalls in ([3]) zu finden ist, lautet dann:

Satz 13: Ist f(x) eine 2^-periodische Funktion mit stetiger Ableitung
/'(#), so besteht zwischen En(f) und en(f) die Beziehung:

M
IV

Daraus ergibt sich :

Satz 14: Es existiert eine von n unabhàngige Konstante Co mit der Eigen-
schaft:

n
a) Zu einer vorgegebenen Linearkombination EÇt<pt{x) findet man ein Sinus-

n 1

polynom Zrjt sin ix, welches der Ungleichung genugt;
î

|| ZS%V%(x) - IVl sin ix || ^ -^ || if.?,(a) II

î î n i
n

b) Zu einem vorgegebenen Sinuspolynom Zrjt sin ix findet man eine Linear-
n 1

kombination £ët(pt(x)9 welche der Ungleichheit geniigt :
i

% sin ix - £itcpz(x) || ^ -^ • || irt% sin ix \\
i i n i

Beweis: Offenbar kann man ohne Einschrànkung annehmen, daB die
Funktionen r(x) und <pt{x) auf dem ganzen Intervall [— n,n~\ definiert sind und
den Gleichungen

r(x) r(— x) <p%{— x) — <pt{x) <p'x(x) <p'%{— x),

genugen. Andernfalls kann (Jies stets, wie oben bemerkt, durch die Fortsetzung
r(— x) r(x) fur xe[Ot n], erreicht werden. Zuerst sei die Behauptung a) be-

n
wiesen. Gegeben sei also die Linearkombination ££t<pt(x). Wir betrachten

i
den Ausdruck :

1 1

Auf Grund der in Satz 11 gegebenen Darstellung von q>n(x) hat dièse Diffe-
renzdie Form:
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i »
E £i<p'i(z) — %
i i

suit a;n / x x n \ sin iix EaA \r(r)dr f r(r)dr) f, ——

Zt;%atA%{x)
i

cos

+ Ze%at*iZ sin ta; + S ii£siÎL
i i *

Die rechte Seite dieser Gleichung wird nun abgeschàtzt. Wir beginnen mit
dem ersten Term der rechten Seite :

wo Ax i[ir(r)dr
die asymptotische Darstellung:

ix

gesetzt wurde. Andererseits gilt

Ma;)

wo die e{ gleichmâfiig beschrânkt sind, || et{x) \\ ^ M. Darausfolgt:

et(x)sinia: ^f.V.(*)ll >

i

Indem man wieder beachtet, daû aus der Orthonormalitât der Eigenfunk-
tionen _ n

folgt, erhalten wir schliefilich

| Zat (Jr(r)dr - ^ Jr(r)dr) |t ^^- || < A, \\

wo A% eine von n unabhângige Konstante ist. Indem man ferner

2Al{x)<n\\r{x)\\* ZBn(xf< n || r (x) ||« ra?<oo111berucksichtigt, auf den zweiten, dritten und vierten Term die ScHWARZsche

Ungleichung anwendet, und wieder |/i7|f ^Vn\\£(iq>%\\ beachtet, sieht
y i i

man, dafi es von n unabhângige Konstanten AB>Aé, A6 gibt mit:
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2

sin ix

<AS

\<Ai

Was den fiinften Term anbelangt, so erhalten wir:

Daraus ergibt sich zusammenfassend :

mit ^

-4

Auf Grund von Satz 13 ergibt sich aber daraus:

12en(Z toi)i
n

n
C II J[

1__

n

n

wo C'Q 12A gesetzt wurde. C'o ist von n unabhângig. Sei nun umgekehrt
n n

die beste Approximation von Z^sinta;. Da (p^x) <pn(x)P
i i
und sin#, sinnx zwei HAABsche Système zweiter Art sind fur das

n
Intervall [0, n], lâBt sich Satz 9 anwenden. Das heifit aber, daB ^r\i sin ix

n 1

auch die beste Approximation von 27f^(a) ist. Dann kônnen wir aber das
i

eben erhaltene Résultat anwenden und erhalten:

|| tpt()

Indém wir jetzt noch

n
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\\£SiVi\\<\\^ £i<Pi-Zfliànix\\ + II ^Vi «niai || < 2 || Zrj, sin ix111 î î

beaehten, folgt:
n

n n 2Cb\\Zritainix\\
î- 27rç, sin ta || <

1
rç, ||

1 «-

Die Behauptungen a) und b) ergeben sich jetzt, wenn man 2CQ Co setzt.1)
Es sei jetzt u" + XQ{x)u 0 eine STURM-LiouviLLEsche Differential-
gleichung und Q(x) positiv und zweimal differenzierbar in [0, n]. Ferner sei

x 4_
die Bedingung n J q2ds mit q VQ erfullt. Durch die beiden Substi-

o

tutionen
X

qu cp t J q2ds
o

transformiert sich dann obige Differentialgleichung, wie in Abschnitt 2 erwâhnt,
in eine andere, die wir folgt aussieht: *<p + (A — r(t))(p 0, wobei r(t) eine
in [0, n] stetige Funktion ist. Die zum Randwertproblem a) gehôrigen Eigen-
funktionen gehen dabei in die zum selben Randwertproblem gehôrigen Eigen-
funktionen <pn{t) ûber.

Aus Satz 14 erhâlt man jetzt leicht

Satz 15: Es gibt eine von n unabhangige Konstante Gx mit der Eigenschaft:

a) Ist
X

sin (i J q*ds)

die beste

b)ist

Approximation von

n

Si
1

n n

1 1

:iui(x) die beste

n

ZStUtix), so

X

sin (i f q2ds)
0

Approximation

besteht die

— n

n
von S %

i

Ungleichung:

n

i ' *' * "

a;

sin (i j g2rf5)
0

*) Die in diesem Beweis durchgefûhrten Abschatzungen haben ihre Quelle in einer unverôffent-
lichten Arbeit von H. Weyi*: «Zurûckfuhrung der STUBM-LiouviLLEschen Reihen auf Foubieb-
sche». Dort wird das Bandwertproblem ç>'(0) <p'(n) — 0 behandelt und werden Abschatzungen

fur q>{x) hergeleitet. Die dort angewandten Methoden sind hier verwendet worden.
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• sin (* 1 <?ds)

ZStut(z)-Ztit °-

n

sin

i

Beweis: Wir betrachten zuerst a). Ist Zfi^init die beste Approximation

von

also:

so gilt nach Satz 14 dann die Ungleichung :

||^f, 9>,(0 — 2>, sin** || < —^ || ZÇt<pt ||
n

ZÇtipt{t(x)) -£Mt sin it(x) || <-2- || i7|^t(<(^)) II
^

und schlieBlich, nach einer kleinen Umformung :

n
sin (i j f ds)

ZÇt ut{x) - Zp% °-

i i 9.

Das heiBt, die beste Approximation

Cn

n

27 w< — -sin(i f g2^5)
i £ o

n

von Zi-tut(x) genugt erst recht der in a) angegebenen Abschàtzung, wenn
i

Cx 2 || — || • || q || • Co gesetzt wird.

Beim Beweis von b) verfàhrt man gleich wie beim Beweis von Satz 14, b).
Man hat lediglieh zu beachten, daB u1(x),u2(x), un(x) und

x
sinf q2ds,

zwei HAARsche Système zweiter Art fur das IntervaU [0, n] bilden, so daB
Satz 9 anwendbar wird. Die in b) auftretende Konstante ist wieder Cx

n
Umstândlicher ist es, etwas Analoges fur Linearkombinationen Z £t u\ zu

i
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beweisen. Wir bemerken: Ist f(x) in [0,n] definiert, f(x)elÂpM(xi so liegt
die 2#-periodische Funktion /* (x), die den Bedingungen /* — x) /* (x),
f*(x) f(x) fur xe[0,n] genûgt, in der Klasse Lip21fa. Ferner sieht man:
Die Funktionen 1, u[, u2, un bilden ein HAARsches System fur das

n
Intervall [0,w]. Denn hâtte etwa £O + 27|^ »+ 1 verschiedene Null-

î
n

stellen in [0,rc], so hâtte die Ableitung, —Q*S^iKui mindestens n ver-
î

schiedene Nullstellen im Innern des Intervalles [0,^], was dem Satz 10

widerspricht. Daraus folgt aber sofort, daB auch die Funktionen

j, ±-.uf(x(t)), y±-un(x(t)) mit t=*
ein HAAKsches System erster Art fur [0, jr] bilden. Desgleichen ist auch das

System 1, cos t, cos 2t, cos nt ein HAARsches System erster Art fur
[0, n] und somit auch

g q cos x(t), q cos 2x(t), q cos nx(t)
n

SchlieBlich sei nochmals die in Abschnitt 3 angegebene Relation J u\uhd8
o

Xiôih erwâhnt. Der in Aussicht gestellte Satz lautet:

Satz 16: Es gibt eine Konstante C2 mit der Eigenschaft:

n

a) Zu jeder Linearkombination L(x) 27 £<&{(#) + |0 gibt es eine Linear-
kombination *

n %

T(x) 27 ^g-cos (i§q2ds) + rjQq
1 0

wélche der Ungleichung genUgt:

\\L(x)-T(x)\\<^-\\L(x)\\.

b) Zu jeder IAnearkomhination

n x
T(x) 27 ^g cos (i J q*ds) + fjoq

i o

n
gibt es eine andere, L(x) U^u^x) + f0, welche der Ungleichung genûgt:

i
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Beweis; Wir betrachten zuerst a). Wir setzen l(t) * ^ wobei wieder
X

t J q2ds sein soll. Eine kurze Rechnung ergibt :

ï(t)= - x(t)u4 (*(<))) -
Nun ist der erste Term auf der rechten Seite nichts anderes als —

î
wo <Pi(t) die i-te Eigenfunktion der transformierten Differentialgleichung
ç> + (À — r(t))q> 0 ist. Nach Satz 14 gibt es dann ein Sinuspol^om
n
S y{ sin i<, welches der Ungleichung genùgt :

i

oder, indem man die Substitution auf der rechten Seite der letzten Ungleichung

wieder rtickgângig macht :

n n Q M 1 113

[i(pi(t) + ZyiBinit\\<-^ —

n
Auf den Ausdruck (E ^u^1 durfen wir die BEENSTEiNsche Ungleichung aus

i
Satz 3 anwenden. Das ergibt :

it \\ < Cok\\ i-
II

Daraus folgt :

ï(t)-
Ferner ist :

und somit :

it

Ko I I J (fo +
0 1

< +

f,u;n<ifoi + iifo +
i i

Dies ailes zusammengenommen ergibt :

|| i(t) — ÉyiSinit \\ <

< 2 II fo +
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wo der Klammerausdruck rechts mit K3 bezeichnet wurde. Die Funktion

n yg(t) l(t) + Z-Q- cos it
i *

ist einmal stetig differenzierbar, wobei die Ableitung g(t) der Abschatzung
n

genugt: || g(t) || < K3 \\ Z%xu% + £o II • Alsohegt g(t) inderKlasse LipM 1,
n 1

mit M Kz || Z%%u% + lo II • ^ dann g* (t) diejenige 27r-periodische
i

Funktion, welche den Bedingungen genugt: g* (— t) g*(t), g* (t) g(t)
fur t€[09n], so liegt g* (t) zufolge der oben gemachten Bemerkung in der
Klasse Lip2M 1. In [3], pp. 79 wird gezeigt, da8 zu einer 2jr-periodischen
Funktion g* (t) aus Lip2Ml ein trigonometrisches Polynom P(t) existiert,
fur welehes :

gilt. Da g* (t) eine gerade Funktion ist, gibt es nach Folgerung 2 ein Polynom
n

Z<xt cos it + ocOi welehes ebenfalls der Ungleichung genugt:
i

n
|| g*(t) — Zoct cos it — oco II <

Daraus ergibt sich :

/ Vt\
I <x% -r-1 cos % t — oc0

n

i n

Indem man auf der linken Seite dieser Ungleichung wieder von t zu x uber-
geht, erhalt man :

n / y \ x 2éKo || L(x) ||
|| L(x) — Zq(x) \(xt ~) cos i \ q2ds — ocQq(x) II < liJ

i \ i I o n

womit a) bewiesen ist, wenn wir C2 24 K3\\q\\ setzen.
n

Sei nun umgekehrt L(x) Z £tu't + fo ^e beste Approximation von

T(x) Zrjiq cos (i $ q%ds) + rjoq. Da es sich um zwei HAARsche Système
i o

erster Art handelt, ist Satz 9 anwendbar, das heiBt, es ist auch T(x) die beste
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Approximation von L(x). Dann ist aber die eben bewiesene Ungleichung an-
wendbar, und es ist :

\\L(x)-T(x)\\< n

Da || L(x) || < || L(x) - T(x) || + || T(x) \\ < 2 || T{x) \\ ist, folgt:

2±Kz\\T(x)\\ C%\\T(x)\\L(x) - T{x) \\< n n

womit auch b) bewiesen ist.
Im nàchsten Abschnitt sollen mm die eben bewiesenen Sàtze auf Approxi-

mationsfragen angewendet werden.

7. Einige Approximationssâtze

Fur das Folgende ist es zweekmâBig, die in den Sâtzen 15 und 16 auftreten-
den Konstanten Ct und C2 durch die neue Konstante C max (Cl9 C2) zu
ersetzen.Sei f(x) einein [O,jc] definierte, stetige Funktion und f(x)eï,ipM(x.
Ist dann f*{x) diejenige 27r-periodische Funktion, die den Bedingungen
genûgt: /*(— x) /*(x), /*(x) f(x) fur xe[0,n], so ist offenbar
f*(x)elti])2Moc. Sei ferner /(0) f(n) 0, f(x)elxçM<x. Dann liegt auch die

durch die Bedingungen f(—x)=—f(x),f(x) f(x) fur xe[0,7t],
definierte 27r-periodische Funktion in der Klasse IAp2M0C' Durch eine kurze
Rechnung beweist man die folgende Aussage: Ist f(x) in [0,^r] definiert,
/(0) 0, f(n) 0, f(x)elÀj)M(x, und machen wir die Substitution x x(t),

X

mit t=$q2ds, so liegt die Funktion q(x(t))f (x(t)) in der Klasse Lipa3f<x,
o

wo a eine Konstante ist, die nur von q beziehungsweise Q abhângt.
SchlieBlich sei noch ein Satz angegeben, dessen Beweis man in dem schon oft

zitierten Buch ([3]) findet.

Satz 17: Ist f(x) 2jr-periodisch und f(x)eIÂpMoc, o < <x< 1, sogilt:

Besitzt /(ce) eine stetige Ableitung f (x) und ist | /' (x) | < Ml, sogilt:

F (f)<

Daraus folgt der
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Satz 18: Es gibt eine Konstante A mit der Eigenschaft: Ist f(x) in [O,n]
definiert, /(O) f(7i) 0 und f(x)elÀpMoc, so gibt es eine Linearkombination

2Ji4ui9 wekhe der Ungleichung genugt:
î

(0<<x< 1)

Beweis: Da f(x) in "LvpM<x liegt, folgt, daB g(t) q(x(t))f(x(t)) in
ÏÂpMoc liegt, wo a die oben erwâhnte Konstante ist. Da g(0) g(n) 0

ist, gibt es eine 2^-periodische, ungerade Erweiterung g(t), die in der Klasse
l£p2aM(X li^gt. Aus den Sâtzen 12 und 17 folgt dann, daB ein Sinuspolynom

sin it existiert, welches der Ungleichung genugt :

\\g(t) - also
» 24aif

— S(X{ sin %t || <
i na

Durch Ruckgângigmachen der Substitution x x(t) erhâlt man (nach kur-
zer Rechnung) :

f(x) - n*

Nach Satz 15 gibt es eine Linearkombination Z t;^ welche der Ungleichung
genugt: *

/(*)

Daraus ergibt sich :

sin i f q2ds

n
Z oci
i

*
sin (i f q2ds)

o

¦Jft

sin (i f q2ds)
S

n"

Jetzt beachten wir :

sin (i f q2ds)
o

wobei ||/||<i7rJf benutzt wurde. Also :

I2tzC
24a)
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1
(2nC + 24a) setzen, folgt unsere Behauptung.

Satz 19: Ist /(O) f{n) 0 und besitzt f(x) eine stetige Ableitung

f (x)i welche der Ungleichung gentigt: | f'(x) | < M, so gibt es eine Linear-
n

kombination S ^u^ fur welche
1

gilt.

Beweis: Da /(#) in der Klasse LipMl liegt, ist Satz 18 mit oc 1 an-
n

wendbar. Diesem zufolge gibt es eine Linearkombination 271^%, welche der
Ungleichung genûgt :

1

womit die Behauptung bewiesen ist.

Satz 20: Es gibt eine Konstante B mit der Eigenschaft: Ist g in der Klasse
n

IApM oc, o <oc< 1, und ist J g(x)dx 0, so gibt es eine Linearkombination
n

f
o

S ^iui, die der Ungleichung genûgt:
i

\\ - g \\ <

Beweis: Wir betrachten die Funktion

m t

Eine kurze Rechnung zeigt, dafi die Funktion der Klasse IÂpbMoc angehôrt,
wo b eine Konstante ist, die nur von q beziehungsweise Q abhângt. Die

27ï-periodische Funktion l(t), die der Gleichung l(— t) l(t) genûgt und auf
[0,7r] mit l(t) ûbereinstimmt,gehôrt dann zurKlasse JAp^hMoc, Nach Satz 17

n

gibt es dann eine Linearkombination L(t) S rjt cos it + rj0, welche der
Ungleichung genûgt: l

~ n 24bM
11 I (0 - Z Vi cos it- y. 11 < —jjr-

also:
n 2ébM

111 (*) — 27„ oob i * — ^ 11 < ——

19 CMH vol. 39
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woraus durch Rùckgângigmachen der Substitution folgt :

n x
9 (*) - 9(0) - (fq(x)tjt cos i$qUs + rjoq(x) \\<\\q

NachSatz 16 gibt es eine Linearkombination S(x) E £tut{x) + £0, wel-
che der Ungleichung genugt :

1

C\\nîfd8)\\.\\q\\
|| S(x) - qL^ qHs) \\ <2

Also ist :

S(x)-(g(x)-g(O)) \\£-

Wegen || g(x(t)) — g(0) || g nM ist || L(j q2ds) \\ \\ L(t) || ^
o

woraus sich ergibt :

2||ï

oder:

11

— \\-7iMC

wo d 2 || q || • — >nC + 246 || ^ || und |q ^0 + ^(o) gesetzt wurde.

Nun ist :

7r o i
* * °

woraus sofort folgt :

Die Behauptung des Satzes ergibt sich, wenn wir 2d B setzen.

Folgerung: Ist g(x) eine in [0,^r] definierte Funktion mit stetiger Ab-
leitung und ist :

\g'(x)\<M ]
0
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n
so existiert eine Linearkombination 2 itu{ mit

1

" " ~~ n

Beweis: g(x) genugt den Voraussetzungen des eben bewiesenen Satzes

mit oc 1. Daraus ergibt sich die Behauptung sofort.

Satz 21: Es gibt eine Konstante D mit der Eigenschaft : Ist g(x) einmal
stetig differenzierbar in [0, n], gr(x)ehipM0c 0<&<l, ist ferner (7(0)

o, so gibt es eine Linearkombination S$tutf die der Ungleichung
genugt: x

Beweis: Da J gf(s)ds g{n) — g(Q) 0 ist und g'(x)elÀpM0t, ist Satz 20
0 n

anwendbar. Das heiBt, es gibt eine Linearkombination Zoctu%, welehe der

Ungleichung genugt :
x

BM

Die Funktion Uoctul — g verschwindet an den Stellen 0 und n und besitzt
i

eine stetige Ableitung, die der eben angegebenen Ungleichung genugt. Also
n

ist Satz 19 anwendbar, das heiBt, es gibt eine Linearkombination S p{uif
welehe die Abschâtzung x

n n A n ABM
x

% l i
% l ~ n i ~" w1+a

n
erfûllt. 2(oct — ftt)ut ist die gesuchte Linearkombination und D AB

i
die gesuchte Konstante.

Satz 22: Es gibt eine Konstante E mit der Eigenschaft : Ist f(x) zweimal

stetig differenzierbar, /(0) f{n) 0 und
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n
so gibt es eine Linearkombination E i4ut, welche der Ungleichung genûgt :

i
EM

Beweis: Aus der Voraussetzung folgt: | /" | < || Q \\ M. Also ist
/'(a;)eLip||gj|Ml. Somit ist der eben bewiesene Satz 21 fur a 1 anwend-

n
bar, das heifit, es existiert eine Linearkombination 27ftwt, welche der
Ungleichung genûgt :

1

Indem wir E \\Q\\D setzen, folgt die Behauptung.

Satz 23: Es gibt eine Konstante F mit der Eigenschaft : Ist f(x) zweimal
stetig differenzierbar, /(O) f(n) 0, und

—Q dx* -¦ i 1 d2
0, -Q-fa?feIjiPM<X, 0<0C<l,

n
so gibt es eine Linearkombination Z |iwi, die der Ungleichung geniigt :

i

Beweis: Aus -^ -j-r felÀpMOi folgt nach Satz 18, dafi es eine Linear-
n

kombination Ea^i gibt, welche der Abschâtzung genûgt:
i

n
Daraus folgt: Die Funktion F(x) / + £ -r-v>i verschwindet an den Gren-

i M

zen 0 und n und besitzt eine zweite stetige Ableitung F"(x), welche der

Ungleichung genûgt : | F" (x) | < a
Dann ist aber Satz 23 an-

n
wendbar, das heiBt, es gibt eine Linearkombination 27 &%, welche der Un-

î
gleichung genûgt:
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1

womit der Satz bewiesen ist.

Satz 25: Die Funktionen /, 0f, 02f, (9*3-1/, 0*>f, seien aile in
[0, 7t] definiert und stetig. In den Punkten 0 und n sei 0*f 0 filr i

0,1, ,p — l9p. Ferner sei 0^/eLipM*. Dann gibt es eine Linear-
n

kombination Z^u^ wekhe der Ungleichung genilgt:

Beweis: Die Funktion 0*f geniigt den Bedingungen von Satz 18. Also gibt
n

es eine Linearkombination E<xiui, die der Ungleichung geniigt :

Die Funktion jP ==/-—(— Vf E-~ ut erfûllt die Bedingungen des eben
1 *i n

bewiesenen Satzes 25. Also gibt es eine Linearkombination £ f}^ fur welche
die Abschâtzung x

gilt. Also ist:

womit die Behauptung bewiesen ist.
Aus Satz 25 ergibt sich die

Folgerung: Ist auch noch -j- &pf definiert und | -j~ €Pf | ^ M, dann gibt
n

es eine Linearkombination Z^^ mit
i

Mit der Benutzung dieser Folgerung erhâlt man
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oder:

Die gesuchte Linearkombination ist also £(& y~Wh die gesuchte Kon-
1 \ "il

stante F ist gleich AE || Q ||

Fur das Weitere soll der Differentialoperator -y -j-y mit 0 bezeichnet

werden. Dann gilt der

Satz 24: Die Funktionen /, 0/, 6>2/, 0p~1f, 9pf seien aUe in
[O,tz] definiert und stetig. In den Punkten 0 und n sei 0*f 0 fur i 0,1,

p — 1. Ferner sei || 0pf \\ < M. Dann gibt es eine Linearkombination
n

iUi, welche der Ungleichung genugt :

<

Beweis: Nach Satz 23 ist die Behauptung ofifenbar richtig fur p 1. Wir
nehmen an, der Satz sei schon bewiesen fur p m. Wir zeigen, daB er dann
auch fur p m + 1 gilt. Die Ungleichung || 0m+1f \\ < M làBt sich in der
Form schreiben: || 0(0mf) \\<M. Aus Satz 23 folgt, daB es eine Linear-

n
kombination Hot^Ui gibt, die der Ungleichung genugt :

î

Die Funktion F / — (—l)m 2*-^- ^ erfullt die Bedingungen des Satzes
î ^i

fur p m. Nach Induktionsvoraussetzung existiert eine Linearkombination
n

ZPiUi, welche der Ungleichung genugt:
i

Wegen

folgt daraus :
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Satz 26: Erjulien f,0f, 0*f die Bedingungen von Satz 2é, ist
d d n

0pf o in [O,tc] und j^0pfeIÀpMoc, (0<a< 1), so existiert Ef^ mit

"
M E*ABM

Der Beweis ergibt sich auf vôllig analoge Art wie derjenige von Satz 24.

8. Eine spezielle Approximationsklasse

a) Bekanntlich gîlt folgender Satz: Ist f(x) 2jr-periodisch und En(f) <
wo A eine nur von / abhàngige Konstante und q < 1 ist, so ist f(x) ana-
lytisch. Umgekehrt findet man zu jeder 2:rc-periodischen, analytischen Funk-
tion eine Konstante A und eine Konstante q < 1, so daB En (/) < Aq™

ist, ([3]). Dieser Aussage kann man leicht eine andere Fassung geben. Man
kann sagen, daB sich eine 2jr-periodische Funktion / genau dann mit der
Geschwindigkeit Aqn,q<l, durch trigonometrische Polynôme approxi-
mieren làBt, wenn es eine Konstante B gibt, so daB

ist, ([3]), pp. 154). In dieser Form kann der Satz auch auf den Fall Stuem-
LiouviLLEseher Eigenfunktionen iibertragen werden. Es gilt der

Satz 27: a) Sind die Funktionen /, -j- /, 0f, 0pf, -=— 0pf, .in
ax ax

[0,n] definiert und ist

1) 0pf \o 0, 0?f \n 0 fur aile p

2) und gibt es eine Konstante B so, da/i
II d _

fur aile p gilt, so gibt es eine Konstante A und ein q < 1, so da/i E'n(f) <Aqn
fUr aile n gilt.

b) Ist umgekehrt E'n(f) < Aqn mit q < 1, so genûgt f den Bedingungen 1), 2)#

Beweis: Der Beweis von b) verlàuft gleich wie im Falle trigonometrischer
Funktionen, weshalb er hier nur skizziert werden soll. Sei 8n(x) die n-te
Linearkombination von %, u2i un, fur welche
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|| f-8n ||= E'n(f)<
00

gilt. Wir bilden / 8X + E (Sn+1 — Sn), wo St von der Form a% ist.
î

Wir bilden die formale Reihe :

Auf Gnind von Folgerung 1 finden wir:

8n+1 - Sn

Es ist

mit L
Also ist :

1

ii

0p(Sn+1

sn+1 -1

-8n)\<<xH>\\u1\

?n II < II Sn+1 - f H

1 + s

+ 11-s»

1 n=l

woraus die absolute Konvergenz der Reihe

folgt. Das heiBt : 0P/ existiert und wird durch die erwâhnte Reihe dargestellt.
Wie in [3], pp. 160 gezeigt wird, existiert zu jedem q < 1 eine Konstante J5,,

so daB die Ungleichung
00

Unmqn< B^m^

ftir aUe m besteht. Also ist speziell in unserem Palle :

woraus leicht die Existenz einer Konstante JB2 folgt, welehe den Ungleichungen
gemigt:

\9*t\<É?(ipf>.
Dieselben Ûberlegungen fûhren zu einer Konstanten JB3, welehe den Un-
gleichungen

genûgt. Indem man B max. (B1, Bt) setzt, erhâlt man b).
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Auch der Beweis von a) verlauft parallel zu dem des trigonometrisehen
Falles. Durch Verwendung der Bedingung 1) und durch 2^-fache beziehungs-
weise 2p + 1-fâche partielle Intégration gelangt man leicht zu den Formeln:

«n $f(x)un(x)Q(x)dx {~~^P

Jetzt beachte man, daB auf Grund der asymptotischen Formeln fur Xn und
un Ungleichungen der Form

mit geeigneten Konstanten a und q bestehen. Unter Verwendung der
Bedingung 3) erhâlt man dann die Abschâtzungen :

ap+l JR2p+l

Daraus ergibt sich sofort die Existenz einer Konstanten AQf so daB fur aile p
die Ungleichungen bestehen :

Dièse letzte Ungleichung soll benutzt werden, um die DifEerenz f(x) — Z atUi(x)
nach oben abzuschâtzen. Es ist: x

|| f(x) - Êa^x) || || Sa.u^x) || < E \ a, \ M
1 n+l »+l

wo || u41| < M ist. Wie aber in [3], pp. 158 gezeigt wird, folgt aus der
Ungleichung :

die Existenz einer Konstanten A und einer Konstanten q < 1, so daB :

n+l

gilt, womit auch die Aussage a) bewiesen ist.
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b) Fur das Weitere sollen die mit Eigenfunktionen verknupften Approxi-
mationsfragen verlassen werden. Es sollen unendliche Reihen untersucht

werden, die in engem Zusammenhang mit den Operationen -=—, -dx
stehen (sogenannten Quasiableitungen im Sinne von Neumakk). Entsprechend
kann man dièse Reihen als Quasipotenzreihen bezeichnen. Wir betrachten
Funktionen, welche der Bedingung 2) von Satz 27 genûgen. Es gilt der

Satz 28: Genûgt f(x) in [a, b] der Bedingung 2), so gibt es ein d > 0,
so da6

f(y) + (* - y)f (y) +
vv

^-4Fef \v+
y y #£

fur | x — y | < d ist. Die Reihe konvergiert absolut und gleichmâBig fur
\x-V\<d.

Beweis: Wir gehen aus von der Identitàt

/ (x) f(y) + (x- y)f{y) + ]\f'{s)dsdl;t
y y

die wir in der Form

f(x) i(y) + (x- y)f(y) +
y y

sehreiben kônnen. Indem man in dieser Gleichung f(x) der Reihe nach durch
0/, 02/, ersetzt, erhâlt man eine Folge von Gleichungen der Form:

(n) : 0nf |. &nf \v + {x-y)^ 0"f \y
dÇ y y

(n 0, 1, Ersetzen wir in der 0-ten Gleiehung 0f durch die rechte
Seite von Gleichung 1), im Résultat 02f durch die rechte Seite von Gleichung
2), usw., so gelangen wir nach dem n-ten Iterationsschritt zu einer Gleichung
der Form :

f(x) f(y) + {*- y)f{y) + J J«(f i)«,«t • 0f U +
y y

4ir ®f
«5

xy y y y
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Aus Bedingung 2) folgt, daB der Grenzubergang n -> oc erlaubt ist, woraus
man die angekiindigte Entwicklung erhàlt. Aus 2) folgt auch leicht die Existenz
einer Zahl d, welche den Bedingungen des Satzes geniigt. Wir bemerken, daB

von diesem Satz auch die Umkehrung gilt.

Satz 29: f(x) sei in [a, b] defîniert. Zu jedem Punkt y existiere ein
<%) > 0 so daB

ao(y)

y wç

gilt fur \x — y\^ d(y). Dann geniigt f(x) der Bedingung 2), und es ist

0nf\ =a —9»f\ =a

Der Beweis dièses Satzes erfordert nur Routineabschâtzungen und soll des-
halb weggelassen werden.

Die beiden Sâtze 28 und 29 werden im nàchsten, letzten Abschnitt Ver-
wendung fînden.

9. Ein Zusammenhang mit den pseudoanalytischen Funktionen

An dieser Stelle sei auf einen Zusammenhang hingewiesen, dessen detail-
lierte Erôrterung hier der umstândlichen Rechnungen wegen zu weit fùhren
wûrde. Es handelt sich um die Beziehung, die zwischen der eben eingefûhrten
Approximationsklasse und einer speziellen Klasse der von L. Bers ([5] pp. 67,

[6]) eingefûhrten pseudoanalytischen Funktionen besteht. Um diesen Zusammenhang

geeignet beschreiben zu konnen, wâhlen wir mit Vorteil die Darstellung
von A. Kriszten ([7], p. 6). Man geht aus von einem System partieller Diffe-
rentialgleichungen :

Q(y)

Jeder Vektor w (u(x, y), v(x, y)), dessen Komponenten diesen Glei-
chungen genûgen, bezeiehnet man als eine zu diesem System gehôrige pseudo-
analytische Funktion (Vektorfunktion). Man fuhrt zwei Matrizen A und B
ein, die wie folgt definiert sind:

/0 1\ /l 0\
\-Qto) oj \o i)



304 Bruno Scaupellustï

([7]). Man setzt: dZ Bdx + Ady und ordnet jeder pseudoanalytischen
Funktion eine i7-Ableitung zu,

(z (x,y))

Die 27-Ableitung ist richtungsunabhângig und fûhrt (in unserem speziellen Fall)
pseudoanalytische Funktionen wieder in solche iiber. SchlieBlich fûhrt man
eine Art formaler Potenzen ein;

Dièse Schreibweise ist gerechtfertigt, da in ([7]) gezeigt wird, daB die
Intégration vom Weg unabhângig ist. Ist a{n) (ocn, (}n) eine Folge von Vektoren,
^ 0, 1,2, so kann man die formale Potenzreihe

betrachten. In ([5]) wird nun gezeigt: Konvergiert dièse Reihe in einem Punkt
x, y ^ xOi yOf so konvergiert sie in einer ganzen Umgebung von x09y0.
Die dargestellte Vektorfunktion ist dann eine pseudoanalytische Funktion W9

und es gilt :

Dieser Formalismus lâBt sich nun auf Funktionen anwenden, die den Be-
dingungen 1), 2) von Satz 2 genugen. f(y) sei eine in 0< y < n definierte
Funktion, die 1) und 2) erfûllt. Man bilde die formale Reihe:

wo

a(2», i@nf | yt t o) a,™ (A0»/ |,.,

gesetzt wurde. Eine elementare Rechnung, die hier ihrer Lange wegen weg-
gelassen werden soll, zeigt, daû das Résultat von der Form (u, 0) ist, wobei

/o + (V ~ *) / Iv. + 0/ \*JlQ(*)dsdi + -%jr€>f \v. !!Q(s){8 - yo)d8dÇ
a v#

ist. Aus 31 folgt: u(y, 0) f(y). Wie oben erwàhnt, folgt dann, daB es eine
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ganze Umgebung des Punktes (0,y0) gibt, in welcher die Reihe

konvergiert und dafi sie in dieser Umgebung eine pseudoanalytisehe Funktion
darstellt. Daraus folgt, dafi diejenigen Funktionen f, die sich mit der Geschwindig-
keit ^4gn,g<l durch Linearkombinationen STURM-LiouviLLEscfter Eigen-
funktionen approximieren lassen, aïs pseudoanalytische Funktionen aufgefafit
werden kônnen, die eine Fortsetzung ins «Pseudokomplexe» gestatten, womit man
eine gewisse Analogie zum trigonometrisehen Fall erzielt hat.
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