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Approximation von Funktionen durch Linearkombinationen
von Eigenfunktionen SturM-LiouviLLEscher
Differentialgleichungen

von BRUNO SCARPELLINI, Ziirich

1. Einleitung

In dieser Arbeit werden Probleme, die aus der Approximationstheorie stam-
men, betrachtet. Gewisse fiir trigonometrische Polynome giiltige Sétze sollen
fiir den Fall von Linearkombinationen STurM-LiouviLLEscher Eigenfunktionen
verallgemeinert werden. Der Weg fiihrt iiber einige vorbereitende Sétze, die an
sich von einem gewissen Interesse sind. Ausgangspunkt ist die Differential-
gleichung:

2
g;; + AQ(x)u(z) = 0.

Q(x) sei im abgeschlossenen Intervall [0, n] definiert, positiv und zweimal
stetig differenzierbar. u,(z), uy(2), ...., u,(x), ... seien die Eigenfunktionen,
die der Randbedingung % (0) = 0, u(x) = 0, geniigen (Randwertproblem a).
Bekanntlich 148t sich jede in [0, ] stetige Funktion f(x), die den Rand-
bedingungen f(0) = 0, f(x) = 0 geniigt, beliebig genau durch Linear-

kombinationen X &,u; approximieren. Genauer: Zu jedem & gibt es ein n
1

n
und eine Linearkombination X &,u,, so daB die Ungleichung
1

| H(2) —{"m(@ly

n
besteht. Halten wir n fest, so hat die Menge der Zahlen sup | f(x) — 2'&,u,(2)],
z 1

xe [0,7], eine untere Grenze, wenn die &; alle reellen Zahlen durchlaufen.
Diese untere Grenze bezeichnen wir mit E}(f). Offenbar ist lim E;(f) = 0.

fn—> oo

Ziel dieser Arbeit ist es, aus der Geschwindigkeit, mit der die Zahlen E}(f)
gegen Null streben, auf gewisse Eigenschaften der Funktion f zu schliefen und
umgekehrt. Der Grund, weshalb wir uns hier mit der etwas unangenehm zu
behandelnden Form 3" + 1Qy = 0 der SturM-LiouviLLEschen Differential-
gleichung auseinandersetzen, wird durch den letzten Abschnitt klar werden.
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Es ergibt sich, da§ die Folge der Operatoren

d 1 & d 1 1 42 \2
dx’ Q da*’ dx Q da®’ —QW)’

hier dieselbe Rolle spielt, wie die Folge der Operatoren

d d? d3
dx’ da®’ daB

im Falle trigonometrischer Polynome. Es wird sich zeigen, da@ es eine zur Klasse
der analytischen Funktionen analoge Approximationsklasse von Funktionen
gibt, die zu den pseudoanalytischen Funktionen im Sinne von L. BErs in
Beziehung stehen.

Natiirlich werden wir dauernd Gebrauch von der Tatsache machen, da die
angegebene Differentialgleichung sich in die bekannte Normalform

"+ (x) —A)p=0

transformieren 1agt.
Wihrend der Vorbereitung des Manuskriptes stellte es sich heraus, daf}
I. P. NaTANSON in einem Artikel in Doklady Nauk SSSR 114, 1957, einige

Sétze in dieser Richtung ohne Beweise verdffentlicht hat. Der Verfasser erhilt
2

dd 22 - r(x)
beziehen, und die in gewissem Sinne Analoga zu den hier in Abschnitt 6
bewiesenen Siatze darstellen, die sich auf die oben angegebene Folge von
Differentialoperatoren beziehen. Soweit aus dem angegebenen Artikel ersicht-
lich ist, scheinen vollig andere Beweismethoden zur Anwendung gekommen zu

sein.

in dieser Arbeit Sitze, die sich auf den Differentialoperator

2. Yorbereitungen

Zuerst sollen einige bekannte Dinge iiber STurM-LiovuviLLEsche Differential-
gleichungen zusammengestellt werden, die wir spéter dauernd benutzen. Ohne
Einschrinkung darf man annehmen, dag stets

I=(VQds=n
0
ist.
Wie in ([1]) gezeigt wird, geht die Differentialgleichung
w4+ 2Qu =0 (1)

durch die Transformation ¢ = WVQ -u t= jVEf ds
0
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in die neue
d2
=T+ =0 @)
iiber, wo
r=(Qh"Q%
ist.

Die Eigenfunktionen von (1) bilden ein normiertes Orthogonalsystem beziig-
lich der Dichte @, das heiBt, es ist:

 wu,Qds = 6,
0

wiahrend die Eigenfunktionen ¢, von (2) den Bedingungen geniigen:
6f‘}%‘Pkdt =04 .

Die Eigenwerte von (1) und (2) bilden wachsende Folgen, die keinen Héu-
fungspunkt im Endlichen besitzen. Es gelten folgende asymptotischen Formeln :

Ay = +
@, ) = Vgsinnt + 87"()'5)
dqajt(t) _ n]/ _j_i_ ccnnt 4 818
sin (n ZVQ-ds)
Un (x) =C,° 4{/@ + yn”ix)

iy (2) = -0, VG co8 (nf V@ ds) + ()

wobei |u,| < M, |e,(0)| < M, |8,()] < M|yn(2)| <M wnd |B,(2)] < M,
| e, | < M ist. Dabei ist M eine nur von @ beziehungsweise r abhéingige
Konstante. Alle Beweise fiir das in diesem Abschnitt Erwihnte und weitere
Details findet man in [1].

SchlieBlich sei noch eine Eigenschaft stetiger Funktionen genannt, die wir
dauernd verwenden werden, ohne sie speziell zu erwidhnen. Sei f(x) stetig
in [a,b] und |[|f|| =sup|f(z)|. P(x) sei eine eindeutige, stetige Ab-

z

bildung des Intervalls [a, b] auf sich. Dann ist, wie sofort ersichtlich:
lim sup | f(z) | = lim sup | f(@(2)) |
z z
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das heifit
Hi(@@) |l =11l

Im vorliegenden Fall werden es die Funktionen ¢ = | ¥Qds und deren Um-

0
kehrfunktion sein, die das Intervall [0, =] auf sich abbilden.
In einigen wenigen Fillen, in denen Zweideutigkeit moglich wire, soll durch
die Schreibweise || f||? angedeutet werden, daB sich die Norm auf das Inter-
vall [a, b] bezieht:

| flla=sup|f(z)]|, zela,b].
Ableitungen nach der Variablen ¢ werden stets durch einen Punkt gekenn-

. _de .
zeichnet: =9

3. Verallgemeinerung der BERNSTEINsSchen Ungleichung

BERNSTEIN bewies, daB die Ableitung 7', (x) eines trigonometrischen Poly-

n n
noms 7', (x) = ay + 2 a, cos px + 2'b,sin px der Ungleichung geniigt:
1 1
[ Talz) |22 =n|| Tulz) |15 (3)
Wenn 7', (x) von der Form a, 4 2'a,cos px oder X bpsin px ist, so folgt
1 1

sofort aus der Ungleichung (3) die folgende:
| Talz) [I5< 2 || Tul2) |I5 - (4)

Im Folgenden soll eine analoge Ungleichung fiir Linearkombinationen von
Eigenfunktionen einer StUrRM-LiouviLLeschen Differentialgleichung her-
geleitet werden. Sei ¢(¢) + (A — 7(t) @) =0, ¢(0) =0, @(z) =0 ein
SturM-LiouviLLesches Randwertproblem. r(t) sei stetig in [0, =].

@1, Pas «- Pn, - .. Seien die normierten Eigenfunktionen und

A, Ag, ... A, .. die Eigenwerte. Es soll gezeigt werden:

Satz 1: Es existiert eine Konstante K,, die von » unabhéngig ist, so daB
”
fir jede Linearkombination X'« , ¢, die Ungleichung besteht:
1
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n . n
12,0, |l < Kon || Zayg, || ()

Beweis: Aus der im Abschnitt 2 gegebenen asymptotischen Darstellung von
@ folgt mit Hilfe der Dreiecksungleichung:

n . 2 n
Il ;’J%% | <[] 2o, P |/; cos pt || + || f%f’p(t) I
Auf Grund der Ungleichung (4) folgt aber
n . n 2 . n
Il Zl’%%ll < nll-i: I/-;% sin pt || + || %’%%(t) Il

.Indem man auf den zweiten Summanden rechts die Scawarzsche Un-
gleichung anwendet und | ¢,(t) | < M beachtet, erhdlt man:

n ] n 9 ) . _
”‘f:o‘p(ppllén”fjI/"afz‘o‘ymnptll +M 21:06% Vn

Da aber die asymptotische Darstellung

V%sinpt-i--?—“;—g(—t)-:tp,,(t) mit |§,¢) | <M

V-gz:sin pt = @,(t) — _ézi(f')_

gilt, folgt mit Hilfe von Dreiecks- und ScHwWARzZscher Ungleichung:

das heiBt:

1
P
Aus der Orthonormalitit der Eigenfunktionen folgt-aber:

n n n — n
I/ ‘1"—"0‘2 = ;‘; (‘lzv‘xp‘pp)zds = Vn 1 ‘;‘:'0‘:0993) Il

woraus sich schlieBlich ergibt:

n . . 0o 1 1 l n n
1 sl <+ 2097 (/25 + 55 |1 ol = Kon 1 £

Die Ungleichung (5) wurde schon von E. CARLSON bewiesen ([2]), allerdings
unter der Voraussetzung der zweimal stetigen Differenzierbarkeit von r(¢)
und mit groBerem Aufwand.

n n ‘ n n — T——
10,6, <nll Sayp, |+ Zas a0 2L 1 va ) Zus
1 1 1 1 1
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Jetzt sollen analoge Ungleichungen fiir Linearkombinationen von Eigen-
funktionen des Randwertproblems %" 4+ AQu = 0, %(0) = 0, u(%x) = 0 her-
geleitet werden.

Satz 2: Es gibt eine Konstante K,, so daf fiir jede Linearkombination Z o U,
die Ungleichung besteht:

n n
x|l < Kan || Zou, ] - (6)

Beweis: Da ja @ (x) positiv und zweimal stetig differenzierbar vorausgesetzt
ist, 1a8t sich, wie in der Einleitung erwiahnt, die Differentialgleichung
u" + AQu = 0 mittels der Transformation

¢(2(t)-u(z(t)) = p(t) mit t=§q2ds 4=

in die Form ¢ + (A — r(t)) » = 0 transformieren. Zwischen den normierten
Eigenfunktionen u,(x) und ¢,(¢f) besteht dann die Beziehung:

wo die ¢, die in der asymptotischen Darstellung von wu,(x) auftretenden
Faktoren sind (sieche Abschnitt 2). Aus der letzten Gleichung folgt:

4 q, nq?'n
w = — L +gec, o,
n q q q:Co
und
n , ql n n .
1 Eapuli= || L] Eap, 4111 - 11 £y, |

Auf Grund von Satz 1 ist aber:
I f-'%%%(t(x)) | = || lz%%%(t) | < Ko-m || f%%%(t) I
< Kon || Ea,0,0, () <1l ¢ |- Kon- || Esyo, 224 |

n
SIIQII'Ko'nIIf'%%H

Unter Benutzung dieser letzten Ungleichung erhalten wir sofort:

n ! n'
1wl (|| L |+ g 1K) nelt E
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womit der Satz bewiesen ist, wenn wir den Klammerausdruck mit K, be-
zeichnen.
Auf dhnliche Art, aber umstédndlicher, zu beweisen ist folgender Satz:

Satz 3: Es gibt eine von n wunabhdngige Konstante K,, so dafS fir jede

n
Linearkombination X x,u,, die Ungleichung gilt:
1

n n
H‘1’3%%%”31{2'%”?%%” (7)

Der Beweis dieses Satzes soll durch einige einfache Hilfssétze vorbereitet
werden, deren Beweise wir zum Teil nur skizzieren.

Hilfssatz a) Es ist
0
Bewess:

Jwgupds = A, [ Qu,upds = 2,0, .
0 0

Hilfssatz b) Es gibt eine von » unabhéngige Konstante A, so daB fiir alle
n-tupel &,, &y, ... &y die Ungleichung besteht:

n n
th?izg Azzafli .
1 1

Beweis: Da alle Eigenwerte positiv sind, nach Hilfssatz a), gibt es eine von n
unabhingige Konstante a > 1, so daB fiir alle A, die Ungleichung besteht:
al;> 1. Aus der asymptotischen Darstellung

Ai=¢+p;  |p|=MU
folgt dann:

n n n n
2R < T, + MEZoE< (1 + aM) Za2,.
1 1 1 1

Indem wir A2 = 1 + a M setzen, folgt die Behauptung.
Jetzt konnen wir iibergehen zum

Beweis von Satz 3: Aus den asymptotischen Darstellungen von u;(x) und
u; (z) folgt:
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“{J‘xiliui(x)n= Hf"‘i’liut(x(t)) || wo t=.(’;9a ds q;‘-ﬂ/é—

o+ ) (2 + 21 |
1 q ?

—

1 n 1 n
= ” e HH Zaiciizsin vt ” -+ “ — H” Z“iﬂiCiSill it ”
q 1 q -

n . L] 71‘
+ 120‘#'}’:' I =+ 1 2170‘:'4“:'7 Il

Jetzt benutzen wir die BERNSTEINsche Ungleichung 4), ferner die ScHWARZ-
sche Ungleichung und beachten, da8 die Funktionen y, und die Zahlen x, und
¢; gleichmaBig beschrinkt sind, dasheilt |y, |< M, | M, |< M,|c¢;|< M.

Das liefert :

”‘%“iliuiusué‘“' ||Zoc,c zcoszt”—}—”—-HMzV VZ'oc,zz
1

+ M-V |/ Saziz + M2 ]/f—.- : Vz"a%iz
1 1 ot 1
Mit Hilfssatz b) folgt:

n n
|2 o dou, || < H%Hn || Zogeic, cos it || +
1 1

+v;(“}.“ - [FL 4 vt an |/§_,1_).A||.§aiuzu
q 1 92 1 ¢ 1

1 o ' ; S
= g lmell Emcp oot st || 3 e B | St
1 1
wo

B = A(M2

~ﬂyz s+ )E L) v
1 ?
gesetzt wurde. Aus der letzten Ungleichung folgt weiter:

I St | < || L
1 Il ¢

2 n
‘ || f'oc,-ciq-icosifqi*ds ds ||+ n-B|| Zogui]].
1 1

Da:
wj(z) = dcug-cos i  g*de + fy(2)
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mit | B,(x) | < M gilt, folgt mit Hilfe der Dreiecksungleichung:

n 2 n
| Zosdiusf| =n-|)\— | || Zogui || + n-
1 1

1 2 n n ,
2N Eaipa) |+ e B Eoui
Indem wir auf den zweiten Term rechts wieder die ScHwaRrzsche Ungleichung

anwenden, Hilfssatz b) benutzen und | 8,(z) | < M beriicksichtigen, erhalten
wir schlieBlich:

n
|| 2osdiu; || < n-
1

1 2 n ,
—H N s || + n-
q 1

2 — o0
l” Vad-M|/Z L ) Zaui)l .
q 1 1
+ 0B Zoui |
1

112 1112_,— © ] n ,
<w(||7lf+ [l rmaw]/E 5+ o) dasin

Der Ausdruck in der Klammer stellt offenbar die gesuchte Konstante K, dar.
Aus den beiden letzten Sétzen erhalten wir die Folgerung:

Folgerung 1: Es gibt eine von n unabhidngige Konstante K, so daB fiir
n

jede ganze Zahl p und jede Linearkombination X' &,u; die Ungleichungen
1

bestehen :

i__(ﬁ_ ? f‘g.u. <K21’-n21’-|| f’gu“
Q daz? PRSI 1 1

d (1 d*\?/»
|dx (g aa) (Fem)
Beweis: Die Behauptung ergibt sich unmittelbar, wenn wir K = max(K,, K,)
setzen, die Siétze 3 und 2 benutzen und Induktion anwenden.

(8)

n
< KPP || 2 gpu ||
1

4. Eine Anwendung auf die Approximationstheorie

Die Sitze, die im folgenden angegeben werden, sind Verallgemeinerungen
von Sitzen, die von S. BERNSTEIN fiir den Fall von trigonometrischen Funk-
tionen bewiesen wurden. Die Beweise konnen wortlich iibertragen werden, da
sie lediglich auf der Giiltigkeit der BERNSTEINschen Ungleichung beruhen (siehe
[3], pp. 89). Mit W bezeichnen wir im folgenden die Klasse derjenigen Funk-
tionen, deren Stetigkeitsmodul w(é) =sup |f(z) —f(y)|,|* —y | < d einer
Ungleichung w(8) < A(1 4 | Ind|)d geniigen. E,(f) sei, wie in der Einleitung
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angegeben, die untere Grenze der Zahlen ||f— 2'&,u,||, wo die &; alle
1
reellen Zahlen durchlaufen.

Definition 1: Eine auf [a, b] definierte stetige Funktion f(x) geniigt einer
LripscarTz-Bedingung, wenn es Konstanten 0 <« < 1, K gibt, so daB gilt:

| f(@) — () <K|z—yl|*

fir z, ye[a,b]. Die Menge der Funktionen, die der zu «, K gehorigen Be-
dingung geniigen, bezeichnen wir mit Lip z«.

Satz 4: f(x) sei eine in [0, n] definierte stetige Funktion, und f(0) =
= 0, f() = 0. Gilt dann fiir jede natiirliche Zahl = :

Bi() <o (0<as<)

so lautet im Falle « <1 die Behauptung f(z)e Lipx, im Falle « = 1 aber
f(x)eW.

Der Beweis von Satz 4 soll hier nicht wiedergegeben werden, da er, wie
schon erwihnt, vollkommen analog ist zu jenem fiir trigonometrische Poly-
nome, wie er im eben zitierten Buch auf Seite 89 zu finden ist.

Satz §: Sei f(x) stetig im Intervall [0, #] und f(0) = f(x) = 0. Ist dann
) :

n2p+to

By(f) < (0<a<1),

2

so ist der Operator “gg{ pmal auf f(x) anwendbar, und es gilt:

0
fe91 () = () H@)eLipa,  [E21(0) = fPPIm) = 0
fir x <1 und

ferl(@)e W, f121(0) = fE2)(m) = 0
fir « = 1.

Beweis: Man geht wieder analog vor, wie im Falle trigonometrischer Poly-
nome. Sei L,(x) eine Linearkombination der ersten n-Eigenfunktionen, die
der Ungleichung geniigt:

| £(2) — Ly(2) | < e

Wir setzen:
Uo(x) = L’(x) Un (x) = Lan (x) - LG—l(x) .
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Esist: | Un(2) [ < | La(@) — f(2) | + | Ljpa(2) — f(2) |
A A B

S on(2p +a) + 9(n—-1) 2p+a) — 9In@p+a) ’

wo B = A(1 4 2?2+%) gesetzt wird. Auf Grund der Folgerung 1 ergibt sich:

1 d2 ? 2 27 2 B
!(U—d—w‘i) Un(x) SKI).2 p IUn(x)ISKp ona
Das heifit aber, dafl die Reihe
®/1 d*\P
Hgas) v
2
die durch p-fache formale Anwendung des Operators L auf die Reihe

Q da?

2 \p
entsteht, konvergiert, und zwar gleichméBig. Daraus folgt aber, daf3 ( é ddx2> f
existiert und da@

(@ az) 10 = (ga=) v

ist. Indem wir fiir

1 d2\? 1 d2\?
(_QW) (=), (@—%{) U,(z)
die Abkiirzungen f2?1 und U,[PP] einfiihren, erhalten wir

| fep)(2) — Z‘UM] )|<z B _ C

11 nae — 9ma ’

das heif3t:

C
B (1o0) < 55
Fiir jede natiirliche Zahl » bestimmt man nun ein m, so dafl 2m <n < 2r+1
ist. Dann ist:
C 2a( 2¢(C D

E:n (f[zp]) SE;m(f[M’]) S 9ma = 2(m+1)a < ne = ne *

Das heift: fierl erfiillt die Voraussetzungen von Satz 4, womit der Beweis
beendet ist.
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SchlieBlich 148t sich auf die gleiche Art beweisen:

Satz 6: Sei f(x) stetigin [0, n] und f(0) = f(=) = 0. Ist dann

A
Ex () SW 0<a<1,
80 existiert
d (1 d2\? d .
dz (—Q" dxz) f(x) = ‘ﬂf[zp](x),
und es ist:
d d d
— fl2p] i ey, §2P] _— =
7o [t @eLipn, - fU2l(2) | = 2= feri(@)| = o,
wenn « <1, und
d d d
— f[2p] — f2p] —_—— e —
7 1E@eW o [E(@) | = 2o fBR(@)| =0,

wenn o = 1.
Im weiteren soll gezeigt werden, dal auch die Umkehrungen der Sétze 6 und .
5 gelten.

6. HAARsche Systeme

In diesem Abschnitt sollen einige bekannte Eigenschaften Haarscher
Systeme zusammengestellt werden. Gegeben seien n—Funktionen f,(z),
fa(®), ... f.(z), diein [a, b] definiert und dort stetig sind.

Definitron 2: Man sagt, die n-Funktionen f,, f,, ... f, bilden ein HaARsches
System fiir das Intervall [a,b], wenn jede nicht identisch verschwindende

Linearkombination X «;f; hochstens » — 1 Nullstellen hat in [a, b],

: 1
([4D). Sei f,(x), fa(x), .... fo(x) ein Haarsches System fiir das Intervall
[a,b]. o(t) sei eine Funktion, die das Intervall [c, d] eindeutig und stetig
auf das Intervall [a,b] abbildet. Dann ist klar, daB f, (¢(t)), fs(c(?)), . ...
«+ s fa(0(2)) ein Haarsches System fiir das Intervall [c,d] ist. Ist ferner
g(xz) eine in [a,b] definierte, stetige Funktion und dort > 0, so ist auch
g(x)fi(x), g(x)fa(), ..., g(x)f,.(x) ein Haarsches System fiir [a, b].

Satz 7: Ist f(x) stetig in [a,b] und ist f,(x), fo(x), ... f.(2) ein Haarsches
System fiir dieses Intervall, so gibt es genau eine Linearkombination von der
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Form X &,f,(x), fiir welche die GroBe
1
n
d = lIf—-IZ'E.-fiIIZ

ein Minimum ist. Diese Linearkombination ist durch folgende Eigenschaft
charakterisiert: Es gibt n 4+ 1 Punkte a<z, <zy<..... 2, < %,,<0b,
in welchen die Funktion

ﬂm—%&mm

den Wert d mit alternierendem Vorzeichen annimmt.
Einen Beweis dieses Satzes findet man in [4], pp. 74. Durch einige unwesent-
liche Modifikationen dieses Beweises ergibt sich dann ein solcher von:

Satz 8: Sei f,(), fo(2), . ... f.(x) fiirjedes ¢>0 ein Haarsches System fiir
das Intervall [a + ¢,b — ¢] und sei f,(a) = f;(b) = 0 fiir alle ¢. Ist dann
f(x) stetig in [a,b] und f(a) = f(b) = 0, so gibt es genau eine Linear-

kombination X' ¢,f,, fiir welche die GrioBe:
1

d=HI—§&hM

ein Minimum ist. Diese Linearkombination ist wie folgt charakterisiert: Es
gibt n+1 Punkte a<<az;<......... z, < ,.,<b, in welchen die
Funktion

ﬂ@—%@mw

den Wert d mit alternierendem Vorzeichen annimmt.

Der kurzen Formulierung wegen nennen wir ein Funktionensystem, auf
welches Definition 1 zutrifft, ein Haarsches System erster Art, und ein Funk-
tionensystem wie es in Satz 8 vorkommt, ein Haarsches System zweiter Art.
Im folgenden brauchen wir den

Satz 9: Seien f,(x), fa(x), ... fo(x) und g,(x), ga(x), ... go(x) zwei Haar-
sche Systeme gleicher Art fir das Intervall [a,b]. Ist dann )I'." o ;9:(x) die beste
Approximation von g’ﬂifi(x), 80 18t auch umgekehrt Znﬁij,-(a:)ldie beste Approxi-
mation von Z'" cxfgi(wi). :

1

Beweis: Handelt es sich zum Beispiel um Systeme erster Art, so folgt aus

Satz 7, daB es n + 1 Punkte z, <2, < ... <%, < %,y in [a,d] gibt, so
daf die Differenz

18 CMH vol. 86
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n n
lzﬁzfz(x) - %"xigi(x)

n n
in diesen Punkten den Wert d = || X f,f; — 2 «,9,|| mit alternierendem
1 1
Vorzeichen annimmt. Aus demselben Satz folgt dann aber, daf umgekehrt
n
auch X 8,f.(x) die beste Approximation von X «;g;(x) ist. Auf dieselbe
1 1

Weise schlieBt man im Falle zweier Haarscher Systeme zweiter Art.

6. Anwendung auf Linearkombinationen STURM-LIoUVILLEscher
Eigenfunktionen

In diesem Abschnitt sollen die in den Abschnitten 3 und 5 angegebenen Sétze
auf spezielle Haarsche Systeme angewendet werden. Zu diesem Zweck sei
zuerst ein Theorem zitiert, das von E. PRUFER bewiesen wurde. Einen Beweis
findet man in [8]. Sei (p¢') + (A — q¢)op = 0 eine STURM-LIoUuvILLEsche
Differentialgleichung mit stetigen Koeffizienten p,q,0 in [a,b] und sei
0>0,p>0 in [a,b]. Dann gilt der

Satz 10: Die ersten n-Eigenfunktionen ¢,(z), ¢s(x), .... ¢,(x), die zum
Randwertproblem ¢(a) =0, ¢@(b) =0 gehoren, bilden ein HaArsches
System zweiter Art fiir das Intervall [a, b].

n
Dieser Satz besagt, daB eine Linearkombination X« ,p;(x) hochstens
1

n — 1 Nullstellen im Innern von [a,b] haben kann. Fiir das Weitere be-
schaffen wir eine Abschitzung fiir die erste Ableitung der nten normierten
Eigenfunktion ¢, der Differentialgleichung ¢, + (1, — r)gp = 0, die zum
Randwertproblem gehort. Der Einfachheit halber setzen wir dabei voraus,
daB die Eigenwerte dieses Randwertproblems alle positiv sind. Da es sich nur
um Routine-Rechnungen handelt, soll die Herleitung der angekiindigten
Abschitzung etwas gekiirzt wiedergegeben werden.

Satz 11: Fiir die Ableitung ¢, der nten normierten Eigenfunktion ¢,
gilt die asymptotische Darstellung

sin nx

n(z) = a,-n-cosnz + a,- (f (8) ds — — igr( )d)

z
CRNT (r(s)sin2nsds (9)
0

+ a,-
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sin nx

x
Jr(s) cos 2nsds
0

+ a0, -sinnx + O <~7l;)

Dabei ist die Folge der Zahlen a, gleichméflig beschrénkt, das heif3t, es gibt

n
ein @ >0 undein b, sodaB a<a,<b ist. Ferner gilt a2 < oo.
1

Beweis: ¢, geniigt, wiein [1] gezeigt wird, einer VOLTERRAschen Integral-
gleichung:

@) =a,-sinx,x + ;ﬂl— fr(r)cpn('r)sin %, (x—1)dr=0,

n 0

wo Vl_n = %, gesetzt wurde. Die Folge der Faktoren a, ist beschriénkt,
das heil3t, es gibt zwei von n unabhingige Zahlen 0 <a < b, sodal a <@a,<b
gilt. Fiir die Eigenwerte A, erhalten wir die Gleichungen:

@, -Sin %, 7w + ;1—~ Jr(z)pa(z)sinx, (m — ) dr =0
n 0

oder etwas umgeformt:

r(T)@n(t)8in 2,7 d7

tg wx, =

axn—}—bf (1) cosx,rdr
In [1] wird gezeigt, daB »x, von der Form ist:

d,
=0

wo die Folge der d, gleichmiBig beschrénkt ist, | d, | < M. Indem wir diese
Form von x, beriicksichtigen, erhalten wir:

jy 7)@,(7) sinx,tdr

d,
tg = d .
na, + —"7z—'i + 6‘7(1) @a(7) cos %, Td7
SchlieBlich beachten wir:

@.(2) = a,-sinnx 4 0 (—7—1;)
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und

arctgxzx——%a——{—

Dies alles zusammen ergibt nach kleiner Rechnung:

/Y = 7&17? :fr(t)(sin nt)dr+ 0 (%) ,

n

oder etwas umgeformt:

dn 1 = 1 = 1
= é'y(r)dr ~ Snm gr(r)cos 2nrdr+0(—7;—2—).

Um eine Abschétzung fiir ¢, zu erhalten, differengieren wir die angegebene
Integralgleichung einmal:

Pp(T) = Gp%, - COS %, % +57’(T)¢,,(T) cos x,(x — v)dr,
woraus sofort folgt:
on (%) = a, %, cO8 %, x + a,,,j:r(t) sin %, T cos %, (x — r)d7v + 0(—;&—) .
Jetzt beachten wir:

dy Ay
%, CO8 %,& = (n + 77) cos ('n -+ —;—z—)x
d, d, . 1
== (n + 7{) {cos nx — -~ z-sinnw +0(7z?)}

Indem wir den Ausdruck, den wir fiir %’i gefunden hatten, oben einsetzen,
erhalten wir:
o . . 1
Xy COB %, & = N-COBNL — —2%-] r(r)dr-sinnx + &, x sin nzx 4 0(—?;/—) .
0

Dabei ist

1 n
x, = —2;!-(2'7'(1:) cos 2ntdr,

also Eoc,, <2n j' r(1)dv < co, nach der PArsEvarschen Ungleichung.
In der Glelchung
z
@ (%) = @, %, cos x,x + a, | () sin x,7 cos x,(x — 7)dv + 0(—7—1;)
0
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konnen wir den ersten Term rechts durch den asymptotischen Ausdruck fiir
a,x, cos %, v ersetzen. Indem wir »,=n -+ 0 (—%—) beachten und unter dem

Integralzeichen auch noch entwickeln, erhalten wir:

b4

a,x . .
on(z) = q,mcosner — —= 6|'r(t)alt-s41n nx + a,x,x8innx

27

t3 z
+ a, cos nxé'r(-r) sinn rcosntdt + a, 8in nxgr(r)sinznrdr

+o(%)

Durch eine kleine trigonometrische Umformung erhélt man jetzt sofort:

@n(2) = a,-n cos nx + “n(ff(r)dz _ %;"‘r(‘r)dr) sin2nx

z 1 z
1 InCOSRT fr(r)sin 2nvdr — il 6[7'(1:) cos 2nrdr
2 0 2
. 1
+ a,x,x sin nx—{-O(—;b—) )

was die gesuchte Darstellung ist.
Hier sei noch auf einige Details aufmerksam gemacht. Die zuletzt erhaltene
Gleichung 148t sich auch in der Form schreiben:

@n(z) = a,n cos nx + %(fr(t)dr — _;?t_ fr(r)dr> sinznx

z 1 z
+ -(—L-”—f%m Jr(z)sin 2ntdr — g’l-slgﬂa- fr(v)cos2nrdr
0 0
4, ()

+ a,x,x8innx + ol

wobei die Funktionen 4,(x) gleichmiBig beschrinkt sind, | 4,(x) | < M.
Die Normierungsfaktoren a, sind, wie schon erwéhnt, ebenfalls beschrinkt,
la, | < M.
Setzt man
z x

A, (x) ==6fr(r) sin 2ntdt B,(x) = _g r(7) cos 2nvdr,

so gilt, auf Grund der PArsEvarschen Ungleichung:

EA,,(:!:)’_{ nfr(tPdr<oo, TBix)<mfr(rfdr< co.
1 0 1 0
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Aus demselben Grund gilt, wie schon erwihnt, auch X a2 < co. Ist ferner
1

r(x) einein [— =, n] stetige, gerade Funktion, so ist ¢,(z) ungerade, g, (x)
gerade. Die asymptotische Darstellung von ¢, (z), die durch Satz 11 gegeben
ist, gilt dann, wie leicht ersichtlich, nicht nur fiir das Intervall [0, n], son-
dern fiir das ganze Intervall [— z,z]. Obwohl wir uns hier nur fiir das
Intervall [0,n] interessieren und die Funktion r(x) vorerst auch nur in
diesem Intervall bekannt ist, wird es im folgenden niitzlich sein, 7(z) auf
[— #n,n] auszudehnen durch die Festsetzung 7(— x) = r(x). Dadurch
erhélt man auch eine Fortsetzung der Eigenfunktionen ¢, (x) und deren Ab-
leitungen ¢, (z) in das Intervall [— 7, 0] hinein, wobei @, (— ) = — @, ()
und ¢, (— 2) = @, (x) gilt. Ferner ist dann, wie schon bemerkt, die Dar-
stellung fiir ¢,, wie sie in Satz 11 gegeben ist, auch im Intervall [— 7, 0]
giiltig. Durch diese Festsetzung wird jede Eigenfunktion und deren Ableitung
zu einer 2n-periodischen, geraden beziehungsweise ungeraden Funktion
erweitert.

Bevor wir zum Hauptsatz (Satz 15) dieses Abschnittes gelangen, miissen wir
noch zwei bekannte Sitze zitieren, deren Beweise man zum Beispiel in ([3])
findet. Der erste lautet wie folgt:

Satz 12: Zu einer stetigen, periodischen Funktion f(x) mit der Periode
27 und zu einer natiirlichen Zahl » gibt es genau ein Polynom

T,(x) =ay+ Za,costx + Xb,sinix,
1 1

welches von f(z) minimalen Abstand hat (den wir fortan mit Z,(f) be-
zeichnen). Dieser ist wie folgt charakterisiert: Es existieren 27 + 2 Punkte

— A< L < it < Xyny9 < @, in welchen die Funktion 7, (x) — f(x)
den Wert d = || 7, (z) — f(x) || mit alternierendem Vorzeichen annimmt.
Daraus ergibt sich unmittelbar eine Folgerung.
Folgerung 2: Ist f(x) eine ungerade periodische Funktion, f(— z) = — f(),
so ist das trigonometrische Polynom bester Approximation ein reines Sinus-
polynom.

Ist f(x) eine periodische gerade Funktion, f(— z) = f(x), so ist das
trigonometrische Polynom bester Approximation von der Form:
n
T,(x) =ay+ 2 a;costx .
1
Um den zweiten der erwihnten Sitze formulieren zu konnen, sei noch eine
Bezeichnung eingefiihrt. Mit e, (f) bezeichnen wir die untere Grenze der Zahlen
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| T, —f||, wo T, die Polynome ohne konstantes Glied durchléuft. Der zweite
Satz, dessen Beweis ebenfalls in ([3]) zu finden ist, lautet dann:

Satz 13: Ist f(x) eine 2n-periodische Funktion mit stetiger Ableitung
f'(x), so besteht zwischen £, (f) und e,(f') die Beziehung:

B, ()< en(f)-12

= n
Daraus ergibt sich:

Satz 14: Es existiert eine von n wunabhdingige Konstante C, mit der Eigen-
schaft:

n

a) Zu einer vorgegebenen Linearkombination X &,@,(x) findet man ein Stnus-
n 1

polynom 2 n, sin iz, welches der Ungleichung geniigt .
1

n n . . O n
I| 2 &pi(x) — Zysinsx || =< _%L || 27 &:p:(x) || .
1 1 1

n
b) Zu einem vorgegebenen Sinuspolynom X' n;sinix findet man eine Linear-

n 1
kombination X &,@,(x), welche der Ungleichheit geniigt:
1

» .. e C n L.
”?mmn%w—?&%(w)llé—ﬁ?— . ||21717,-sm1,x|l :

Beweis: Offenbar kann man ohne Einschrinkung annehmen, da die Funk-
tionen 7(z) und ¢@,(x) auf dem ganzen Intervall [— =, z] definiert sind und
den Gleichungen

9:(0) = @; () = @;(— ) =0

geniigen. Andernfalls kann dies stets, wie oben bemerkt, durch die Fortsetzung

r(— x) = r(z) fiir z¢[0, n], erreicht werden. Zuerst sei die Behauptung a) be-
n

wiesen. Gegeben sei also die Linearkombination 2'&;@,(x). Wir betrachten

1
den Ausdruck:

n

n
1 1

Auf Grund der in Satz 11 gegebenen Darstellung von ¢, (x) hat diese Diffe-
renz die Form: '
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smzx

%5,(;72(27) )Z' Eia;i cos 1 = Zai (dfr(t)dr —— d[ r(r)dr) fi

COS 1 X sin 12

-+ Zf,a A, (x) + ?5:“{31(“’) —5

+ ZE.a x,x sintx + z £:4 z(x)

Die rechte Seite dieser Gleichung wird nun abgeschatzt. Wir beginnen mit
dem ersten Term der rechten Seite:

é"a,- (Jr(r)dt —_ ——Jr(r)dr) &,

sin 1 x

n
=4, || 2aéisiniz|,
1

wo A, = H %(Jr(r)dr — %gr(r)dt))
die asymptotische Darstellung:

l gesetzt wurde. Andererseits gilt
9.(z) = a,sin iz + i{i”l ,

wo die e; gleichmdBig beschrinkt sind, || e;(z) || < M. Daraus folgt:

i e(a:

Z'Se

n
|| %’a,-&i sintz || <

[ + 1 Zap@1l

<u-JEa iz +ufanei.

Indem man wieder beachtet, dal aus der Orthonormahtat der Eigenfunk-

tionen
l/‘f‘i‘% < Va Il f‘fi% I

folgt, erhalten wir schlieBlich

sintx

%ai (fr(r)dr — %fr(r)dr) &, 3

n
<4 Zamill,

wo A, eine von 7 unabhingige Konstante ist. Indem man ferner
- -] n o0
EA?.(w) <=z| r(=|? Z'Bn(x)”s z|lr (2) | Ecxf < oo

beriicksichtigt, auf den zweiten, dntten und werten Term die ScEwARzZsche
Ungleichung anwendet, und wieder 52 < Vx| Z‘ £:9.]| beachtet, sieht
man, daB es von n unabhingige Konsta.nten A,, A,, Ag gibt mit:
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n COS 1% s
i‘:fiatAf(x) ) < As ” §§i¢i ”
n sin 12 B
125:%3;(93) ) < 4, || %'Ei(Pi |l
IZ6masiniz]l <Al Zémll .

Was den fiinften Term anbelangt, so erhalten wir:

S 4@
1 ?

Daraus ergibt sich zusammenfassend :
n , n . ) n
1 ?&‘Pi(x) — ?51:“;'7' cosiz || < 4| %‘519’: I
6
1

Auf Grund von Satz 13 ergibt sich aber daraus:

n n
. 128,,(12&(;02) 124 || ‘I‘Jém I

En(%‘fiq?t') S n S n

Co |l £ e ||

=< )
n

— «© ] n n
<Va |[E5 i Zae <l Zpl

286

wo Cj = 124 gesetzt wurde. C, ist von n unabhingig. Sei nun umgekehrt

n n
2 &,p,(x) die beste Approximation von X#,sintz. Da ¢,(z)..... (%)
1 1
und sinz, ...sinnz zwei Haarsche Systeme zweiter Art sind fiir das

n
Intervall [0, n], 148t sich Satz 9 anwenden. Das heiBt aber, daB X #,sin ix
n 1

auch die beste Approximation von X £,¢,(x) ist. Dann kénnen wir aber das
1

eben erhaltene Resultat anwenden und erhalten:

n
n n n 06“2;‘5‘97{”
“f:fi‘Pi(x) ——zl‘i'msinixll =En(~§£i%)$ -

Indém wir jetzt noch
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n n n . n n

| 2& @ | < || & &y — Zpsinsa || + || Dy siniz || < 2| Xy, sindx ||
1 1 1 1 1

beachten, folgt:
2C; || = n; sin iz ||
1

I ffi?’i(x) - f’?z‘ sinszx || <
1 1 n

Die Behauptungen a) und b) ergeben sich jetzt, wenn man 2C, = O, setzt.l)
Es sei jetzt «" 4+ AQ(x)u = 0 eine SturRM-LiouviLLesche Differential-
gleichung und @Q(z) positiv und zweimal differenzierbar in [0, z]. Ferner sei

x 4__
die Bedingung & = [ ¢®ds mit ¢ = V@ erfiillt. Durch die beiden Substi-
0
tutionen
z
qu=¢ t=[g¢ds
0

transformiert sich dann obige Differentialgleichung, wie in Abschnitt 2 erwéhnt,
in eine andere, die wir folgt aussieht: ¢ + (1 — r(f)) @ = 0, wobei r(f) eine
in [0, =] stetige Funktion ist. Die zum Randwertproblem a) gehdrigen Eigen-
funktionen gehen dabei in die zum selben Randwertproblem gehorigen Eigen-
funktionen ¢,(¢) iber.

Aus Satz 14 erhilt man jetzt leicht

Satz 156: Es gibt eine von n unabhingige Konstante C, mit der Ezgenschaft
a) Ist

n

2n,
177z q

sin (2 jxq2ds)
0

n
die beste Approximation von X &;u;(x), so besteht die Ungleichung:
. 1

" . sin(s j g*ds) c,
2 &uy(x) — 2, S—-HZ& ui () ||
1 1 q n
n . Sin(s oj q2ds)
b) wst X &,u;(x) die beste Approximation von X', 7 ,
1 1

1) Die in diesem Beweis durchgefiihrten Abschétzungen haben ihre Quelle in einer unveroffent-
lichten Arbeit von H. WEYL: «Zuriickfihrung der STurM-LIiouviLLEschen Reihen auf FOURIER-
sche». Dort wird das Randwertproblem ¢’(0) = ¢’(z) = 0 behandelt und werden Abschit-
zungen fir @(z) hergeleitet. Die dort angewandten Methoden sind hier verwendet worden.
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n
Beweis: Wir betrachten zuerst a). Ist 2 u,sin ¢ die beste Approximation
1

dann besteht die Ungleichung :

sin (¢ f q*ds) sin (¢ f q*ds)
0

<

2 n;
1"7 q

" i Wy 1"71, q n

n
von 2'&; @;(t), so gilt nach Satz 14 dann die Ungleichung:

&6 gult) — stmzt||< Ilffz%ll

also:

1 Eemie@) — Eugsinit@) || <20 || Fp ) |

und schliellich, nach einer kleinen Umformung :

) . sin (i | q* ds) , o
28 ui(z) — 2y — s]l——H Nl - 2o 2 )
1 1 q q n 1

Das heiBlt, die beste Approximation

n

x
S s sin (i | ¢* ds)
1 q 0

n
von X &,u;(x) geniigt erst recht der in a) angegebenen Abschétzung, wenn
1

0, =2 -;— -1l gll-Co gesetzt wird.

Beim Beweis von b) verfihrt man gleich wie beim Beweis von Satz 14, b).
Man hat lediglich zu beachten, daB u,(x), u,(x), ..... , U, () und

z 1 . @
_'Sin‘fqzds’ se0 s e, —osmnjqzds
0 q 0

zwei Haarsche Systeme zweiter Art fiir das Intervall [0, #] bilden, so daB
Satz 9 anwendbar wird. Die in b) auftretende Konstante ist wieder C, =

=2u—;—n-nqnoo.

n
Umstindlicher ist es, etwas Analoges fiir Linearkombinationen X £, u; zu
1
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beweisen. Wir bemerken: Ist f(z) in [0, =] definiert, f(z)eLipyx, so liegt
die 2rn-periodische Funktion f*(z), die den Bedingungen f*(— z) = f*(z),
f*(x) = f(z) fiir xze[0,n] geniigt, in der Klasse Lip,, . Ferner sicht man:
Die Funktionen 1, ug,u,,..... u,, bilden ein Haagrsches System fiir das

n
Intervall [0,7z]. Denn hitte etwa &, + X &,u; n -+ 1 verschiedene Null-
1

n
stellen in [0, =], so hitte die Ableitung, — @.ZX &;4,4, mindestens = ver-
1

schiedene Nullstellen im Innern des Intervalles [0,x], was dem Satz 10
widerspricht. Daraus folgt aber sofort, da8 auch die Funktionen

L L vee L vi(@@) mit = fpds
= . gt i

ein Haarsches System erster Art fiir [0, z] bilden. Desgleichen ist auch das
System 1, cost?,cos2¢, ....,cosnt ein Haarsches System erster Art fiir
[0, #] und somit auch

q, qcosx(t), gcos 2z(t), ... ,qcosnz(t).

SchlieBlich sei nochmals die in Abschnitt 3 angegebene Relation ( u;u,ds =
0
= 1,8, erwidhnt. Der in Aussicht gestellte Satz lautet:
Satz 16: Es gibt eine Konstante C, mit der Eigenschaft:

a) Zu jeder Linearkombination L(x) = X &u;(x) + & gibt es eine Linear-
kombination 1

n z
T(x) = fimmcos (ingds) + 709 »

welche der Ungleichung genilgt:
C
| L) — T(@) || < <2 || L(@) ||

b) Zu jeder Linearkombination
” 2
T(z) = ;’3 7:g CO8 (i£ g*ds) + 7oq
”n
gibt es eine andere, L(z) = X &,u;(x) + &, welche der Ungleichung gendigt:
1

1T — L l<S 7@

n
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L(x(t)
q(z(?))

, wobei wieder

Beweis: Wir betrachten zuerst a). Wir setzen [I(f) =

t = | ¢®ds sein soll. Eine kurze Rechnung ergibt:

Ol B

) = — 2 &g (20w, (20) — L (£ £i (20))) — & L

Nun ist der erste Term auf der rechten Seite nichts anderes als — 2 & (),

wo @, ;(t) die i-te Eigenfunktion der transformierten Dlﬁerentlalglelchung
@+ (A—r(t)p =0 ist. Nach Satz 14 gibt es dann ein Sinuspolynom
n

2 y,sin ¢¢, welches der Ungleichung geniigt:
! n n L. 00 n
Il %‘51' Ai i (8) + 41‘:7:' sin ¢¢ || < T 2l ‘1255}'{9% I

oder, indem man die Substitution auf der rechten Seite der letzten Unglei-

chung wieder riickgingig macht:

1 |8 n "
—I| -l (& &uw) || -
q 1

Auf den Ausdruck (X ¢&;u;)’ diirfen wir die BERNsTEINsche Ungleichung aus
1

Héi‘:fili%(t) +21:7i i

Satz 3 anwenden. Das ergibt:

nzl{"s,-z.-<p,-(t)+lz"yisinit||so.,Kj ; s.niﬁ*s‘u;u.
Daraus folgt:
i) — Zyesinit || < (0 VI E el + 16l || £]|-
Ferner ist:
”|fol—”(§o+2§i dw|<nllfo+25¢ull
und somit:

I Z&u || < | &l +||§o+%'5‘u;||§2||50+12§‘u;§| .
1
Dies alles zusammengenommen ergibt:

1) ——Z'y, sin zt[|<(200 “ ”)HZE;%.; 4+ &o |
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_<_K3||‘1‘:§i'“i+fo|| J
wo der Klammerausdruck rechts mit K, bezeichnet wurde. Die Funktion
n Vi
g@t) = 1(¢) + Z'—z.’— cos 1t
1

ist einmal stetig diﬁerenzierbar, wobei die Ableitung g¢(¢) der Abschitzung
geniigt: || g(t ||<K ||Z'§i + & || . Alsoliegt g(f) inder Klasse Lip, 1,
mit M = K, || Z Eu; + & ||. Ist dann g*(¢) diejenige 2n-periodische

Funktion, Welche den Bedingungen geniigt: g*(—t) = g*(¢), g*(t) = g(¢)
fir te[0,n], so liegt g*(¢) zufolge der oben gemachten Bemerkung in der
Klasse Lip,y, 1. In [3], pp. 79 wird gezeigt, daBl zu einer 2m-periodischen
Funktion g¢*(t) aus Lip,, 1 ein trigonometrisches Polynom P(t) existiert,
fiir welches:

lo*0 —P@y || < 22X

gilt. Da g* (t) eine gerade Funktion ist, gibt es nach Folgerung 2 ein Polynom
n

2o, cos it + &y, welches ebenfalls der Ungleichung geniigt:

1

24 M
n

n
| g%(8) — 2'a;cos it — o || <
1

Daraus ergibt sich:

Indem man auf der linken Seite dieser Ungleichung wieder von ¢ zu x iiber-
geht, erhilt man:

24K, || %'Eiu% + & ||

<

5 — i T
L(t) 217(“, i)coszt % -

1 2@) — £q(@) (50— 2] cos i f gtds — sag(o) | < Z2ELEENL

womit a) bewiesen ist, wenn Wir C, =24 K,|| q]|| setzen.

Sei nun umgekehrt L(z) = 27 Eu; + & die beste Approximation von
T(z) = Z' 7:9 cos (¢ j’ g?ds) + ?709 Da es sich um zwei Haarsche Systeme
erster Art handelt, 1st Satz 9 anwendbar, das hei3t, es ist auch 7'(x) die beste
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Approximation von L(x). Dann ist aber die eben bewiesene Ungleichung an-
wendbar, und es ist:

1L () — T(a) || < e LE@IL
Da || L(@) || < L(x) — T(2)|| + || T (= ||<2||T Il ist, folgt:

womit auch b) bewiesen ist.
Im néchsten Abschnitt sollen nun die eben bewiesenen Sitze auf Approxi-
mationsfragen angewendet werden.

7. Einige Approximationssétze
Fiir das Folgende ist es zweckméBig, die in den Sétzen 15 und 16 auftreten-

den Konstanten C; und C, durch die neue Konstante C = max (C,, C,) zu
ersetzen. Sei f(w) einein [0, n] definierte, stetige Funktion und f(z)eLipy .

Ist dann f*(x diejenige 27- periodische Funktion, die den Bedingungen
geniigt: f*(— z) = f*(2), f*(« ——f fir «e[0,n], so ist offenbar
f*(x)eLipyy . Sei ferner f(0) = f(n) = O 7‘ )eLip,. Dann liegt auch die

durch die Bedingungen f~(—- x) = —f( )s f(x) = f(x) fir «x¢[0,n], defi-
nierte 2n-periodische Funktion in der Klasse Lipy,«. Durch eine kurze
Rechnung beweist man die folgende Aussage: Ist f(z) in [0, n] definiert,
f(0) = 0, f(m) = 0, f(z)eLipy«, und machen wir die Substitution = = 2(z),

mit ¢ = [ ¢®ds, so liegt die Funktion ¢ (z(¢))f(«(f)) in der Klasse Lip,,; «,
0

wo a eine Konstante ist, die nur von ¢ beziehungsweise ¢ abhingt.
SchlieBllich sei noch ein Satz angegeben, dessen Beweis man in dem schon oft
zitierten Buch ([3]) findet.

Satz 17: Ist f(x) 2n-periodisch und f(x)eLipyx,0<a <1, so gilt:
12M

Besitzt f(x) eine stetige Ableitung f'(x) undist | f' (x) | < M,, so gilt:
n

E,(f) <
Daraus folgt der
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Satz 18: Es gibt eine Konstante A mit der Eigenschaft: Ist f(z) in [0, n]
definiert, f(0) = f(x) = 0 und f(x)eLipy o, 80 gibt es eine Linearkombination

2 &,u,, welche der Ungleichung genilgt:
1

1Feu— 1< S5 O<as<).

Beweis: Da f(z) in Lip,« liegt, folgt, daB g¢g(t) = ¢ (=(t))f(x(¢)) in
Lip,, « liegt, wo a die oben erwihnte Konstante ist. Da ¢g(0) = g(x) = 0
ist, gibt es eine 2m-periodische, ungerade Erweiterung g(f), die in der Klasse
Lipg, s liegt. Aus den Sétzen 12 und 17 folgt dann, daB ein Sinuspolynom
n

2 «;sin ¢t existiert, welches der Ungleichung geniigt:
1

220M 5o N1g(t) — Zaysinit || < 24;?’.
1

Il g(t) — Zoc;sm it <

Durch Riickgingigmachen der Substitution 2 = x(¢) erhélt man (nach kur-
zer Rechnung):

Nach Satz 15 gibt es eine Linearkombination 27 é;u, welche der Ungleichung
geniigt:

z
sin i§q2d8
<

() _2!-:0‘:'
1

_1_ 24aM
q n*

) sini;fgzds . gin (i fqzds)
f(x) — 2oy < — || ¥ .

1 n 1 q

Daraus ergibt sich:
z
sin (il!'q?ds)
N c 1 24aM
1Eem— 1< | o —— | + || 7 || T

Jetzt beachten wir:

. Sin(s f q%ds)

Za;
1

ez s 2]

q
wobei || f|| < #M benutzt wurde. Also:

I_ (27:0

15 b, — Il < 5 2L+ 24a) < %H%H‘M“““"
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Indem wir 4 = '

—é—H (2nC + 24a) setzen, folgt unsere Behauptung.
Satz 19: Ist f(0) = f(x) = 0 wund besitzt f(x) eine stetige Ableitung
f' (x), welche der Ungleichung geniigt: | f'(z) | < M, so gibt es eine Linear-

kombination X &,u,, fiir welche
1

AM
Hf——Z& ul| < ——

gilt.
Beweis: Da f(x) in der Klasse Lip,,1 liegt, ist Satz 18 mit « =1 an-

n
wendbar. Diesem zufolge gibt es eine Linearkombination X &;u;, welche der
Ungleichung geniigt: 1

1= Fe <55,

womit die Behauptung bewiesen ist.
Satz 20: Es gibt eine Konstante B mait der Evgenschaft: Ist g tn der Klasse
LipM x,0<a<<l, und ist jg de =0, 8o gibt es eine Linearkombination

Z}' Eu;, die der Ungleichung genugt
BM

na

Il £ £l
1

Beweis: Wir betrachten die Funktion

g (z(t) — g(0) _f
I(t) = EI0) , t—ngds.

Eine kurze Rechnung zeigt, daf die Funktion der Klasse Lip,, « angehort,
wo b eine Konstante ist, die nur von ¢ beziehungsweise ¢ abhingt. Die
27n-periodische Funktion i(t) , die der Gleichung f( —t) = i(t) geniigt und auf
[0,7] mit I(t) iibereinstimmt, gehort dann zur Klasse Lipy,, «. Nach Satz 17

n
gibt es dann eine Linearkombination L(f) = )J' 7, cos it + 79, welche der

Ungleichung geniigt:

n . 246 M
Ill(t)—{?mco“t——nolls ol
also:
n . 246 M
Ill(t)—-fmcosﬂ—-noﬂs el

19 CMH vol. 36
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woraus durch Riickgiéingigmachen der Substitution folgt:

24bM

19 (@) — 9(0) — E q(@)ni cosi { ¢ds + ma(@) | < | ¢

Nach Satz 16 gibt es eine Linearkombination §(x) = Z,‘ Eu; (x) + &, wel-
che der Ungleichung geniigt: 1

x

Cll L(yg*ds) || -] ¢ |

15(@) — gL(f ¢*ds) || < '
Also ist:
lgll-C I L (fgds) |
1 8(2) — (@) — g(0) || S 4 22X lell
Wegen [[g (2()) — 9(0) | < =M st || L( ¢ds) | = || Lo) || = QM”H??H
woraus sich ergibt:
1
2|l qll||=|| =MC
18(2) — (g (2) — g(0)) || < <] (‘;l + 28 al

oder:

n , , M
| 2 e + & — gla) || < 22
0 n

wo d=2||q“-“—;—“'n0+24b][q“ und &, = &, + g(o) gesetzt wurde.

Nun ist:

n

1 , , M
| &o | =-;z-iof f&ui%—éo*g)dxlgz&-d,

woraus sofort folgt:

2Md
na

llfié}ué —g@ | <

?

Die Behauptung des Satzes ergibt sich, wenn wir 2d = B setzen.

Folgerung: Ist g(x) eine in [0, n] definierte Funktion mit stetiger Ab-
leitung und ist:

lwwﬂsﬂ'ﬁ®@=0,
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n
so existiert eine Linearkombination X &u; mit
1

BM
n

n
||%‘§iu§——g||_<_

Beweis: g(x) geniigt den Voraussetzungen des eben bewiesenen Satzes
mit « = 1. Daraus ergibt sich die Behauptung sofort.

Satz 21: Es gibt eine Konstante D mit der Eigenschaft: Ist g(z) einmal

stetig differenzierbar in [0, n], ¢'(z)eLipmx 0 <a <1, ist ferner ¢(0) =
n

= g(m) = 0, so gibt es eine Linearkombination X &,u,, die der Ungleichung
geniigt : !

" DM
|| g(x) — %’«Siuill SW

Beweis: Da, j'g (8)ds = g(n) — ¢(0) = 0 ist und g¢'(x )eLipMoc ist Satz 20
anwendbar. Das heiflt, es gibt eine Linearkombination Z «;u;, welche der

Ungleichung geniigt: 1

BM
na

| 2 osui —g' || <

n
Die Funktion X x,u; — ¢ verschwindet an den Stellen 0 und x und besitzt
1

eine stetige Ableitung, die der eben angegebenen Ungleichung geniigt. Also
n

ist Satz 19 anwendbar, das heiflt, es gibt eine Linearkombination 2 f,u,,
welche die Abschitzung !

ABM

n n A n , ,
| (?“z’ui_g)‘?ﬂiuills—,}b—“?“iui —9 ”SW

erfiillt. X (x, — B;)u; ist die gesuchte Linearkombination und D = A B
1
die gesuchte Konstante.

Satz 22: Es gibt eine Konstante E mit der Eigenschaft: Ist f(x) zweimal
stetig differenzierbar, f(0) = f(z) = 0 und

jsn
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n
so gibt es eine Linearkombination Z‘ &;u;, welche der Ungleichung geniigt:

I — Sl < 25

Beweis: Aus der Voraussetzung folgt: |f/|<||@Q|| M. Also ist
f'(x)eLip| g;u 1. Somit ist der eben bewiesene Satz 21 fiir « = 1 anwend-

n
bar, das heilt, es existiert eine Linearkombination X &,u;, welche der Un-
gleichung geniigt: !

1 — 2 g, | < ALHD
1 n

Indem wir £ = || Q || D setzen, folgt die Behauptung.

Satz 23: Es gibt eine Konstante F mit der Eigenschaft: Ist f(z) zweimal
stetig differenzierbar, f(0) = f(x) = 0, und

1 42 1 d2 1 d2
ea!|,=% g !|,=% qagzllipex, 0<«sd,

8o gibt es eine Linearkombination 2 &;u;, die der Ungleichung geniigt:

rm

p2to *

Hf-—f-'f: u || <

2
Beweis: Aus —(17 _&% feLipyax folgt nach Satz 18, daB es eine Linear-

n

kombination X2 «;u; gibt, welche der Abschéitzung geniigt:
1

AM

na

1 dz n
HQ Tz |~y

Daraus folgt: Die Funktion F'(z) = f + Z‘ u verschwindet an den Gren-

zen 0 und =z und besitzt eine zweite stetige Ableitung F"(x), welche der

Ungleichung geniigt: | F'(z) | < lej4¥

- . Dann ist aber Satz 23 an-

n

wendbar, das heilt, es gibt eine Linearkombination X 8,u,, welche der Un-
1

gleichung geniigt:
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n n o Emti M
1P = E gl =||f = E{(— vm 5+ 8w | < T
womit der Satz bewiesen ist.
Satz 2b: Die Funktionen f,Of, @2, ....... , OP-1f @pf  seien alle in
[0, ] definiert und stetig. In den Punkten 0 und m se: Oif =0 fir ¢ =
=0,1,....,p—1,p. Ferner se¢ OPfcLipyx. Dann gibt es eine Linear-

kombination 2 &,u,, welche der Ungleichung geniigt:
1

E?AM

n2p+a

IU-—ZE”H< O<a<l),

Beweis: Die Funktion @?f geniigt den Bedingungen von Satz 18. Also gibt
n

es eine Linearkombination X'«;u,, die der Ungleichung geniigt:
1

1691 — Fau, || < 225
Die Funktion F =f— (— 1)? Z‘ —iz—,— w, erfillt die Bedingungen des eben
bewiesenen Satzes 25. Also gibt es eine Linearkombination Z.' B.u, fir welche
die Abschitzung 1

| F — Z'ﬁ,

gilt. Also ist:

AE*M
“f— {(-— 1)”———-!—.3;] I_W,
womit die Behauptung bewiesen ist.
Aus Satz 25 ergibt sich die

Folgerung: Ist auch noch % Orf definiert und | Zl% Orf| < M, dann gibt

es eine Linearkombination X' &,u; mit
1

AE*M

n2p+l

IIf—Z«S:u;HS

Mit der Benutzung dieser Folgerung erhilt man
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L E AM
| F— 2 g, < 2Ll
1 n
oder:
n AM
1+ 250 — £ pu, | < ZILZIL

n

Die gesuchte Linearkombination ist also X (/3,- — %)ui, die gesuchte Kon-
1 1
stante F ist gleich AZ || Q]| .
2

Fiir das Weitere soll der Differentialoperator L & mit @ bezeichnet

Q da?

werden. Dann gilt der

Satz 24: Die Funktionen f, Of, @%f, ..... , 0P-1f @Pf gseien alle in
[0, =] definiert und stetig. In den Punkten 0 und = sei @'f = 0 fiir v = 0,1,
..,p— 1. Fernersei || ©@7f| < M. Dann gibt es eine Linearkombination

2 &;u,, welche der Ungleichung geniigt:
1

Er M

N3P

I1f = 2 || <

Beweis: Nach Satz 23 ist die Behauptung offenbar richtig fir p = 1. Wir
nehmen an, der Satz sei schon bewiesen fiir p = m. Wir zeigen, daf er dann
auch fir p = m 4 1 gilt. Die Ungleichung || @™f || < M 148t sich in der
Form schreiben: || @(O™f) || < M. Aus Satz 23 folgt, dafl es eine Linear-

kombination X«,u,; gibt, die der Ungleichung geniigt:
1

EM

H@W~§% <=3

Die Funktion F = f — (—1)™

Am
fir p = m. Nach Induktlonsvoraussetzung existiert eine Linearkombination

X B,u;, welche der Ungleichung geniigt:
1

| F— Zﬂ.

OnF || .
Wegen
% EM
1OmF || = 1| 6mf — Zacu || < =5

folgt daraus:
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Satz 26: Erfillen f,Of, ..... , O?f die Bedingungen von Satz 24, ist
d d n
c_Z_sE@pf =0 in [0, n] und C77—0@I’]‘eLipMoc, (0<a<<1), soexistiert X &E,u, mit
1
n ErPABM
||f—12§t’“¢|| S —prira

Der Beweis ergibt sich auf véllig analoge Art wie derjenige von Satz 24.

8. Eine spezielle Approximationsklasse

a) Bekanntlich gilt folgender Satz: Ist f(x) 2n-periodisch und E,(f) < A¢*,
wo A eine nur von f abhingige Konstante und ¢ < 1 ist, so ist f(x) ana-
lytisch. Umgekehrt findet man zu jeder 2n-periodischen, analytischen Funk-
tion eine Konstante 4 wund eine Konstante ¢ <1, so daBl E,(f) < Ag¢®
ist, ([3]). Dieser Aussage kann man leicht eine andere Fassung geben. Man
kann sagen, dafl sich eine 2n-periodische Funktion f genau dann mit der
Geschwindigkeit 49", g <1, durch trigonometrische Polynome approxi-
mieren lat, wenn es eine Konstante B gibt, so dal}

() 1)1 < Brmm

dx

ist, ([3]), pp- 154). In dieser Form kann der Satz auch auf den Fall STurM-
LiouviLLescher Eigenfunktionen iibertragen werden. Es gilt der

Satz 27: a) Sind die Funktionen f, =1, 0], ...... O0f, 05}, ...im
[0, 7] definiert und ist
1) Orf|,=0,07f|. =0 firalle p
2) und gibt es eine Konstante B so, daf
d
az 91

1 071 1| < B> (2p), | < prngzp+ 1o

fir alle p gilt, so gibt es eine Konstante A und ein ¢ <1, sodaf E;(f) < Ag»
far alle n gilt.
b) Ist umgekehrt B (f) < Aq® mit ¢ <1, sogeniigt f den Bedingungen 1), 2).

Beweis: Der Beweis von b) verlduft gleich wie im Falle trigonometrischer
Funktionen, weshalb er hier nur skizziert werden soll. Sei 8, (z) die =-te
Linearkombination von u,, %z, ..... , u,, fir welche
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W= 8.1l = Ea(f) < Ag™

gilt. Wir bilden f= 8, + 2 (S,,; — 8,), wo 8, von der Form awu, ist.
1
Wir bilden die formale Reihe:

@pSI + Z@p(Sn_H - n) .
1
Auf Grund von Folgerung 1 finden wir:

| 678, | + f’l O?(Spps — Sp) | <ol [ || + 2 K*2(n + 1) || Sy — S, ||
Ne=]
Es ist
‘ 8ptr = Sall Sl Spr — FI + I S — FII < Lg??

mit L——-g{'l——
q

Also ist:
| @28, | + X | 02(8,1 — 8,) | <o A || w || + L X K2 (n + 1)22gntD)
1 n=1
woraus die absolute Konvergenz der Reihe
or8, + 2078, — 8,)

n=1

folgt. Das heiflt: @7} existiert und wird durch die erwéhnte Reihe dargestellt.
Wie in [3], pp. 160 gezeigt wird, existiert zu jedem ¢ < 1 eine Konstante B,,
so daf3 die Ungleichung

2 amgr < Brmm
N=1
fiir alle m besteht. Also ist speziell in unserem Falle:
| @rf| <a«llwll 4 + LE* B (2p)*

woraus leicht die Existenz einer Konstante B, folgt, welche den Ungleichungen
geniigt:
| 67| < B (2p)* .

Dieselben Uberlegungen fithren zu einer Konstanten B,, welche den Un-
gleichungen

| 671] < B+ p+ 1y oo

geniigt. Indem man B = max. (B,, B,;) setzt, erhilt man b).
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Auch der Beweis von a) verlduft parallel zu dem des trigonometrischen
Falles. Durch Verwendung der Bedingung 1) und durch 2p-fache beziehungs-
weise 2p -+ 1-fache partielle Integration gelangt man leicht zu den Formeln:

&, == ff(x)u,,(x)Q(x)dx = (ﬁz:)p f@pj.unde

a, = (—1)»H2 j_n (d; @pf) undz .

ARTL

Jetzt beachte man, da auf Grund der asymptotischen Formeln fiir 4, und
u,, Ungleichungen der Form

n2

<a |lu,]=<bn
An

mit geeigneten Konstanten @ und ¢ bestehen. Unter Verwendung der Be-
dingung 3) erhélt man dann die Abschétzungen:

a» B (2p)»
lan’SWHQun“' 2o

a?tl B2p+l
| @ | < b ——p— (2p + 1)2P4.

Daraus ergibt sich sofort die Existenz einer Konstanten A4,, so daB fiir alle p
die Ungleichungen bestehen:

AP
Ianls ,ng ,pp.

n
Diese letzte Ungleichung soll benutzt werden, um die Differenz f(z) — X a,u,(x)
nach oben abzuschitzen. Es ist: 1

1 1(2) — Zau (@) || = || Zauw(@) || < Z | ag| M,
1 n+1 n+41

wo || u, || <M ist. Wie aber in [3], pp. 1568 gezeigt wird, folgt aus der Un-
gleichung:

Y 4
00| <8 pw

die Existenz einer Konstanten A und einer Konstanten ¢ < 1, so dafB:

Zla | < Ag®

n+l

gilt, womit auch die Aussage a) bewiesen ist.
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b) Fiir das Weitere sollen die mit Eigenfunktionen verkniipften Approxi-
mationsfragen verlassen werden. Es sollen unendliche Reihen untersucht
1 d2
s a raen RASAE
stehen (sogenannten Quasiableitungen im Sinne von NEUMARK). Entsprechend
kann man diese Reihen als Quasipotenzreihen bezeichnen. Wir betrachten
Funktionen, welche der Bedingung 2) von Satz 27 geniigen. Es gilt der

werden, die in engem Zusammenhang mit den Operationen )

Satz 28: Geniigt f(x) in [a,b] der Bedingung 2), so gibt es ein d > 0,
so daB

z &,
f(x) = fly) + (x — y)f (y) + !5@(51)d§1d§2'@f ly +
vy (10)

+ ff’Q(EI) (& — y)dé&,dé&,- zdg@f l, +
vy

fir |2 —y|<d ist. Die Reihe konvergiert absolut und gleichmiBig fiir
lz —yl<d.
Beweis: Wir gehen aus von der Identitit

z &
f@)=f@+ @ —9f @)+ []f)dsdé,

die wir in der Form
(@) =fly) + (= —yf(y -I-HQS) Of-dsdé

schreiben kénnen. Indem man in dieser Glelchung f(x) der Reihe nach durch
Of, 62f, ...... ersetzt, erhilt man eine Folge von Gleichungen der Form:

() Of1, = O] |, + (= — y) 5 O°1 |, + .f f Q(s)- O] |, dsdé

(n=0,1,...). Ersetzen wir in der O-ten Gleichung ©f durch die rechte
Seite von Gleichung 1), im Resultat ©*f durch die rechte Seite von Gleichung
2), usw., so gelangen wir nach dem n-ten Iterationsschritt zu einer Gleichung
der Form:

z &
f(@)=fy) + (@ —9f @) + [ §Q&)dEdE,- OF |y +

+fyf’@(5l)(§1 — Y)dsdEy 5 O |y +

g
'

’é-..{?st,...dssn'@nflwfj@...fjms,—y)dsl A 3 O,

-+
[l

<

Ents

z &
+(Q....[fQ-OmfdE, .... dE,,.
v v
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Aus Bedingung 2) folgt, daBl der Grenziibergang n — & erlaubt ist, woraus
man die angekiindigte Entwicklung erhilt. Aus 2) folgt auch leicht die Existenz
einer Zahl d, welche den Bedingungen des Satzes geniigt. Wir bemerken, daf3
von diesem Satz auch die Umkehrung gilt.

Satz 29: f(x) sei in [a,b] definiert. Zu jedem Punkt y existiere ein
d(y) > 0, so daf}

x &,

f(x) = ay(y) + a,(¥)(x — y) + 5[Q(51)d51d52'a2(y) -+

+ o) [ Q)€ — sty S @f 1+ .

4
gilt fir | — y | < d(y). Dann geniigt f(z) der Bedingung 2), und es ist

d
@nf |v = Qg (y) EE' @nf Iv = a2n+1 (y) .

Der Beweis dieses Satzes erfordert nur Routineabschéitzungen und soll des-
halb weggelassen werden.
Die beiden Sitze 28 und 29 werden im nichsten, letzten Abschnitt Ver-

wendung finden.

9. Ein Zusammenhang mit den pseudoanalytischen Funktionen

An dieser Stelle sei auf einen Zusammenhang hingewiesen, dessen detail-
lierte Erorterung hier der umstédndlichen Rechnungen wegen zu weit fithren
wiirde. Es handelt sich um die Beziehung, die zwischen der eben eingefiihrten
Approximationsklasse und einer speziellen Klasse der von L. BErs ([5] pp. 67,
[6]) eingefiihrten pseudoanalytischen Funktionen besteht. Um diesen Zusammen-
hang geeignet beschreiben zu kénnen, wiahlen wir mit Vorteil die Darstellung
von A. KriszTEN ([7], p. 6). Man geht aus von einem System partieller Diffe-

rentialgleichungen:
1

TQw

Jeder Vektor w = (u(x,y),v(x,y)), dessen Komponenten diesen Glei-
chungen geniigen, bezeichnet man als eine zu diesem System gehorige pseudo-
analytische Funktion (Vektorfunktion). Man fiihrt zwei Matrizen 4 und B
ein, die wie folgt definiert sind:

=" o4 o) 2=(o 1)

U, = Uy = VU,
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([7]). Man setzt: dZ = Bdx 4+ Ady und ordnet jeder pseudoanalytischen
Funktion eine X-Ableitung zu,

dza)

(=(9) G =B 0, + A0, = Bro, = 40,
z

Die X-Ableitung ist richtungsunabhéngig und fiihrt (in unserem speziellen Fall)
pseudoanalytische Funktionen wieder in solche iiber. Schlieflich fiithrt man
eine Art formaler Potenzen ein;

1 0O Ty
70 — f — ( ) ZM (x,y | 2, Yo) = | AZZ™V
0 1 Ze,Ye
Diese Schreibweise ist gerechtfertigt, da in ([7]) gezeigt wird, da8 die Inte-
gration vom Weg unabhéngig ist. Ist ¢®) = («,,, #,) eine Folge von Vektoren,
n=20,1,2,.., so kann man die formale Potenzreihe

Z'Z(’n)(x’ y l xo, yo)a(n)
0

betrachten. In ([5]) wird nun gezeigt: Konvergiert diese Reihe in einem Punkt
x,y # %y Yo 80 konvergiert sie in einer ganzen Umgebung von =z, ¥,.
Die dargestellte Vektorfunktion ist dann eine pseudoanalytische Funktion W,
und es gilt:

dn T

(dg2)”

Dieser Formalismus lé8t sich nun auf Funktionen anwenden, die den Be-
dingungen 1), 2) von Satz 2 geniigen. f(y) sei eine in 0 <y < xn definierte
Funktion, die 1) und 2) erfiillt. Man bilde die formale Reihe:

2z™0,y]0,y)a",
0

WO

a™) = (6f1,,, 0) @ = (3267 ., 0)

gesetzt wurde. Eine elementare Rechnung, die hier ihrer Linge wegen weg-
gelassen werden soll, zeigt, daB das Resultat von der Form (%, 0) ist, wobei

u(0,9) =
fot @ =90 fln+ Of1u,{f Qeldsd + 77 01 1, §{ Qo) — o)

o Ve Ve Vo

ist. Aus 31 folgt: u(y, 0) = f(y). Wie oben erwihnt, folgt dann, daB es eine
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ganze Umgebung des Punktes (0, y,) gibt, in welcher die Reihe

27" (x,y|0,y0)a™
0

konvergiert und daB sie in dieser Umgebung eine pseudoanalytische Funktion
darstellt. Daraus folgt, daf diejenigen Funktionen f, die sich mit der Geschuwindig-
keit Aq™,q<1 durch Linearkombinationen STURM-LIOUVILLEscher Eigen-
funktionen approximieren lassen, als pseudoanalytische Funktionen aufgefaft
werden konnen, die eine Fortsetzung ins «Pseudokomplexe» gestatten, womit man
eine gewisse Analogie zum trigonometrischen Fall erzielt hat.

[1]
[2]

[3]
[4]
[5]

(6]
(7

(8]

LITERATURVERZEICHNIS

HiLBERT-COURANT: Methoden der mathematischen Physik, Bd. 1, Springer 1931.
CarrLson E.: Extension of BERNSTEINS Theorem to STUurRM-LiouviLLE Sums. Trans. Amer,
Math. Soc. 26 (1924).

Naranson I. P.: Konstruktive Funktionentheorie. Akademie-Verlag, Berlin, 1955.
AcHIESER N. I.: Vorlesungen iiber Approximationstheorie. Akademie-Verlag Berlin, 1953.
BErs L. and GELBART A.: On a Class of Functions defined by partial differential equations.
Trans. Amer. Math. Soc. §6 (1944).

BERS L.: Theory of pseudoanalytic Functions. New York University, 1953.

KriszTreN A.: Hyperkomplexe und pseudoanalytische Funktionen, Comment. Math. Helv.
26 (1952).

BieBERBACH L.: Theorie der Differentialgleichungen.

(Eingegangen, 22. August 1961)



	Approximation von Funktionen durch Linearkombinationen von Eigenfunktionen STURM-LIOUVILLEscher Differentialgleichungen.

