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Ûber die Integrierbarkeit von Systemen partieller, nicht-

lînearer Differentialgleichungen erster Ordnung

von Gxjido Bachli

In den letzten Jahren wies Herr Professor Nevanunna in Vorlesungen und
Publikationen auf die Vorzûge der absoluten Infinitesimalrechnung hin und
behandelte unter anderen auch Fragen aus der Théorie der Differentialgleichungen

in dieser absoluten Betrachtungsweise. So wurden in [3], [4] die Nor-
malsysteme untersucht und in [3], [5], [6] die linearen Système partieller
Differentialgleichungen erster Ordnung, die als allgemeine lineare Differentialgleichungen

dy A (x) y dx auftreten.
F. und R. Nevanlinna fuhrten in [3] den Existenzbeweis fur das Intégral

der linearen Differentialgleichung nach zwei verschiedenen Methoden durch.
Die zweite Méthode, angeregt durch eine Beweisidee von Goubsat und eine

verallgemeinerte Définition des Operators R(x) benûtzend, fordert weniger
Voraussetzungen, als frtiher bei der Behandlung dieser Frage benôtigt wurden.

AnschlieBend wird dort die Frage aufgeworfen, ob auch die Integrabilitât
der allgemeinen Differentialgleichung dy f(x,y)dx nach der GotJBSATschen
Méthode und mit einer erweiterten Définition der Form B(x,y)hk untersucht

werden kônne. Die vorliegende Arbeit bringt nun die Losung dièses
Problems unter den entsprechend schwachen Voraussetzungen wie im linearen
Fall, die auch hier geringer sind als die frûher benôtigten. Zudem sind x und y
als Elemente zweier BANACH-Râume angenommen.

Integriert man die allgemeine Differentialgleichung lângs eines orientierten
Polygonzuges l> so bezeichnet y Tt(y0) den Endwert des Intégrais, der
auBer von l auch vom Anfangswert y0 abh&ngt. Im speziellen FaU der linearen
Differentialgleichung, in dem die Tx lineare, auf y0 wirkende Operatoren sind,
erwies es sich als nûtzMch, die wesentlichen Teile des Existenzbeweises mit
Hilfe dieser Operatoren durchzufûhren. Mit derselben linearen Operatoren-
menge lâBt sich dann auch, wie in [1] gezeigt wird, die Théorie der Parallel-
verschiebung auf einer differenzierbaren Mannigfaltigkeit in einfacher Art
darstellen.

In der vorliegenden Arbeit treten die T%{y) noch selbst&ndiger auf. Zunâchst
wird, ganz unabhângig von der Differentialgleichung, eine Operatorenmenge
{Tt(y)} definiert. Das Hauptproblem, das sich fur dièse T%(y) stellt, ist die
Angabe hinreichender Bedïagungen dafûr, daB sie nicht vom Verlauf der
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Wege l, sondern nur von ihren Anfangs- und Endpunkten abhângen. Wegen
der Nichtlinearitàt der Tt(y) fallt dièse Untersuchung komplizierter aus als

im linearen Fall.
Erst im zweiten Paragraphen folgt die Behandlung der Differentialgleichung

dy — f(x,y) dx, in der die allgemein hergeleiteten Ergebnisse des ersten
Paragraphen wesentlich verwendet werden.

§ I Die Operatoren T% und Ul

1. Definitionen von T% und U%. R™ und R% bezeichnen zwei lineare Ràume
von reeller Struktur, die mit einer BANACH-Metrik versehen sind. m fj oo und
n ^ oo sind die Dimensionen und x und y die Vektoren dieser beiden Râume.

Wir beschrânken uns im folgenden auf die zwei abgesehlossenen Gebiete
Ox C R™ und Gy c R1^ und besehâftigen uns mit einer Menge von Abbildun-
gen {Tt} von Oy in sich. Die T^y) sind also Vektoren in Oy und hângen von
y €Oy und dem in Ox liegenden orientierten Polygonzug l ab (spâter meist
als «Weg l» bezeichnet).

Fur dièse Menge {Tt(y)} fordern wir die folgenden sechs Postulate.

1°. Sind II und l% zwei aneinanderhângende Wege, etwa 1^ xxx2 (das soll
bedeuten: ^ beginnt in xt und endet in #2), Z2 #2#3> un(i ihr Produktweg
l=,l1ll==XlX2xZi gehôren ferner Tk(y) und Tlt(Tl%(y)) =Tl%Th{y) zur be-
traehteten Menge, dann gehôrt auch Tt(y) dazu, und es ist Tl$Tti(y) Tt(y).

Existiert umgekehrt eine Abbildung Tt(y) fur den Weg l xtxs, und hat
man den Weg l dureh einen beliebigen Punkt x2 € l in zwei aneinanderhângende

Wegstûeke lx x1x2, h — X2xz unterteilt, dann lâBt sieh T%(y)

folgendermaBen mit zwei Abbildungen aus der Menge {Tt(y)} ausdrûcken:

2°. Wenn Tt(y) ein Elément der Menge {Tt(y)} ist, dann ist auch T^x(y)
ein solches, wobei l~x den reziproken, umorientierten Weg zu l bezeichnet,
und es besteht die Beziehung T^x Tt(y) y oder T^x Tl I. Unter /
verstehen wir die identische Transformation des Raumes R".

Diesen beiden gruppentheoretischen Eigenschaften folgen zwei metrische

Forderungen, zu deren Formulierung wir den Operator Ul Tt — I ein-
fûhren.

3°. Es gibt ein y0 in Oy und eine positive Zahl N so, daB fur aile Tt(y0),
deren Wege l von endlicher Lange sind, die Ungleichung

gilt.
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4°. Palis fur denselben Weg l (mit \l\ ^ a < oo) die beiden Abbildungen
U^y^ und Ut(y2) existieren, so besteht die erweiterte LiPSCHiTZ-Bedingung

\Ul(y1)-Ul(yi)\ ^\yx-yt\'\l\'C.
Die Konstante G hângt von a ab. Wir wollen annehmen, a sei so groB gewàhlt,
daB aile in dieser Arbeit vorkommenden endlichen Weglângen | l \ unter dieser
Sehranke liegen.

Zum SchluB folgen noch zwei Postulate, die liber die Existenz der Tl(y)
genauere Angaben machen:

5°. Zu jedem (x,y) aus Gx X Gy gibt es mindestens eine positive Zahl
Q(%,y), so daB fur aile in x beginnenden, durch q beschrânkten Polygonziige l:
\l\ fg q(x, y) die Abbildungen Tx(y) existieren.

Daraus folgert man sofort, daB es fur einen Punkt (x,y) unendlich viele
Q(x> y) gibt, denn mindestens aile Zahlen, die kleiner als dièses eine q(x, y)
sind, bilden ^-Zahlen.

Wir definieren oc(x,y) sup^(a;, y) und fordern fur dièse Zahl:

6°. Fur aile (xi9 yt) € (Gx X Gv) (t 1, 2) gilt
I oc(x1, yx) - <x(a?a, y2) \ ^ max {\xt - x2 \, | yx - y21}

Mit Hilfe des Postulâtes 4° lâBt sich beweisen, daB die in 3° geforderte Un-
gleiehung nicht nur fur einen Punkt y0 aus Gy, sondern fur aile y € Gy besteht :

Fur ein beliebiges y eGy ist

Ul{y) Utfa) + (U%(y) - Utfa))
\TJx<y) | ^\Ul{y,)\ + \Ul(y)-Ul{y,)\

und mit 3° und4°:

\Ul{y)\ ^N-\l\ + \y-yQ\.\l\-C \l\-{N + \y~y0\-C}.
Ist rj die Lange der grôBtmôglichen Strecke in Gy, ergibt die Einfûhrung der
Konstanten M N + rjC die Verallgemeinerung von 3°:

\UM\ £M-\l\. (1.1)

2. Ein Satz ûber Uy 0 Wir wenden uns nun einem Satz zu, der eine hin-
reichende Bedingung dafûr angibt, daB TJl (und damit auch Tt) nur vom An-
fangs- und Endpunkt des Weges l, nicht aber vom ûbrigen Verlauf des Weges
abhângt.

Zum Beweis dièses Satzes wâhlt man als Weg speziell den orientierten Rand
y eines Dreiecks s in Gx. Die orientierte Flâche A des Dreiecks s (x0, xx, x2)
bestimmt man mit einer reellen, nicht ausgearteten alternierenden Grundform
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D der von s aufgespannten Ebene E. Setzt man h xx — x0, k #a — #o >

so ist J D A & Die Flâche ist somit ganz unabhângig von der Banach-
Metrik.

Satz 1. Fur jeden Punkt xeOm und fur jede Ebene E durch x sei bei reçu-
lârer Konvergenz1) des den Punkt x enthaltenden Dreiecks s in der Ebene E
gegen x

£- 0, (2.1)

wobei y den orientierten Band und A die Flàche des Dreiecks bezeichnen.

Unter diesen Voraussetzungen ist Uy (y0) 0 filr jedes y0 ans Oy und fur
jedes Dreieck s0 so(xo> xXi x2) in Om mit dem Band yQ ds0 x0 xx x2 xQ

dessen grôfite Seitenlànge fi beschrànkt ist durch

fi (2.2)

wo /4

Wir

4M) bedeutet.

Beweis. Wir bezeichnen die Mitte der
Dreiecksseite xxx2 mit #J. Dann unter-
teilt die Seitenhalbierende l0 xoxl
das gegebene Dreieck s0 in zwei Teil-
dreiecke st und s'x> deren Flâchen gleich
sind. Wir benennen dièse Flâchen Ax,
und es gilt A 2-Ax.

Die Rânder der beiden Teildreiecke
werden durch yx dst oi^xoxxXQ\m.d

y\ ds[ 0CqX2 xq a% im gleichen Dreh-
sinn orientiert und ihre Randlângen mit
ôx und ô[ bezeichnet.

Zur Vereinfachung benûtzen wir fur
UYi die Schreibweise Uu ebenso sînd

U*lr Ty Tlf Ty't T[ und spâter entsprechend Uyi U{ usw.
untersuchen die Beziehung

deren Existenz zuerst noch gezeigt werden muû.

1) Von einer regulàren Konvergenz eines Dreiecks s spricht man dann, wenn der Ausdruck
| Bs I1 / A xinterhalb einer festen Grenze bleibt, wobei | ds \ die Lange des Dreiecksrandes
bezeichnet. Geometrisch bedeutet dies, daû keiner der Dreieckswinkel beliebig stark verkleinert
werden darf
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Die Weglânge | l0 |, die ja kleiner ist als {}, ist nach der Voraussetzung (2.2.)
kleiner als oc(xOiyo). Daher existiert Tlt(y0) und somit auch T tTl9(y0)

y0. Die daran anschliefiende Abbildung T-t(y0) fur l x0xtx2x0xl (dièse

Punkte bezeichnen die Anfangs-, Eck- und Endpunkte des Polygonzuges l)
besteht wegen 111 < 4/? und, wie wieder aus (2.2) folgt, 4/? <£ oc(xQf y0). Die
letzte Etappe lângs Iq1 làfit sich wiederum nach dem Postulat 2e durchfuhren.

Wir schreiben (2.3) in der Form

oder

TY,(y0) (/ + Uirl) (I + V\) (yi

wo yx y0 + Ulo(yo) gesetzt ist. Bezeichnet man

y'i yi+ Ux(yx), yl y[ + U

so wird daraus

oder

vr. (y.) ^/. ta.) + ^ (yi) + u[ (jf[) + uirl {£). (2.4)

Zur Abschâtzung dieser Beziehung wollen wir nun schrittweise die y-Argu-
mente vereinheitlichen. Dies geschieht mit Hilfe des Postulâtes 4°, das hier
in der Form Ut(y) Ut(y) + | y — y | • | l \ • <C> verwendet wird, wobei <(7>
einen Vektor bezeichnet, dessen Absolutwert nicht grôBer ist als C. So erhàlt
man aus den einzelnen Gliedern der rechten Seite von (2.4):

h\-<c>

und zusammengefaBt, wenn man als Restglieder aile diejenigen bezeichnet, die
den Vektor <C> enthalten :

Uy.to.) Uh(y0) + U&J + U't(yt) + U^fa) + RestgUedar.

Hier fallen wegen

0 Ti-iTh &•) -y» (*Vi + J) lUi.to*) + Vo) ~ Vo C^-ifoi) + V
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zwei Glieder weg, und so bleiben noch

UYo(Vo) Ux{yi) + U[(yi) + Restglieder.

Ohne Einschrânkung der Allgemeinheit kônnen wir annehmen, | U1(y1)
sei die grôBere der beiden Normen | U1 (yt) | | U[ (yx) | und ebenso

Dann ist

Somit gilt
\Uy

oder, weil A 2 • A1 ist,

A -
3C

wo —5— D gesetzt ist.

Im nâchsten Schritt teilt man das Dreieck st durch die Seitenhalbierende
Zj qcqzI in zwei Teildreiecke s2 und s2 mit den Flâchen A2 AJ2 und
schâtzt dann U1(y-^ genau gleich ab wie vorhin Uyo(yo). Der Nachweis,
daB die dabei auftretenden Operatoren T existieren, folgt in Abschnitt 3.

Als Ergebnis erhâlt man

Ax ^ A, e »

worin y% T^yJ T^y^) bedeutet.

Dièses Verfahren lâBt sich unbeschrânkt wiederholen an der Folge der
ineinandergeschachtelten Dreiecke sQ 3 8X 3 g2 z> d sn • • • Man ge-
langt so mit

y* ^«-i^-i)= T«»-i «»-2 • • • Hi,(y«)

zur Ungleichung

Zur Abschâtzung des Exponenten untersuchen wir die Folge <$0 | y0 \, <5X,

ât9 dZi.. Da beim Dreieck % mindestens eine Seite, bei «a mindestens zwei
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Seiten und bei ss aile drei Seiten nicht grôBer als die Hâlfte der grôBten Seite

von s0 sind, gilt

3p ^ Ôq !> (5^ ]> $2 und

-^ > ô -^ ^:ô

Folglich ist

n oo oo oo «/%
£a Oj *-^~| jL* G* rS» o • jLé Q'ki ^^ à £•< ——— — JL op
1 1 i-0 i-0 2*

und

l^nCyp)! <; l^(yn)l 18fljD
J - A

e

Da fur unbegrenzt waehsendes n die grôBte Seite von sn gegen Null strebt,
existiert ein wohlbestimmter Grenzpunkt x e sn, gegen welchen die Dreiecks-
folge s0 3 8X 3 s2 3 regulâr konvergiert. Der Grenzwert der rechten
Seite der obenstehenden Ungleiehung ist nach der Voraussetzung (2.1) Null,
und daher ist

bewiesen.

3. Um die Existenz derjenigen Operatoren T nachweisen zu kônnen, die in
den Beweisen an den ineinandergeschachtelten Dreiecken sn vorkommen,
muB zuerst das Verhalten der GrôBen | ln \ und | y0 — yn \ bei wachsendem

n untersucht werden.
Errichtet man im Dreieck sn von xnQ aus die Seitenhalbierende ln und daran

anschlieBend die Seitenhalbierende Zn+1, so erkennt man, daB ln+1 halb so lang
ist wie die zu Zn+1 parallèle Seite von 8n. Mit der bei der Abschâtzung der ôn ge-
machten Bemerkung ûber die Halbierung der Dreiecksseiten folgert man

K| £fi, max (KIJ^M^I) ^4' maxd*4l, \h\, \k\)&
B

max (|Z7|, |Z8|, |Z9| ^-g-, usw.

Weiter ist
n-l oo

Z\lt\ £Z\lt\ ^jfi
0 0

z-L
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Die Addition der n Gleichungen

ergibt

und mit (1.1)

\yn-y*\ &£M-\it\ ^±Mp.
o

Wir wenden uns nun denjenigen Operatoren zu, die zur Abschâtzung von
Un(yn) fur n ^ 1 gebraucht werden. Von x% aus wird lângs der Seitenhalbie-
renden ln die Abbildung Tln(yn) gebildet, dann kehrt man lângs Z~* zurûck

(dièse zweite Abbildung existiert nach
x% 2°, sobald Tln(yn) besteht). Von hier

aus, nach 2° wieder mit yn beginnend,
gleitet man lângs des gesamten Randes

von 8n und anschlieBend lângs ln nach

Tln{yn) {ln
Der letzte Teil besteht im Zuruckkehren
làngs l~l

Zu beweisen ist also die Existenz von
Tj3i%) und Tln(yn)

Da die beiden Wege ln, ln in x" be-

ginnen, und da beide Mâle yn abgebildet
®Q wird, ist hier <x(a%, yn) entscheidend

fur den Existenzbeweis.
Nach 6° ist <x(x%,yn) ^<x(x09 y0) - max { |a£ - xQ \ | yn - y0 |}

Das erste Glied der rechten Seite ist nach der Voraussetzung (2,2) nicht kleiner
als (3 + /*) P. Das letzte Glied kann man wegen | a?J — x0 | ^ ^
\ Vn — Vo I ^ 4 Jf j8 durch p^p (t- [max (1, 4 Jf)] ersetzen. Daher ist
««, Vn) ^ (3 + /*) P - /i /î und schlieBlich a(^, yj^3p.

Da keiner der beiden betrachteten Wege Ztt und ln fur w ^ 1 langer als
3 /ï ist, existieren Tln(yn) und ^(y^,) sicher.
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§ II Die allgemeine Differentialgleichung erster Ordnung

4. Die Differentialgleichung. B% und B% sind wiederum zwei lineare R&ume
ûber reellem Multiplikatorenbereich mit den Dimensionen m <J oo und
n ^ oo die eine vollstândige BANACH-Metrik besitzen. Der lineare Operator
f(x,y), der fur ein gewisses abgeschlossenes Gebiet Om X Ov des Produkt-
raumes JR£ x B^ definiert sei, bilde die Vektoren des Raumes B% in den
Raum JKJ ab.

Wir beschâftigen uns nun mit der Differentialgleichung

dy f(x,y)dx> (4.1)

in der y y(x) die zu bestimmende Vektorfunktion ist und untersuchen,
unter welchen Bedingungen die Differentialgleichung vollstândig integrierbar
ist. (Man nennt die Differentialgleichung in Om X Ov vollstândig integrierbar,
wenn fur jeden Punkt (xo,yo) aus diesem Gebiet eine Lôsung y y(x)
der Differentialgleichung in einer Umgebung von x0 existiert, die den Anfangs-
wert y(x0) y0 annimmt.)

Falls R% und jRJJ endlichdimensionale Baume der Dimensionen m und n
sind, ergibt sich nach Einfuhrung von zwei Basissystemen und den Koordi-
naten f&, rj* ein zu (4.1) âquivalentes System

_ fiiti *'
also ein System von n-m partiellen Differentialgleichungen erster Ordnung
mit den n unbekannten Funktionen

5. Toraussetzungen and Intégration der Normalsysteme. Fur die Differentialgleichung

dy f(x,y)dx sollen die folgenden Voraussetzungen gelten:

A. Die Operatorfunktion f(x,y) ist stetig fur x €0x,y eOv und 80 6e-

schrânkt, dafi | f(x, y)\ ^ 1.

B. Die Lipschitz-Bedingung

(K œnst.) ist erfittU fur yi€Gv(i=l, 2) und x*Gm.

Die Wahl der Beschrânktheitskonstante 1 bedeutet keine Einschrânkung
der AUgemeinheit. Wâre nâmlich f(x9y) durch M beschrânkt, \f(x9y)\ <£ M,
kônnte man in B% eine neue Metrik einfûhren, durch Division aller nach der
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ursprûnglichen Metrik gemessenen Lângen durch M und erhielte so

\f(x,y)\ ^ 1. Die Voraussetzung B bliebe bei der Einfuhrung dieser neuen
Metrik bestehen ohne Ânderung der Konstanten K.

Dièse Voraussetzungen sind hinreiehend dafûr, daB unsere Difïerentialglei-
chung lângs einer Strecke t x0 + r(xx — x0) (0 ^ t ^ 1) als Normal-
system dy f(t,y(t)) dt mit dem Anfangswert y(x0) y0 integrierbarist, falls
xr die Ungleichung | xx — x0 \ ^,oc(xo,yo) erfiillt und xOi yQ innere Punkte
von OX9 Oy sind2). Die positive réelle Zahl oc(xo, y0) bestimmt man, wie in
der Théorie der Normalsysteme gezeigt wird, auf folgende Weise : In Gy legt
man eine môglichst groBe Kugel um den Anfangswert y0, \ y — y0 \ ^ry(y0)
(y « Oy). Ebenso wâhlt man um x0 eine maximale Kugel in Ox,
\ x — xo\ und definiert

min y(y0)} (5.1)

Fur den Lôsungsvektor y (x) gilt dann | y(x) — yQ \ ^ ry(y0)
Wir beschâftigen uns nun mit der

Frage, wie sich die Zahl oc bei einer
Ânderung der Anfangswerte verhâlt
und wâhlen dazu ein neues Paar xx, yx
mit der vorlâufîgen Einschrànkung

(5.2)

12/x — 2/o I ^rv(y
Der Figur entnimmt man

- | x0 -
und ebenso

ry(yx) ^ - \ y0 -
Daraus folgt naeh der Définition (5.1) von ot{xl9 yx)

<x(xx, yx) ^ mm{rx{xQ) - \ x0 - x1 \ ry(y0) - | y0 -
daher ist

— I «o — ail» *(#o>^0) - l^o— Vi l}>

ko -«ihlya-yil}' (5-3)

*) Die Methoden, die in [3] bei der Behandlung der Normalsysteme angewandt wurden,lassen
sich unvertodert auf den Fall ûbertragen, wo Bv ein vollstândiger BANACH-Raum ist. Unter
dieser allgemeinen Voraussetzung wird die Normalgleichung in [2], Seiten 13/14, untersucht.
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Dièse Ungleichung ist auch richtig, wenn die Bedingungen (5.2) nicht erfullt
sind, weil in diesem Fall die rechte Seite von (5.3) einen negativen, die linke
nach Définition einen positiven Wert darstellt. Wir lassen daher die Einsehrân-
kung (5.2) fallen.

Neben

*(xo> Vo) ~ *(3i, Vi) ^ max {| x0 - x1 | \yn—y1\)
mu6 nach denselben Ùberlegungen auch

*(*i> &) - *(«o> 2/o) ^ niax {| x0 - x1 | \yQ-Vi\}
gelten, woraus

| x0 - xl |, | y0 -^1} (5.4)

folgt.
Unsere Differentialgleichung kann lângs jedem von x0 ausgehenden Polygon-

zuge l als Normalsystem mit dem Anfangswert y(x0) y0 integriert werden,
wenn \l\ ^ <x(x0, y0). Um dies zu zeigen, zerlegt man l in seine Teilstrecken
l lk l2 lx l0 und fûhrt den Beweis mit vollstândiger Induktion :

Zunâchst ist die Intégration lângs l0 xQxx moglich, da ja
| lo\ < | l\^,ot(xo,yo) ist.

Wir nehmen nun an, die Intégration sei lângs li_1. lx lQ (1 5j i ^ k)
durchfûhrbar und behaupten, daB sie es auch lângs der anschlieBenden Strecke

lt sei. lt beginne in xi9 und es sei y{xt) yt. Man setzt die Beziehungen

l^-a^i £%z\is\ | y* — yo I I J f(x,y)d*\£%z\h\

in
*{xi9 y{) ^ oc(xOi y0) - max { | xt - x0 \ \ y{ - y0 |}

ein:

*{Xi,yi) ^<x(xo,yo) — ^ I ^ i • (5.5)
o

Die Intégration làngs l{ ist moglich, wenn | lt | ^ #(#e., ^), also nach (5.5)
sicher dann, wenn

i-l i
«(«o.ya)-^l«/l ^Hl oder ^(^o^o) ^Z\h\ •

0 0

Dièse letzte Ungleichung jedoch ist wegen oc(xo, y0) ^\l\ erfullt.
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6. Eindeutigkeit der Losung. Falls die Differentialgleichung (4.1) ùberhaupt
eine Losung y(x) mit dem Anfangswert y(x0) y0 besitzt, so ist sie ein-
deutig. Verbindet man nâmlich einen beliebigen Punkt xx aus Ox mit x0 durch
die Strecke t x1 + r(x0 — xt) (0 ^ t ^ 1), so geht die Differentialglei-
chung auf dieser Strecke in eine Normalgleichung dy f(t,y)dt ûber, deren
Losung unter den voranstehenden Voraussetzungen bekanntlich eindeutig ist.
Es gibt daher nur einen Vektor y(x^), von dem aus man nach Intégration
lângs der erwâhnten Strecke in xQ den vorgeschriebenen Anfangsvektor y0
erreicht.

7. Die Operatoren T% und Ul. Nun soll der Zusammenhang zwischen der
vorgelegten Differentialgleichung und den im ersten Paragraphen betrachteten
Operatoren T% und Ul hergestellt werden.

l sei ein von x9 nach a^ fûhrender, orientierter Polygonzug im Gebiet Ox.
Làngs l geht die Differentialgleichung in eine Normalgleichung ûber. Integriert
man dièse, so stelle y0 y(x0) den Anfangswert und yx y(xt) den End-
wert dar. Der Endwert yx wird, als Funktion des Anfangswertes y0, als Tt(y0)
definiert :

Vi Vo + / dy(x) y0 + J f(x, y) dx Tt(y0)
i i

Weiter bezeichnet

-^yQ^ §dy
i

den Zuwachs der Losung y(x) lângs des Weges Z.

Die soeben festgelegten Operatoren Ut und T% erfûllen die im ersten Ab-
schnitt aufgestellten Postulate 1° bis 6°. 1° und 2° folgen aus der Eindeutigkeit
der Losung y(x) des Normalsystems.

3° ist erfûÙt wegen der Beschrânktheit des Operators f(xty):

\Ul(y)\-\lf(x,y)dx\ £j|rf*|«|l|.i i
womit gleich die allgemeinere Form (1.1) mit M 1 hergeleitet ist.

Um die Gûltigkeit von 4° zu zeigen, betrachten wir die Ungleichung

^ J i t(x, Tlx{yi)) - f(x9 Thfà) \\dx\9
in der lm dasjenige Teilstûck des Weges l bezeichnet, das vom Anfang von l
bis zum beliebigen Punkt x auf l fûhrt. Mit der LiPSCHiTZ-Bedingung wird
daraus
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Beim nâchsten Schritt brauchen wir eine Ungleichung aus der Théorie der
Normalsysteme, die eine Aussage macht ûber die Abhângigkeit der Lôsung
eines Normalsystems von der Wahl des Anfangswertes, nâmlich3)

| Tt(y) - T&) | £ | „ -7| t»-W (N const.).

Mit ihr erhalten wir

I ff.to) - UM \&SK\ih - £| e"W \dx\.
l

Hier fiihrt man die Konstante C K eNa ein, wobei a die in Abschnitt 1

beim Postulat 4° erwahnte Zahl bezeichnet:

\ul(y1)-ul(i1)\^\y1-^1\ \i\c,
womit die Giiltigkeifc von 4° erwiesen ist.

Wie in Abschnitt 5 gezeigt wurde, sind auch die Postulate 5° und 6° erfûllt,
wobei das durch (5.1) definierte oc genau dem oc aus dem ersten Paragraphen
und (5.4) dem Postulat 6° entsprechen.

8, Die Integrabilitâtsbedingung Uy 0. Nach diesen vorbereitenden Ab-
schnitten wenden wir uns der Frage der Lôsbarkeit unserer Differenfcialglei-
chung zu und beweisen zuerst den

Satz 2. Wenn der Operator f(x,y) die Voraussetzungen A und B des Âb-
schnitts 5 erfûllt und ein beliebiger innerer Punkt (x0, yQ) aus Ox x Oy aïs

Anfangswert fixiert ist, so ist die fur jeden Dreiecksweg y x0x1x2xQ mit
| xi — x0 | ^ oc (x0, yQ) (i 1, 2) geltende Bestimmung

Uy(y0) 0 (8.1)

notwendig und hinreichend dafûr, dafi die Differentialgleichung (4.1) in der

Kugel \x — Xq\ ^oc(xo,yo) eine Lôsung y(x) besitzt mit y(x0) y0 und

Wir nehmen nun an, die Differentialgleichung dy f(x,y) dx sei vollstândig
integrierbar und beweisen die Notwendigkeit der Bedingung. Integriert man,
mit dem Anfangswert y(x0) y0 beginnend, lângs y ^0^^2X0, ist wegen
der Eindeutigkeit der Lôsung Ty (y0) yQ und daher 0 Ty (yQ) — y0 Uy (y0).

Die Bedingxing Uy(y0) 0 ist aber auch hinreichend: Fiir jedes x aus der

Kugel Km : \ x — x0 | ^oc(xO9yo) lâBt sich eindeutig ein y(x) bestimmen,

*) Verglekhe [2], S. 15.



258 Gtjido Bâohli

indem man lângs der Strecke xox die Differentialgleichung - in diesem Fall
ein Normalsystem dy f(t, y(t)) dt (t xo+ r(x — xQ), 0 ^ r ^ 1) - inte-
griert. Man erhâlt y (x) Tx x(yQ) und dies muB die Lôsung der Differential-
gleiehung sein, falls eine solche ûberhaupt existiert.

Es ist daher noch zu beweisen, da6 die Differentialgleichung dy f(x,y)dx
durch y(x) wirklich befriedigt wird. Wir wàhlen dazu zwei beliebige Punkte x
und x + h aus Kœ und berechnen den Ausdruck A y y(x + h) — y(x). Aus
der Définition von y (x) folgt sofort y(x + h) Txx {x+h) (y(x)) und somit
à y ï^u+a) (y (*)) - y (*) ^c+jw (y (*)) •

Nachderlntegrabilitâtsbedingungistaber
woraus sich die Beziehungen

(*)) J

und, wegen der Stetigkeit von /(£, y(^)) fur ^ x

mit | (A; a;) | -> 0 fur | A | -> 0 ergeben, w.z.b.w.

9. Eine weitere Integrabilitâtsbedingung. Satz 1 erlaubt uns, die soeben auf-
gestellte Integrabilitâtsbedingung durch eine andere zu ersetzen, die sich nur
auf das lokale Verhalten des Operators f(x,y) bezieht:

Satz 3. Falls der Operator f(x,y) die Voraussetzungen A und B des Abschnitts 5

erfilllt, so ist es fur die vollstandige Integrabilitât der Differentialgleichung
dy f(x,y) dx notwendig und hinreichend, da/3 fur jedes x c Gx und fur jede

feste Ebene E durch x bei regulûrer Konvergenz des Dreiecks s (mit der Floche A

und dem Rand y ds) in E gegen x € s der Orenzwert von -~- Null betràgt,

Km-^-==0. (9.1)

Sind x0 und y(x0) y0 die innerhalb Gx und Oy beliebig gewâhlten Anfangs-
tverte, so existiert fur jedes x aus

\x-xo\^ "(yo) (9.2)

eine Lomng y y(x) mit \ y(x) — y0 | ^ rt(y9).
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Die Bedingung (9.1) ist sicher notwendig, wie man sofort aus der notwen-
digen Bedingung (8.1) schlieBt.

Umgekehrt wissen wir nach Satz 1 auch, dafi (9.1) hinreichend ist, da ja
daraus die hinreichende Bedingung (8.1) folgt.

(9.2) ergibt sieh folgendermaBen : Aus Satz 1 und der Beziehung M 1

folgt, daB die lângste Dreiecksseite {} von s(x0, xl9 x2) der Ungleichung
P <Loc(xQiyo) I 7 genugen mufi. Dies ist sicher fur jedes Dreieck in der Kugel
mit dem Durchmesser oc(xo,yo) j 7 erfïïllt.

10. Der Operator B. Der Operator f{x9y) erfulle zusâtzlich zu den Voraus-
setzungen A und B noch die weitere Vorausaetzung

C. f(x, y) ist differenzierbar fur x xoi y y0.

Wir werden nun eine neue Darstellung von Uy(y) herleiten und betrachten
dazu das x0 enthaltende Dreieck s s(xlf x2, xz) mit der groBten Seiten-
lânge /?, dem Rand ds y x1x2x3x1 und h x2 — xl9 k xz — xx.

Nach Définition ist

Hier setzt man

/(«, y) /(»o> Vo) + fx(*o, Vo) (» ~ «0) + M*o> Vo) (y - 2/o) + <p{x) (q>(x))

mit [<p(x)]2 | x — x0 |2 + | y — yo I2 un(l I (<p(x)) I "^ ^ f^r 9? -> 0 ein:

x + SfÀxo, Vo) (x ~ x0) dx + $fv(x0,y0) (y - y0) dx

x. (10.1)
Y

Das erste Intégral der rechten Seite ist gleich Null, die ûbrigen werden nun
einzeln weiter umgeformt und die Resultate in (10.3) zusammengetragen.

Nach der Diflerentialformel von Stokes ist das zweite Intégral

J /«(«o» Vo) (x — xo) dx \ {fx(x0, y0) hk - fx{x0, y0) kh} A /«(xo,
y

Im dritten Intégral von (10.1) formt man zuerst den Ausdruck (y (x) — y0)
um. In

y(x)-yo Sf(t,v(t))dt

wird lângs l(x), des positiv orientierten Teilweges xxx von y, integriert. Unter
Berûcksichtigung der Differenzierbarkeit von f(x9y) im Punkt {xo,yo) wird
daraus
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\y(x)-yo\ g\U(x.9yê)dt\ + S\fm(
H*) H*)

+ SIt*i*.*v.)\ |y(«) -yo\ \dt\

Beachtet man, dafi | f(x, y) | <£ 1 ist, und ersetzt man im zweitletzten Sum-
manden den Ausdruck \y(t) — y0 | nochmals durch ein Intégral, dessen Inte-
grationsweg von x^ lângs y bis zu t verlâuft, nâmlich durch

so erhâlt man

| y(x) - y, | ^ | f(x0, y.) (x - *0) | + | /.(«•,%)
+ | /f («b, lf#) I • 9/?2 + J y(<) | (9(t)) I | i« | • (10.2)

Das letzte Glied dieser Ungleichung ist wegen

[<p(t)f \t-xo\* + \ y(t) - y0 |2 ^ ^ + 9/S2j ^w ^
von der Form /32(/î), und man folgert daher aus (10.2), da6

y(x) - y« /(o?0, y0) (x - x0) + fi(p).
Dièses Ergebnis setzt man in das dritte Intégral von (10.1) ein:

— Vfi)àx $fy(xo,yo) f(xOiyo) (x - x0) dx + $fy(xOiyo)p(p)dx,
y y y

und erhâlt daraus nach der STOKESschen Differentialformel4)

J/v(^o, Vo) (V - Vo) dx A {fy(xQiyQ) f(xQ,yQ)hk} + p[p).
y

Das letzte Intégral von (10.1) endlich ist von der Form fP(fï).
Aile soeben hergeleiteten Teilergebnisse fuhren, in (10.1) eingesetzt, zur Be-

ziehung

Uy(y0) R(x9,y0) hk + /?*(,?), (10.3)

wobei

R(xQ, yQ)hk A {/„(*,, yo)hk + f,{x., y0) f(xe, y0) hk } (10.4)

gesetzt ist.
Die Untersuchungen in diesem Abschnitt haben also folgendes Ergebnis

erbraeht:

Satz 4. Der Operctior f(x,y) sei fur dos Getriet Ox x Gv stetig, erfûtte die

IxpscBiTZ-Bedingung B und sei fur (xQ, y9) €OX X Ov differenzierbar.

4) Vergleiche [3], S. 122.
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Wird dann ein den Punkt x0 enthaltendes und ganz in Ox liegendes Dreieck
mit den Ecken xx, x2 xx + h xz xx + k aufgespannt, dessen grô/ïte
Seitenlànge f} ist, so besteht die Beziehung

mit

^(#o> ^o) A* A {fx(*o> Vo) ** + /v(#o> Vo) /(*o>

Dabei bezeichnet (/?) einen Vektor des Baumes B%, dessen Norm fur /? -> 0 gegen
Null konvergiert, y ist der Dreiecksrand, dessen Umlaufssinn durch die Eck-
punktfolge x1x2xBx1 bestimmt ist, und y0 ist der Anjangswert, den die Vektor-
funktion y{x) fur x x0 annimmt.

Es sei hier noeh bemerkt, daB das identische Versehwinden des in (10.4)
definierten Operators B die iibliehe Integrationsbedingung ist, wobei der Ope-
rator f(x,y) fiir jedes (x, y) aus Gx X Ov als stetig difïerenzierbar voraus-
gesetzt wird. Man erhàlt B, indem man in y" hk — y"kh die Ableitung der
rechtenSeitederDifferentialgleichung dy f(x, y) dx oder y'dx f(x,y)dx
einsetzt.

11. Verallgemeinerte Définition von B(xOiyo). Die Formel (10.3) lâBt sieh

umgekehrt zu einer verallgemeinerten Définition des bilinearen Operators
B(xo,yo) verwenden:

Définition: Wenn in einer Umgebung von (x0, y0) ein bilinearer Operator

A(x,y) existiert, so dafl in dieser Umgebung fur jedes den Punkt x0 enthaltende
Dreieck s s {xx, x2, xz) (x2 x1 + h, x3 xx + k) mit der grô/iten Seiten-
lange fi und dem orientierten Dreiecksrand ds y x1xzx3x1 die Beziehung

mit | (fi) | -> 0 fur fi -+ 0 besteht, dann definieren wir:

A(xo,yo) =B(xQ,y0).
Dièse Définition verlangt weniger Voraussetzungen als die ûbliche Définition

(10.4). Wâhrend dort die Differenzierbarkeit des Operators f(x,y) notwendig
ist, wird hier nur die Môglichkeit der Intégration der Differentialgleichung
dy f(x,y) dx lângs Dreiecksrândern verlangt, wozu die Stetigkeit des

Operators f{x,y) und die LiPSOHiTZ-Bedingung hinreichend sind, weil die
Differentialgleichung zu einer Normalgleichung spezialisiert wird.

Sobald f(x,y) fur (xo,yo) aueh differenzierbar ist, ist das naeh Satz 4

dafûr hinreichend, daB der Operator B(x0, yQ) existiert. Er nimmt dann die
in (10.4) aufgestellte explizite Form an und stimmt mit dem nach der allge-

17 CMH vol. 36
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meinen Définition bestimmten R(xo,yo) uberein, da dièses, wie wir gleich
beweisen werden, eindeutig ist.

Palis ein Operator R(xo,yo) allgemeiner Art existiert, ist er eindeutig.
Denn angenommen, es gâbe zwei verschiedene Operatoren, die der verallge-
meinerten Définition entsprechen, etwa R und R, dann wàre

(R(xo,yo) -R(xo,yo)) hk p*(p).

Nach Ersetzung der Vektoren h, k durch Xh, Xk mit variablen A, A (0 < A ^ 1,

0 < A g* 1) und fixierten h, k erhielte man

wobei | (A, A) | gegen Null strebt, wenn auch die Summe A + X gegen Null
konvergiert, und somit

(R(xOiyo) - R(xOt y0)) hk 0

fur jedes Paar h, k> was der Annahme widersprechen wûrde.
Ferner ist der eben definierte Operator R(x0, y0) auch alternierend: Aus

der Définition des Intégrais folgt, daB

bei Umorientierung des Dreiecksweges sein Vorzeichen ândert. Bildet man die
Summe der beiden Gleichungen

Uy(y0) =R(x09y0)hk + pm$),
Uy^(yQ) R(xo,yo)kh +/?2(/S),

so erhâlt man

0 R(xo,yo) hk + R(xo,yo) kh + p*{p).

Hier ersetzt man h und k wiederum durch Xh9Xk mit festen A, k und variablen

A,A(O<A^l,O<A<;i), dividiert dann durch A- A und lâBt die Summe

k + X gegen Null konvergieren. Dem so entstehenden Ergebnis

0 R(xQ, y0) hk + R(x09 y0) kh

entnimmt man sofort, daB R alternierend ist.
Wenn weiter D die réelle alternierende Grundform der von h und k aufge-

spannten Ebene bezeichnet, ist die Darstellung

R(%o, Po) hk q(x09 y0) Dhk
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môglieh, wobei die Dichte q bei festem E nicht von h und k abhângt. Mit Hilfe
der Définition von R schlieBt man, daB q bestimmt ist durch

Q{^,yo;f{x,y);E)= lim

bei regulàrer Konvergenz des Dreiecks s in der Ebene E. Damit lâBt sich die
Integrationsbedingung (9.1) auch so formulieren :

e(#o> 2/o) ° fur jedes E

12. Zusammenfassend ergibt sich der folgende Existenzsatz fur die Losung
der allgemeinen Difïerentialgleichung erster Ordnung:

Satz. Der lineare Operator f(x,y) sei fier ein abgeschlossenes Oebiet Gx X Oy
des Produktraumes R™ x Rny definiert, stetig und erfillle fur aile {x^y^ (i 1,2)
ans diesem Gebiet die Lipschitz-Bedingung

Eine notwendige und hinreichende Bedingung fur die vollstandige Integrierbarkeit
der Differentialgleichung

dy f(x,y)dx
ist folgende :

Der Operator R(x,y) allgemeiner Art existiere fur aile (x, y) c Gx X Gy und
verschwinde hier identisch, dos heijit

R(x,y)hk 0

fur beliebige Vektoren h und k des Raumes R%.

Ist dièse Bedingung erfiillt und der beliebige innere Punkt (x0> y0) aus Gx X Gv

festgelegt, gibt es in der Kugel

x — x0 | s*

eindeutig eine Losung y(x) der Differentialgleichung, die fur xQ den Wert y0
annimmt und in der Kugel

\y(x) -yo\ ^ry(y0)

liegt, wobei a und ry nach der in Abschnitt 5 beschriebenen Art bestimmt werden.

Ist der Operator f(x,y) zusâtzlich noch differenzierbar, ist dos identische Ver-
schwinden des Ausdrucks
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R(z, y) * * A {/.(», y)hk + fy(x, y) f(x, y)hk}
die notwendige und hinreichende Bedingung fur die volUtandige Integrabilitàt
der vorgelegten Differentialgleichung.
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