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Uber die Integrierbarkeit von Systemen partieller, nicht-

linearer Differentialgleichungen erster Ordnung

von Guipo BAcHLI

In den letzten Jahren wies Herr Professor NEVANLINNA in Vorlesungen und
Publikationen auf die Vorziige der absoluten Infinitesimalrechnung hin und
behandelte unter anderen auch Fragen aus der Theorie der Differentialglei-
chungen in dieser absoluten Betrachtungsweise. So wurden in [3], [4] die Nor-
malsysteme untersucht und in [3], [5], [6] die linearen Systeme partieller
Differentialgleichungen erster Ordnung, die als allgemeine lineare Differential-
gleichungen dy = A4 (z) ydx auftreten.

F. und R. NEvANLINNA fiihrten in [3] den Existenzbeweis fiir das Integral
der linearen Differentialgleichung nach zwei verschiedenen Methoden durch.
Die zweite Methode, angeregt durch eine Beweisidee von GOURSAT und eine
verallgemeinerte Definition des Operators R(x) beniitzend, fordert weniger
Voraussetzungen, als frither bei der Behandlung dieser Frage benétigt wurden.

Anschliefend wird dort die Frage aufgeworfen, ob auch die Integrabilitit
der allgemeinen Differentialgleichung dy=f(2, y) d= nach der GoursaTschen
Methode und mit einer erweiterten Definition der Form R(x,y)hk unter-
sucht werden konne. Die vorliegende Arbeit bringt nun die Losung dieses
Problems unter den entsprechend schwachen Voraussetzungen wie im linearen
Fall, die auch hier geringer sind als die frither benétigten. Zudem sind x und y
als Elemente zweier BANACH-Réume angenommen.

Integriert man die allgemeine Differentialgleichung lings eines orientierten
Polygonzuges I, so bezeichnet y = T',(y,) den Endwert des Integrals, der
auBer von [ auch vom Anfangswert y, abhiingt. Im speziellen Fall der linearen
Differentialgleichung, in dem die 7', lineare, auf y, wirkende Operatoren sind,
erwies es sich als niitzlich, die wesentlichen Teile des Existenzbeweises mit
Hilfe dieser Operatoren durchzufiihren. Mit derselben linearen Operatoren-
menge 148t sich dann auch, wie in [1] gezeigt wird, die Theorie der Parallel-
verschiebung auf einer differenzierbaren Mannigfaltigkeit in einfacher Art
darstellen.

In der vorliegenden Arbeit treten die 7',(y) noch selbstiéndiger auf. Zunéchst
wird, ganz unabhingig von der Differentialgleichung, eine Operatorenmenge
{T',(y)} definiert. Das Hauptproblem, das sich fiir diese 7',(y) stellt, ist die
Angabe hinreichender Bedingungen dafiir, daB sie nicht vom Verlauf der

16 CMH vol. 86



246 ‘ Gumo BicHLI

Wege [, sondern nur von ihren Anfangs- und Endpunkten abhingen. Wegen
der Nichtlinearitit der 7',(y) fillt diese Untersuchung komplizierter aus als
im linearen Fall.

Erst im zweiten Paragraphen folgt die Behandlung der Differentialgleichung
dy = f(z,y) dz, in der die allgemein hergeleiteten Ergebnisse des ersten
Paragraphen wesentlich verwendet werden.

§ I Die Operatoren 7', und U,

1. Definitionen von 7', und U;. R? und Rj bezeichnen zwei lineare Rdume
von reeller Struktur, die mit einer BANAcH-Metrik versehen sind. m < co und
n < oo sind die Dimensionen und z und y die Vektoren dieser beiden Raume.

Wir beschrinken uns im folgenden auf die zwei abgeschlossenen Gebiete
G, © Ry und G, C R} und beschiftigen uns mit einer Menge von Abbildun-
gen {T',} von G, in sich. Die T,(y) sind also Vektoren in G, und hingen von
y €@, und dem in @, liegenden orientierten Polygonzug ! ab (spiter meist
als «Weg I» bezeichnet).

Fiir diese Menge {7',(y)} fordern wir die folgenden sechs Postulate.

1°. Sind [, und [, zwei aneinanderhingende Wege, etwa [, = ,x, (das soll
bedeuten: I, beginnt in #, und endet in z,), I, = z,x;, und ihr Produktweg
! =Ll = x 2,23, gehoren ferner T (y) und T, (T, (y)) =T, T, (y) zur be-
trachteten Menge, dann gehort auch T'(y) dazu,und esist 7', T, (y) = T',(y).

Existiert umgekehrt eine Abbildung 7',(y) fiir den Weg I = z, z;, und hat
man den Weg ! durch einen beliebigen Punkt z,el in zwei aneinander-
hingende Wegstiicke I, = x,,, Iy = 7,2, unterteilt, dann 1Bt sich 7';(y)
folgendermafen mit zwei Abbildungen aus der Menge {T',(y)} ausdriicken:

T,(y) = Tz, Tz,(?/) .

2°. Wenn T,(y) ein Element der Menge {T,(y)} ist, dann ist auch 7',.(y)
ein solches, wobei [—! den reziproken, umorientierten Weg zu ! bezeichnet,
und es besteht die Beziehung 7',..7T,(y) =y, oder T,..T,=1. Unter [
verstehen wir die identische Transformation des Raumes Rj.

Diesen beiden gruppentheoretischen Eigenschaften folgen zwei metrische
Forderungen, zu deren Formulierung wir den Operator U, =T, — I ein-
fiihren.

3°. Es gibt ein y, in G, und eine positive Zahl N so, daB fiir alle 7",(y,),
deren Wege ! von endlicher Linge sind, die Ungleichung

| Ui(e) | = | Ty (%) —yo| = N-| 1]
gilt.
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4°. Falls fiir denselben Weg I (mit |/| < 0 < oo) die beiden Abbildungen
U,(y,) und U,(y,) existieren, so besteht die erweiterte LipscHITZ-Bedingung

| U () —U(ya) | = oy —ya| - | 1] - C.

Die Konstante ¢ hingt von ¢ ab. Wir wollen annehmen, o sei so gro3 gewihlt,
daf alle in dieser Arbeit vorkommenden endlichen Weglédngen | I | unter dieser
Schranke liegen.

Zum Schlul folgen noch zwei Postulate, die iiber die Existenz der 7';(y)
genauere Angaben machen:

5°. Zu jedem (x,y) aus G, X G, gibt es mindestens eine positive Zahl
o(x, y), sodaB fiir allein = beginnenden, durch ¢ beschrinkten Polygonziige !:
|l] < o(x, y) die Abbildungen 7', (y) existieren.

Daraus folgert man sofort, dal es fiir einen Punkt (x,y) unendlich viele
o(z, y) gibt, denn mindestens alle Zahlen, die kleiner als dieses eine g(z, ¥)
sind, bilden g-Zahlen.

Wir definieren «(x,y) = supe(x,y) und fordern fiir diese Zahl:

6°. Fir alle (z;,y,)e(G, X Q) i =1,2) gilt

| oc(y, 1) — (22, o) | S max {|z, — x|, |9y —¥2|}.

Mit Hilfe des Postulates 4° li63t sich beweisen, dafl die in 3° geforderte Un-
gleichung nicht nur fiir einen Punkt ¢, aus @,, sondern fiir alle y ¢ G, besteht:
Fiir ein beliebiges y ¢ G, ist

U,(y) = U,(%) + (U,(y) — U (%)) ,
U, @) | =|Ui(ye) | + | Ui(y) — Uy(y,) |

und mit 3° und 4°:
U@ | =N ||+ |y —%|11-C=|1|-{N+|y—y|-C}.

Ist 5 die Linge der gréBtmoglichen Strecke in G, ergibt die Einfithrung der
Konstanten M = N + 5nC die Verallgemeinerung von 3°:

| Uy) | = M-|1]. (1.1)

2. Ein Satz iiber Uy = 0. Wir wenden uns nun einem Satz zu, der eine hin-
reichende Bedingung dafiir angibt, daB U, (und damit auch 7';) nur vom An-
fangs- und Endpunkt des Weges [, nicht aber vom iibrigen Verlauf des Weges
abhingt.

Zum Beweis dieses Satzes wahlt man als Weg speziell den orientierten Rand
¥ eines Dreiecks ¢ in @,. Die orientierte Fliche 4 des Dreiecks s(z,, 2,, 7,)
bestimmt man mit einer reellen, nicht ausgearteten alternierenden Grundform
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D der von s aufgespannten Ebene K. Setzt man h = 2, — x,, k = 2z, — z,,
so ist 4 = Dh k. Die Fliache ist somit ganz unabhingig von der BANACH-
Metrik.

Satz 1. Fir jeden Punkt Te G, und fir jede Ebene E durch x sei bei regu-
lirer Konvergenz') des den Punkt x enthaltenden Dreiecks s in der Ebene E

gegen x
lim —[2]1—2- =0, (2.1)
8>

wobet y den orientierten Rand und A die Fliche des Dreiecks bezeichnen.

Unter diesen Voraussetzungen ist U, (y,) = 0 fir jedes y, aus G, und fir
jedes Dreteck 8y, = 8o(xy, %,, x3) tn G, mit dem Rand y, = 08y = x4 ¥, X3 %, ,
dessen grofte Seitenlinge B beschrinkt ist durch

* (%o Yo)
B = B+’ (2.2)
wo u = max(l, 4 M) bedeutet.

Zs Beweis. Wir bezeichnen die Mitte der
Dreiecksseite x, z, mit #}. Dann unter-
teilt die Seitenhalbierende I, = z,}
das gegebene Dreieck s, in zwei Teil-
dreiecke s; und s,, deren Flichen gleich
sind. Wir benennen diese Fliachen 4,,
und es gilt 4 = 2. 4,.

Die Rinder der beiden Teildreiecke
werden durch y, = 98, = x}z, 2, z} und
y; = 08; = Za%s T, %y im gleichen Dreh-
sinn orientiert und ihre Randléingen mit
d, und 4; bezeichnet.

Zur Vereinfachung beniitzen wir fiir
U, die Schreibweise U,, ebenso sind
U,="U,,T, ="T,T, =T, und spiter entsprechend U, = U, usw.

Wir untersuchen die Beziehung

Ty. (%) = Tz‘-—l T; T, T, (%) » (2.3)

deren Existenz zuerst noch gezeigt werden mufl.

xl

1) Von einer reguliren Konvergenz eines Dreiecks s spricht man dann, wenn der Ausdruck
| 08|/ A unterhalb einer festen Grenze bleibt, wobei |0ds| die Lénge des Dreiecksrandes
bezeichnet. Geometrisch bedeutet dies, daB keiner der Dreieckswinkel beliebig stark verkleinert
werden darf,
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Die Weglinge | I, |, die ja kleiner ist als g, ist nach der Voraussetzung (2.2.)
kleiner als «(,, y,). Daher existiert 7', (y,) und somit auch T - T, (%)

= 9. Die daran anschlieBende Abbildung 7';(y,) fiir 1= R woxo (dlese
Punkte bezeichnen die Anfangs-, Eck- und Endpunkte des Polygonzuges l)

besteht wegen I—i | < 4B und, wie wieder aus (2.2) folgt, 48 < «(x,, %,). Die
letzte Etappe lings I;! 148t sich wiederum nach dem Postulat 2° durchfiihren.
Wir schreiben (2.3) in der Form

Ty o) = (I + U, )T + U)T + Up) (% + Uy, (yo)
oder
T, () =T + U;.-1) (I + U;) (7 + Us(wy)

wo ¥y, =Y, + U, (y,) gesetzt ist. Bezeichnet man

yi=w+ Ui, ¥ =y, + Uilys),
so wird daraus
T, () =W+ Uln-l) (o + Ui(n) + Uy(y))

=Y + Uy, 4) + Us(n) + Uiy) + Ul°-l(y’1,)
oder

Uy, 90) = Uy, (%) + Us () + Ui (y)) + U, 1 (5} - (2.4)

Zur Abschitzung dieser Beziehung wollen wir nun schrittweise die y-Argu-
mente vereinheitlichen. Dies geschieht mit Hilfe des Postulates 4°, das hier

in der Form U,(y) = U,(y) + |y — y|-| 1|-<C> verwendet wird, wobei <C'>
einen Vektor bezeichnet, dessen Absolutwert nicht groB8er ist als C. So erhilt
man aus den einzelnen Gliedern der rechten Seite von (2.4):

Uilyy) = Us(y)+|Ui(m) | 8<C,
U, 1) =T, 1) + | U151 -] b]-<C>
= U, 1) + {| Us () | +1 Us() 1} 361 <O> + | U () |- 13| - 8- C<C

und zusammengefaflt, wenn man als Restglieder alle diejenigen bezeichnet, die
den Vektor (C) enthalten:

U,,40) = Uy, (yo) + Ur(y) + Us(wn) + U, _1(3) + Restglieder.

Hier fallen wegen

0= Tl.__lT,. (Yo) — Yo = (U,.-l + 1) (U,.('.‘/o) + Yo) — Yo = Ul.-l(yl) + U’,‘ (7o}
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zwei Glieder weg, und so bleiben noch

U, () = Ui(yy) + Ui(y,) + Restglieder.

Ohne Einschrinkung der Allgemeinheit kénnen wir annehmen, | U, (y,) |
sei die groBere der beiden Normen | U, (y,) | , | Uy (%) | und ebenso

4, = max (4, 6,).
Dann ist

| Uy | =2|Uy) | + 3|1 Uiw) 16,0+ | Uiy | O

36,0 (3=)
§2|U1(?/1)|'{1+ 21 -+ .‘i! }

Somit gilt
l Uy, (3/0) l é 2 l Ul(yl) l . 33310/2

oder, weil 4 = 2.4, ist,

Uy, (40)] U1 (30 Dé,
4 = 4, o

L (0] % = D gesetzt ist.

Im nidchsten Schritt teilt man das Dreieck s, durch die Seitenhalbierende
l, = xla? in zwei Teildreiecke s, und s, mit den Flichen A4, = 4,/2 und
schitzt dann U,(y,) genau gleich ab wie vorhin U, (y,). Der Nachweis,
dal die dabei auftretenden Operatoren 7' existieren, folgt in Abschnitt 3.
Als Ergebnis erhilt man

U1 ()| [Us(ys)| »p,,
4, =4, ¢
worin y, = Tl1 (y) = T,1 1,(Yo) bedeutet.
Dieses Verfahren a8t sich unbeschrinkt wiederholen an der Folge der
ineinandergeschachtelten Dreiecke 8, D 8 D8 D --- Dg, ... Man ge-
langt so mit

yﬂ = Tln-l(yn—l) = Tl”_.l l"_z $ s 1110 (yﬂ)
zur Ungleichung

IUYo(yO)l < IUn(yn)l e +8+ - +8n)D
Y| = 4,

Zur Abschitzung des Exponenten untersuchen wir die Folge 6, = |y,/|, 6;,
8y, 03, . . . Da beim Dreieck 8, mindestens eine Seite, bei 8, mindestens zwei
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Seiten und bei s, alle drei Seiten nicht gréBer als die Halfte der groBten Seite
von 8, sind, gilt

3 = 0y > 6, > 63 und

38

22

36

—2_'263>64>65, 266>67>68,"““"‘"‘.

Folglich ist

n (-] (-] ﬂ
2o, <X, Zéaié 2P — 188
1 1 0o 2¢

1=0

Uy, (%) U (yn)| 188D
g < T eleeD,

Da fiir unbegrenzt wachsendes n die gro3te Seite von s, gegen Null strebt,

existiert ein wohlbestimmter Grenzpunkt ze 8., gegen welchen die Dreiecks-
folge sy D 8, D 8, D ... regulir konvergiert. Der Grenzwert der rechten
Seite der obenstehenden Ungleichung ist nach der Voraussetzung (2.1) Null,
und daher ist

120l g und 7,09 =0

bewiesen.

3. Um die Existenz derjenigen Operatoren 7' nachweisen zu konnen, die in
den Beweisen an den ineinandergeschachtelten Dreiecken s, vorkommen,
mul} zuerst das Verhalten der Gréflen |1, | und |y, — v, | bei wachsendem
n untersucht werden.

Errichtet man im Dreieck s, von zj aus die Seitenhalbierende /,, und daran
anschlieBend die Seitenhalbierende [, ,,, so erkennt man, da [, , halb so lang
ist wie die zu [,, , parallele Seite von s,,. Mit der bei der Abschétzung der 4, ge-
machten Bemerkung iiber die Halbierung der Dreiecksseiten folgert man

] = 8, max (4], [, 16D < &, max (11, 4], I =4,

B

max  (|l], |ls], [L]) §—8——’ usw.

Weiter ist
n—1
L sz‘|z,| sp+32.g_...45
0
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Die Addition der » Gleichungen

ergibt

und mit (1.1)

Y1 — Y% =T, (o) — 9o = U, (y,)
Ya— N =T,(y) —y.=U, ()

— e e e e e

Yn — Yn-a = Ul”_l(yn—l)

n—1

| Yn — %o | éflvlg(yi)l

n—1

| Yn — Yo | éf‘M'llil S4MB.

Wir wenden uns nun denjenigen Operatoren zu, die zur Abschitzung von
U.(y,) fir n = 1 gebraucht werden. Von 2} aus wird lings der Seitenhalbie-
renden I, die Abbildung 7, (y,) gebildet, dann kehrt man lings I;! zuriick

”

g

(diese zweite Abbildung existiert nach
2°, sobald 7', (y,) besteht). Von hier
aus, nach 2° wieder mit y, beginnend,
gleitet man lings des gesamten Randes
von s, und anschliefend langs I, nach
i+,

Ti W) (= 23 afalagay*t).

Der letzte Teil besteht im Zuriickkehren

z? langs 171 .

Zu beweisen ist also die Existenz von
Tl,;(yn) und Tfn(yn) . _

Da die beiden Wege [,, I in zj be-
ginnen, und da beide Male y, abgebildet
wird, ist hier «(zj, y,) entscheidend
fiir den Existenzbeweis.

Nach 6° ist o(xq, ya) = (%, Yo) — maX { |25 — Zo |, [¥n — %o |} -
Das erste Glied der rechten Seite ist nach der Voraussetzung (2.2) nicht kleiner
als (83 + u)p. Das letzte Glied kann man wegen |5 —2,| =p,
|Yn— Y| =4MB durch fB.-u = f-[max (1,4 M)] ersetzen. Daher ist
(23, Yn) = (3 + u) B — u p und schlieBlich x(27,y,) =38.

Da keiner der beiden betrachteten Wege I, und I, fir » =1 linger als
3 B ist, existieren 7', (y,) und 7' (y,) sicher.
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§ II Die allgemeine Differentialgleichung erster Ordnung

4. Die Differentialgleichung. R7 und R sind wiederum zwei lineare Riume
iiber reellem Multiplikatorenbereich mit den Dimensionen m < oo und
n < oo, die eine vollstéindige BANAcH-Metrik besitzen. Der lineare Operator
f(z,y), der fiir ein gewisses abgeschlossenes Gebiet G, X @, des Produkt-
raumes R X R definiert sei, bilde die Vektoren des Raumes Rj' in den
Raum RY ab.

Wir beschiftigen uns nun mit der Differentialgleichung

dy = [(z,y) dz, (4.1)

in der y = y(z) die zu bestimmende Vektorfunktion ist und untersuchen,
unter welchen Bedingungen die Differentialgleichung vollsténdig integrierbar
ist. (Man nennt die Differentialgleichung in &, X G, vollstindig integrierbar,
wenn fiir jeden Punkt (z,,y, aus diesem Gebiet eine Liosung y = y(z)
der Differentialgleichung in einer Umgebung von z, existiert, die den Anfangs-
wert y(z,) = y, annimmt.)

Falls R} und R} endlichdimensionale Réume der Dimensionen m und %
sind, ergibt sich nach Einfiihrung von zwei Basissystemen und den Koordi-
naten &% 7' ein zu (4.1) dquivalentes System

o i i1=1,...,n,
‘a‘g""'=fk(51,...sm,n‘,---» ") k=1,...,m,

also ein System von =-.m partiellen Differentialgleichungen erster Ordnung
mit den » unbekannten Funktionen

n' =}, ..., &M,
b. Voraussetzungen und Integration der Normalsysteme. Fiir die Differential-
gleichung dy = f(x, y) dz sollen die folgenden Voraussetzungen gelten:

A. Die Operatorfunktion f(x,y) ist stetig fir zeQG,,y eG, und 8o be-
schrankt, daf | f(z,y)| = 1.

B. Die LipscurTZ- Bedingung
| f(x,9) —f(x,9) | S| — 92| - K
(K = const.) ist erfillt fir y,eQ,(t =1,2) und ze@,.

Die Wahl der Beschriinktheitskonstante 1 bedeutet keine Einschrénkung
der Allgemeinheit. Wire ndmlich f(z, y) durch M beschrinkt, | f (z,) | = M,
konnte man in R} eine neue Metrik einfiihren, durch Division aller nach der
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urspriinglichen Metrik gemessenen Léngen durch M wund erhielte so
|f(z,y)] =1. Die Voraussetzung B bliebe bei der Einfithrung dieser neuen
Metrik bestehen ohne Anderung der Konstanten K.

Diese Voraussetzungen sind hinreichend dafiir, daB unsere Differentialglei-
chung lings einer Strecke ¢t = z, + 7(x; — 2,) (0 <7 <1) als Normal-
system dy = f(¢,y(t)) d¢ mit dem Anfangswert y(z,) = y, integrierbar ist, falls
z, die Ungleichung |, — %y | < «(%,, y,) erfiillt und =z,, y, innere Punkte
von G, G, sind?). Die positive reelle Zahl «(z,, y,) bestimmt man, wie in
der Theorie der Normalsysteme gezeigt wird, auf folgende Weise: In @, legt
man eine moglichst groe Kugel um den Anfangswert y,, |y — %, | < 7, (%)
(y € G,). Ebenso wihlt man um 2, eine maximale Kugel in @G,
| 2 — 2y | = 7,(%,) und definiert

« (%o, Yo) = min {r,(z,), 7, (%) } - (5.1)

Fiir den Losungsvektor y(z) gilt dann |y(z) — y, | < 7,(y,) -
Wir beschiftigen uns nun mit der
Frage, wie sich die Zahl « bei einer
Anderung der Anfangswerte verhilt
und wihlen dazu ein neues Paar z,, y,
mit der vorldufigen Einschriankung

o | 2y — @y | = 7,(x) (5.2)
1 0 |9 — Yo | =7,(%) -
75 (%o) Der Figur entnimmt man
xl‘ }T
N ro(2) Z 7(20) — | % — 2 |
UL und ebenso
7'1 ..<_. rw (xl)

ry(®) Z27@) — [ Yo — 1| .
Daraus folgt nach der Definition (5.1) von «(z,, ¥,)

0‘(3’1;?/1) Zmin{r,(xy) — | % — 2y |, 79(%) — | % — % |}
= min{o(y, Yo) — | o — 21|, % (%o, Y0) — [ Yo — %11} >

daher ist
(2, Y1) (%, Y) —max { |z, — 2|, |y — |} (5.3)

2) Die Methoden, die in [3] bei der Behandlung der Normalsysteme angewandt wurden,lassen
sich unveréndert auf den Fall iibertragen, wo R, ein vollstindiger BANACH-Raum ist. Unter
dieser allgemeinen Voraussetzung wird die Normalgleichung in [2], Seiten 13/14, untersucht.
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Diese Ungleichung ist auch richtig, wenn die Bedingungen (5.2) nicht erfiillt
sind, weil in diesem Fall die rechte Seite von (5.3) einen negativen, die linke
nach Definition einen positiven Wert darstellt. Wir lassen daher die Einschrén-
kung (5.2) fallen.

Neben

(g, Yo) — (2, ) Smax {|xy — x|, |y — ¥ |}

muB nach denselben Uberlegungen auch

(2, yy) — (%o, Yo) Smax{|xy — 2|, |Yo— ¥ |}

gelten, woraus

| o (2o, Yo) — (21, 1) | = max {|xg — 2|, | yo — 9]} (6.4)

folgt.

Unsere Differentialgleichung kann ldngs jedem von x, ausgehenden Polygon-
zuge ! als Normalsystem mit dem Anfangswert y(z,) = y, integriert werden,
wenn |I| < «(%,,%,) . Um dies zu zeigen, zerlegt man [ in seine Teilstrecken
l=1,...01;l; 1, und fiihrt den Beweis mit vollstindiger Induktion:

Zunidchst ist die Integration liangs I, = z,2, moglich, da ja

[ 3o ] <|1]|= (2o, yo) ist.

Wir nehmen nun an, die Integration sei lings 7, ,...L (1 =¢ < k)
durchfithrbar und behaupten, daB sie es auch léings der anschlieBenden Strecke
l; sei. [; beginne in z,, und es sei y(x,) = y,. Man setzt die Beziehungen

i—1 i-1
|2, — @ | = 2| L], [9:—%l=] | Hz y)de| = 214

) oy il

(%, y;) = (@y,yo) —max {|x, — 2 |,|y; — ¥ |}
ein:

i-1
(2, Ys) = (%o, Yo) “fllﬂ . (5.5)

Die Integration lings I, ist méglich, wenn |1, | < x(z;,y;), also nach (5.5)
sicher dann, wenn

i—1 i
oc(xo,yo)—-fllfl = |1;| oder «(zy,y,) gfllgl .

Diese letzte Ungleichung jedoch ist wegen o« (x,,y,) =|1| erfiillt.
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6. Eindeutigkeit der Liosung. Falls die Differentialgleichung (4.1) iiberhaupt
eine Losung y(x) mit dem Anfangswert y(z,) = y, Dbesitzt, so ist sie ein-
deutig. Verbindet man némlich einen beliebigen Punkt z, aus G, mit z, durch
die Strecke ¢ =2, + 7(x, — 2,) (0 < v < 1), so geht die Differentialglei-
chung auf dieser Strecke in eine Normalgleichung dy = f(t, y) d¢ iiber, deren
Losung unter den voranstehenden Voraussetzungen bekanntlich eindeutig ist.
Es gibt daher nur einen Vektor y(z,), von dem aus man nach Integration
lings der erwidhnten Strecke in z, den vorgeschriebenen Anfangsvektor y,
erreicht.

7. Die Operatoren 7'; und U;. Nun soll der Zusammenhang zwischen der
vorgelegten Differentialgleichung und den im ersten Paragraphen betrachteten
Operatoren 7'; und U, hergestellt werden.

l sei ein von z, nach z, fiihrender, orientierter Polygonzug im Gebiet G, .
Lings I geht die Differentialgleichung in eine Normalgleichung iiber. Integriert
man diese, so stelle y, = y(z,) den Anfangswert und y, = y(z;) den End-
wert dar. Der Endwert y, wird, als Funktion des Anfangswertes y,, als 7';(y,)
definiert:

hh=1Y + {dy(x) = Yo + iff(x,y)dm= T.(yo) -

Weiter bezeichnet
U,(yo) = T1(4) — 9o = .fd.’/

den Zuwachs der Losung y(z) lings des Weges 1.

Die soeben festgelegten Operatoren U, und 7', erfiillen die im ersten Ab-
schnitt aufgestellten Postulate 1° bis 6°. 1° und 2° folgen aus der Eindeutigkeit
der Losung y(x) des Normalsystems.

3° ist erfiillt wegen der Beschrinktheit des Operators f(z, y):

IUz(y)l“Hf(x y)daz| Sflﬂlxl—lll

womit glelch die allgemeinere Form (1.1) mit M = 1 hergeleitet ist.
Um die Giiltigkeit von 4° zu zeigen, betrachten wir die Ungleichung

| Uwn) — Uslgy) | < [11( Ti, @) — f(a, T, ()| |d=z],

in der I, dasjenige Teilstiick des Weges ! bezeichnet, das vom Anfang von !
bis zum beliebigen Punkt 2 auf ! fithrt. Mit der LipscHrrz-Bedingung wird
daraus

| Uylyy) — U,y | < SE| Ty, — T, ()| |dz].
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Beim nichsten Schritt brauchen wir eine Ungleichung aus der Theorie der
Normalsysteme, die eine Aussage macht iiber die Abhingigkeit der Lésung
eines Normalsystems von der Wahl des Anfangswertes, ndmlich3)

| T,y) — Ty(y) | < |y —y|e¥ ¥, (N = const.).
Mit ihr erhalten wir

| U,y — Uy () | é{KIyl—?/Ile”""ldwl-

Hier fithrt man die Konstante C = K e ¥° ein, wobei o die in Abschnitt 1
beim Postulat 4° erwihnte Zahl bezeichnet:

| Uy) — U | < lva—w| 11O,

womit die Giiltigkeit von 4° erwiesen ist.

Wie in Abschnitt 5 gezeigt wurde, sind auch die Postulate 5° und 6° erfiillt,
wobei das durch (5.1) definierte « genau dem « aus dem ersten Paragraphen
und (5.4) dem Postulat 6° entsprechen.

8. Die Integrabilititsbedingung U, = 0. Nach diesen vorbereitenden Ab-
schnitten wenden wir uns der Frage der Losbarkeit unserer Differentialglei-
chung zu und beweisen zuerst den

Satz 2. Wenn der Operator f(x,y) die Voraussetzungen A und B des Ab-
schnitts 5 erfullt und ein beliebiger innerer Punkt (x,,y,) aus G, X G, als
Anfangswert fixiert ist, 8o st die fur jeden Dreiecksweg y = xz,x, %52, mit
|2, — 2y | S ax(®y,y,) (¢ =1,2) geltende Bestimmung

U,(4)=0 (8.1)

notwendig und hinreichend dafiir, daf die Differentialgleichung (4.1) in der
Kugel |2 — x| S x(2y,y,) eine Losung y(x) besitzt mit y(x,) =y, und
ly(x) —yo | S 74(%) -

Wir nehmen nun an, die Differentialgleichung dy = f(z,y)dz sei vollstdndig
integrierbar und beweisen die Notwendigkeit der Bedingung. Integriert man,
mit dem Anfangswert y(z,) = y, beginnend, lings y = x,2,%,x,, ist wegen
der Eindeutigkeit der Losung 7', (y,) =y, und daher 0=1T',(y,) —yo,= U, (¥,)-

Die Bedingung U, (y,) = 0 ist aber auch hinreichend : Fiir jedes z aus der

Kugel K,:|z — 2, | < x(%,,y,) laBt sich eindeutig ein _g-/_(x) bestimmen,

-

3) Vergleiche [2], 8. 15.
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indem man lédngs der Strecke z,z die Differentialgleichung — in diesem Fall
ein Normalsystem dy = f(¢, y(f)) dt (¢ = 2o+ t(x — 2,), 0 < 7 < 1) — inte-
griert. Man erhilt -g;(x) == T%z(yo) , und dies muB} die Losung der Differential-
gleichung sein, falls eine solche iiberhaupt existiert.

Es ist daher noch zu beweisen, dafl die Differentialgleichung dy = f(z,y)dx
durch -g-/—(x) wirklich befriedigt wird. Wir wihlen dazu zwei beliebige Punkte 2
und z + A aus K, und berechnen den Ausdruck A—g-/- = ?/—(x + h) — ;(x) . Aus
der Definition von y( ) folgt sofort y(x -+ h) w (z+h) (—g;(x)) und somit

Ay = Tww (z+1n) (y(x ) - y(w) wa: (z+h) (y )

Nach der Integrabilitatsbedingung ist aber U 2 (@-+1) (v () ) = U (pun (¥(z)),
woraus sich die Beziehungen

Ay = Upuan@(@) = § 1, y(®) dt
z(z+hR)

und, wegen der Stetigkeit von f (¢, ;/-t)) fir t ==,

Ay = f(z,y(@) b+ | k] (h; 2)
mit |(h;x) | - O fir|h| - O ergeben, w.z.b.w.

9. Eine weitere Integrabilititshedingung. Satz 1 erlaubt uns, die soeben auf-
gestellte Integrabilitdtsbedingung durch eine andere zu ersetzen, die sich nur
auf das lokale Verhalten des Operators f(z,y) bezieht:

Satz 3. Falls der Operator f(x, y) die Voraussetzungen A und B des Abschnitts 5
erfallt, so ist es fir die vollstindige Integrabilitit der Differentialgleichung

dy = f(x,y) dz notwendig und hinreichend, daf fir jedes ze G, wnd fir jede
feste Ebene E durch x bei requlirer Konvergenz des Dreiecks s (mit der Fliche A

und dem Rand y = 98) in E gegen x € & der Grenzwert von —%’i Null betrdgt,

lim Yy =0. (9.1)
s>z 4
Sind z, und y(x,) = y, die innerhalb G, und G, beliebig gewdihlten Anfangs-
werte, so existiert fiir jedes x aus

“(x()’ yO) (9.2)

eine Losung y = y(x) mit |y(x) —yo | = 74(¥o) -
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Die Bedingung (9.1) ist sicher notwendig, wie man sofort aus der notwen-
digen Bedingung (8.1) schlieBt.

Umgekehrt wissen wir nach Satz 1 auch, daB (9.1) hinreichend ist, da ja
daraus die hinreichende Bedingung (8.1) folgt.

(9.2) ergibt sich folgendermafBen: Aus Satz 1 und der Beziehung M =1
folgt, dafl die liangste Dreiecksseite g von s(z,, z,, ;) der Ungleichung
B = a(xy,¥,) |7 geniigen muB. Dies ist sicher fiir jedes Dreieck in der Kugel
mit dem Durchmesser «(z,, y,) / 7 erfiillt.

10. Der Operator R. Der Operator f(x,y) erfiille zusitzlich zu den Voraus-
setzungen A und B noch die weitere Voraussetzung

C. f(z,y) st differenzierbar flir x = z,,y=1y,.

Wir werden nun eine neue Darstellung von U, (y) herleiten und betrachten
dazu das z, enthaltende Dreieck s = s(z,, z,, ;) mit der groBten Seiten-
linge B, dem Rand ds =y = oy 2,252, und bh =2, — 2, bk = 23 — 2, .

Nach Definition ist

Uy(9o) = JH(z,y)d=.

?
Hier setzt man

f(,y) = (%9, Yo) + fol®o, Yo) (2 — 29) + [,(, %o) ¥ — ¥0) + @(z) (p(2))
mit [p(@)]* = | & — 2, |* + |y — ¥o|* und | (p(x) | > 0 fir g >0 ein:

Uy(yo) = [(%o, Yo)dx + [fo(%0, Yo) (x — 2o) dx + [f,(%, Yo) (y — yo) d
+ fol@pda. (10.1)

Das erste Integral der rechten Seite ist gleich Null, die iibrigen werden nun
einzeln weiter umgeformt und die Resultate in (10.3) zusammengetragen.
Nach der Differentialformel von SToxEs ist das zweite Integral

j‘fz(xo’ yo) (x - xo) dw = % {f:c(xo’ yo) hk - fw(xo’ ?/o) kh} = /\ fa;(xo’ yo) hk'

Im dritten Integral von (10.1) formt man zuerst den Ausdruck (y(z) — ¥,)
um. In

Y(x) — ¥, =“§)f(t,y(t)) dt

wird ldngs I(x), des positiv orientierten Teilweges z,x von y, integriert. Unter
Beriicksichtigung der Differenzierbarkeit von f(z,y) im Punkt (z,,y,) wird
daraus
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|y(z) — %] = Ili&)f(xo,yo)dtl +l(f)|fo(xo,yo) |1t — 2| |dt]

+l(£)l fo (%o, %) |y (8) — %ol |dt] -I-uj;;r(t) | (p@) | [de].

Beachtet man, daBl | f(z,y)| <1 ist, und ersetzt man im zweitletzten Sum-
manden den Ausdruck | y(f) — y, | nochmals durch ein Integral, dessen Inte-
grationsweg von z; lings y bis zu ¢ verliuft, namlich durch

ly@) —yol =1 [, y@) du]| = f|du| =38,
i(e) i(t) _

so erhélt man
ly(®) — Yo | =|1(%0, %) (2 — o) | + | f2(%0, %) |- 38
+ | 14(%0, %0) | - 9B* +I(Iz)fp(t)l (@) | |de]. (10.2)
Das letzte Glied dieser Ungleichung ist wegen
[pOF =1t — |2+ 1y(t) —yo | < p* + 962, o(t) <p-V10
von der Form f§2(f), und man folgert daher aus (10.2), da3

Y(x) — Yo = [(%0, Yo) (z — 7,) + B(B) .
Dieses Ergebnis setzt man in das dritte Integral von (10.1) ein:

§1v(@o,90) (¥ —yo)dz = [ [, (%0, o) [(%0,Yo) (x — ) dx + [f,(24,%0)B(B)d 2,
k4 14 4
und erhilt daraus nach der Stoxkesschen Differentialformel4)

§fo(@o, 4o) (¥ — yo) dx = A {f4 (%, Yo) f(20, yo) BE} 4 B2(B) .

Das letzte Integral von (10.1) endlich ist von der Form f2(8).
Alle soeben hergeleiteten Teilergebnisse fiihren, in (10.1) eingesetzt, zur Be-
ziehung

U,(yo) = B(z,, o) bk + B*(B) » (10.3)
wobei

R(‘”oa yo)hk = /\ Uc(xo’ yo)hk + fv(xoa ?/o) f(xo’ yo) hk } (10'4)

gesetzt ist.
Die Untersuchungen in diesem Abschnitt haben also folgendes Ergebnis

erbracht:

Satz 4. Der Operator f(x,y) set fir das Gebiet G, X G, stetig, erfille die
LrpscHrTz-Bedingung B und sei fir (z,,y,) € @, X G, differenzierbar.

4) Vergleiche [3], 8. 122.
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Wird dann ein den Punkt x, enthaltendes und ganz in G, liegendes Dreieck
mit den Ecken x,, 2y, = 2, + h , %, = 2, + k aufgespannt, dessen grifte
Seutenldnge f ist, so besteht die Beziehung

U, (%) = B(xy, yo) bk + B*(B)
mat
R(xy, yo) bk = A {fo(%0o, yo) Bk + [, (20, ¥o) (20, yo) R} .

Dabes bezeichnet (B) einen Vektor des Raumes R;, dessen Norm fiir § — 0 gegen
Null konvergiert, y ist der Dreiecksrand, dessen Umlaufssinn durch die Eck-
punktfolge x, xyx,2, bestimmt ist, und y, ist der Anfangswert, den die Vektor-
funktion y(x) fir x = x, annimmt.

Es sei hier noch bemerkt, dafl das identische Verschwinden des in (10.4)
definierten Operators R die iibliche Integrationsbedingung ist, wobei der Ope-
rator f(x,y) fir jedes (r,y) aus G, X G, als stetig differenzierbar voraus-
gesetzt wird. Man erhélt R, indem man in y"' Ak — y"'kh die Ableitung der
rechten Seite der Differentialgleichung dy = f(z, y) dz oder y'dx = f(z,y)d=
einsetzt. '

11. Verallgemeinerte Definition von R(z,, y,). Die Formel (10.3) 1liBt sich
umgekehrt zu einer verallgemeinerten Definition des bilinearen Operators
R(x,,y,) verwenden:

Definition: Wenn in einer Umgebung von (x4, y,) ein bilinearer Operator
A(x,y) existiert, so daf in dieser Umgebung fir jedes den Punkt x, enthaltende
Dreteck 8 = s(x,, x5, ;) (3 = &, + h, 3 = x, + k) mit der grofiten Seiten-
ldnge B und dem orientierten Dreiecksrand 08 = y = x,x,x,%, die Beziehung

Uy(?/o) = A (z,, ¥o) bk + B*(B)

mit | (B)| > O far f — O besteht, dann definieren wir:

A(xo, yo) = B(xy, Yo) -

Diese Definition verlangt weniger Voraussetzungen als die iibliche Definition
(10.4). Wihrend dort die Differenzierbarkeit des Operators f(z, y) notwendig
ist, wird hier nur die Moglichkeit der Integration der Differentialgleichung
dy = f(z,y)dx lings Dreiecksrindern verlangt, wozu die Stetigkeit des
Operators f(x,y) und die Lrpscarrz-Bedingung hinreichend sind, weil die
Differentialgleichung zu einer Normalgleichung spezialisiert wird.

Sobald f(z,y) fir (z,,%, auch differenzierbar ist, ist das nach Satz 4
dafiir hinreichend, daB der Operator R(z,,y,) existiert. Er nimmt dann die
in (10.4) aufgestellte explizite Form an und stimmt mit dem nach der allge-

17 CMH vol. 36
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meinen Definition bestimmten R(z,,y,) iiberein, da dieses, wie wir gleich
beweisen werden, eindeutig ist.

Falls ein Operator R(z,,y,) allgemeiner Art existiert, ist er eindeutig.
Denn angenommen, es gdbe zwei verschiedene Operatoren, die der verallge-

meinerten Definition entsprechen, etwa R und R, dann wire

(B (o, Yo) — E(xo, Y0)) bk = B*(B) .

Nach Ersetzung der Vektoren %, k durch A4, 2k mit variablen A, A (0<A =<1,
0 < 4 £1) und fixierten A, k erhielte man

(B(xo, ¥o) — E(xo» Yo)) bk = (2, 1_) ’

wobei | (4, 4)| gegen Null strebt, wenn auch die Summe A + i gegen Null
konvergiert, und somit

(B(xo,y0) — B(2y, o)) Rk =0

fiir jedes Paar %, k, was der Annahme widersprechen wiirde.
Ferner ist der eben definierte Operator R(z,, y,) auch alternierend: Aus
der Definition des Integrals folgt, dafl

Uy(o) = [ f(=,y)d=

bei Umorientierung des Dreiecksweges sein Vorzeichen éndert. Bildet man die
Summe der beiden Gleichungen

Uy(yo) = R(%y,Yyo) bk + B*(B) ,
Uy_1(4) = E(2o, yo) kb + £2(B) ,

so erhiilt man
0 = R(xy,Yo) bk + R(z,, yo) kb + B2(B) .

Hier ersetzt man & und % wiederum durch AA, Ak mit festen h, k und variablen
A,A(0<A<1,0<2<1), dividiert dann durch A-1 und 148t die Summe
A4 A gegen Null konvergieren. Dem so entstehenden Ergebnis

0 = R(xy, yo) bk + R(zy, y,) kh

entnimmt man sofort, daB R alternierend ist.
Wenn weiter D die reelle alternierende Grundform der von % und % aufge-
spannten Ebene bezeichnet, ist die Darstellung

R(xy, Yo) bk = o(y, yo) Dbk
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moglich, wobei die Dichte g bei festem £ nicht von % und % abhiingt. Mit Hilfe
der Definition von R schlieBt man, dafl ¢ bestimmt ist durch

. . T U,y (y,)
o(x, Yo f(x,y); B) = lim “Dhk

8>,
bei regulérer Konvergenz des Dreiecks ¢ in der Ebene E. Damit 148t sich die
Integrationsbedingung (9.1) auch so formulieren:

0(xy, Yo) = O fiir jedes F .

12. Zusammenfassend ergibt sich der folgende Existenzsatz fiir die Losung
der allgemeinen Differentialgleichung erster Ordnung:

Satz. Der lineare Operator f(x,y) sei fir ein abgeschlossenes Gebiet G, X G,
des Produktraumes Ry X R definiert, stetig und erfille fir alle (x,y,;) (1 = 1, 2)
aus diesem Gebiet die LipSCHITZ- Bedingung

If(x:.%)"‘f(x,yz)l gKlyl"—y2|

Eine notwendige und hinreichende Bedingung fir die vollstindige Integrierbar-
keit der Differentialgleichung

dy = f(x,y)dx

18t folgende:
Der Operator R(x,y) allgemeiner Art existiere fir alle (z,y) e G, X G, und
verschwinde hier identisch, das heif3t

R(z,y)hk =0

fiir beliebige Vektoren h und k des Raumes RJ.
Ist diese Bedingung erfiillt und der beliebige innere Punkt (x,, y,) aus @, X G,
festgelegt, gibt es in der Kugel

“(xo, ?/o)

eindeutig eine Losung y(x) der Differentialgleichung, die fir x, den Wert y,
anmimmi und in der Kugel

ly(x) — 9o | = 7y(¥0o)

liegt, wobei o und r, nach der in Abschnitt 5 beschriebenen Art bestimmt werden.
Ist der Operator f(z,y) zusditzlich noch differenzierbar, ist das identische Ver-
schwinden des Ausdrucks
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Rz, y)hk= N\ {f.(x,9) bk + f,(x,9) f(x,y) bk }

die notwendige und hinreichende Bedingung fiir die vollstindige Integrabilitiit
der vorgelegten Differentialgleichung.
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