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Variation Diminishing Transformations and STURM-
LIOUVILLE Systems

by I.I. HIRSCHMAN, Jr.1)

1. Introduetion. This paper is the fourth in a series; however the following
material may be considered as an introduction not only to this paper, but to
the preceding papers [3], [4], [5], as well. Given a matrix M = [m(¢, j)]
i,7=1,2,...,n let us denote by M[’fl" "’qf"] where 1 < i, <i,<...

115+ -+ Jn
<4, <m, 1 <§1<g.<...<fp <n, the submatrix of M formed from the

elements in the rows 3,,...,¢, and the columns j,,...,J,. A matrix M is

said to be totally non-negative if all of the quantities det M SRR ;"]
1y -+ 2 Jk

are non negative. Matrices with this property and with related properties
play an essential role in several fields of mathematics, see [2] and [7]. Here
we cite only the following result. Let H, be the space of real column vectors
with » entries

u(1)

u(2)

Y% = -

u(n)
We denote by V[«] the number of changes of sign of the sequence «(1), u(2),
e u(n).

Theorem 1a. A necessary and sufficient condition that for every « e H,,
V[Mu] < V[u], and that if V[Mu] = V[u] the first non-zero components
of » and Mu have the same sign, is that M be totally non-negative.

For a demonstration of this result, due to ScHOENBERG and KREIN, see
[2, p. 291].

A matrix of the form

[ r(1) 8(1) 0 -.-0 0 |

t(1) r(2) 8(2).--0 0
0

T=| 0 t@ r(3).--0 (1)

>

O 0 0 -im—D)rm]

-

1) This work was carried out while the author was in residence in Zurich, and was supported
by the United States Air Force through the Air Force Office of Scientific Research and Develop-
ment Command under Contract No. AF 49(638) - 846.
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with ¢(k)s(k)>0 k=1,...,n — 1 is called a normal JAcOBI matrix. We
will deal with JAcoB1 matrices satisfying the additional condition
t(k) <0,8k)<0,k=1,2,....,m—1. (2)

Consider the following problem: what matrix functions @(7") are totally non-
negative. We begin by recalling the definition of @(7"). It is not hard, see
[2, p. 80], to show that the characteristic values of a normal JacoBr matrix
are real and distinct, so that the matrix is diagonizable. Let A(1), ..., A(n)
be the characteristic values, and let y(k),

y(1, k)
gy =| Y
y(n, k)
be the eigen vector of 7' corresponding to A(k).y(k) is uniquely determined

up to multiplication by an arbitrary non-zero constant, and the matrix
Y = [y(¢, k)] is non-singular. Let L be the diagonal matrix with entries

A(l),..., A(n). We then have T = YL Y-!. For ¢(4) a real function
defined for 4 € S(T), the spectrum of T', S(T') = {A(1), ..., A(n)}, we first
define ¢(L) to be the diagonal matrix with entries ¢@[A(1)], ..., @[i(n)]

and then put
o(T)=Yeo (L) Y.

We note for future reference the following (familiar) properties:

i. if (A1) = A, then o(T') =T ;

ii. if @(4) = ¢;91(4) + copa(A) then @ (T') = ¢,91(T') 4 capo(T) ; (3)
iii. if @ (2) = @1(4)-@4(4) then ¢(T) = ¢, (T)-4(T);
iv. if ¢(A) = limg,(4) then?) ¢ (7T') = limg, (7).

7 —> n—>

Let us define
AH(T) = 1l.u.b. {A|2S(T)}, (4)
A-(T) = l.ub. {—A4|4Ae8(T)}.

Theorem 1b. Let T be a JacoBI matrix satisfying (2) and let us assume 3)
that A+(T) >0, A-(T)>0. Leta, k=1,2,...,b, k=1,2,..., and ¢
satisfy the conditions4)

3) This means that the i, j-th entry of ¢@(T') is the limit as n — oo of the 4, j-th entry of
@, (T) for 4,/ =1,2,..., n.

3) This involves no real loss of generality since if T = T — ul then A+(T,) = A+ (T)—pu
and A~ (T)=A4"(T)+u.

4) There may be finitely many or even no a,’s and finitely many or no b,’s.
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AT <ay <a <

. .
—

., 2ay < oo,
k

A (T)<b <bh, <..., 2b, 1< oo, (5)
k
c>0,
and let
@(2) = e I’“I(l _—:7) ;
V14 Ay
k(1+ bk)

then ¢(7') is totally non-negative.

In order to carry out the (simple) demonstration of this theorem we need
several elementary results concerning not necessarily normal JACOBI matrices.
It follows from [2, p.93] that a JACOBI matrix is totally non-negative if and
only if:

i. the entries not on the main diagonal are non-negative;
ii. the characteristic values are non-negative .

It follows that if ¢(4) = 1 — a4 where a > A+(T') then ¢(T)=1 — a1T
is totally non-negative. The matrix M is said to be sign regular if and only if

(— 1)i1+-~°+ik+f1+---+ik det M['El’ ~ "’k] > 0
15 - - 5 0kl

forall 1 <4 <i,<... <3, <n,1<);<je<...<Jp<n. Itisshownin
[2, p.93] that a JAacoBI matrix is sign regular if and only if:

i. the entries not on the main diagonal are non-positive ;

ii. the characteristic values are non-negative.

Finally if M is non-singular then M is totally non-negative if and only if
M- is sign regular, see [2, p.87]. These remarks taken together show that if
@(A) =[1 + 1A} then @(T)=[I + b1T]! is totally non-negative pro-
vided b> A-(T). By the CavcHy-BiNET formula the product of totally
non-negative matrices is again totally non-negative. Thus if a, > A+(T)
k=1,...,m and if b,>A4-(T)j=1,...,n, and if

IkI(l — Afay)

then ¢ (7') is totally non-negative. Here we have used iii. of (3). Using property
iv. of (3) the demonstration of our theorem is easily completed.
We now turn to the specific subject matter of the present paper. Let H be
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the real HILBERT space of functions % (x) defined and measurableon 0 <z < oo,
and such that

lull = [fu(@)da?
is finite. Let 7' be the differential operator
Tu(x) = q(x)u(x) — " () (7)
with the boundary condition
%(0) cos & -~ %' (0) sin x = 0. (8)

Here ¢g(x) is a continuous real function defined for 0 < x < oo, and « is
a parameter — m <« < 0. More specifically the domain of 7' consists of
those functions wu(x) e H such that: i. u(x) and «'(x) are absolutely conti-
nuous for 0 < & < co, and Tu € H; and ii. the condition (8) is satisfied.
Under suitable assumptions on ¢, 7' as defined above is self-adjoint, see [13,
Chapter III]. Let S(T') be the spectrum of 7' and E (dA) the resolution of the
identity in H associated with T. Then if ¢(4) is any BoREL measurable func-
tion defined for 4 ¢ S(7') we may define ¢ (7') by the forn}ula,

o(T) =_°f<p(z) E@dl)u
for all w ¢ H for which
Slo@1* @, B@hu) < oo.

If @ (4) is bounded then the domain of ¢ (7') is H. Suitable analogues of the
properties (3) are valid. It is natural to conjecture that the evident analogue
of Theorem 1b is true. In the present paper we assume that:

i. g(x) is continuous and bounded for 0 < z < oo ;
ii. f(1+ 22)]q(x)|de<oo.
0

Under these assumptions it can be shown that S(7') consists of the points
0 < 1 < oo, all belonging to the continuous spectrum, together with a finite
number of points 4,, < 4, <...< 4 <0 all belonging to the point spec-
trum. We will show that if

p(A) = [ecwg(l + 7,’3-)] L AeS(T),

where ¢ >0, A~ (T)<b, <b, <..., 2b, 1< oo, then ¢(7T) is variation
k
diminishing, i.e. V[p(T)u] < V[u] for all v ¢ H. Note that for v ¢ H, V[u]
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is defined as the minimum of the number of changes of sign of all the functions
u*(x) which are almost everywhere equal to u(x)for 0 < x < co. Con-
versely every bounded BOREL measurable ¢ defined for A ¢ S(7) for which
@ (T') is variation diminishing is essentially of the above form. The demonstra-
tion of this second statement, which is the more difficult and the more interest-
ing, is carried out using the asymptotic argument developed in [5]. However
the discrete spectrum which may be present here causes difficulties not en-
countered in the previous application of this method.

2. The spectral structure of 7'. The results of this section are taken from
TrrorMARSH [13, Chapter V], and to a lesser extent from Levinsox [8]. In
the few cases in which the results are not stated in the form we require this
is pointed out and the necessary modifications are indicated. We assume
throughout that:

i. ¢(z)is continuous and bounded for 0 < x < oo; (1)

ii. f(l+x2)lq(x)[dx<oo.

Let y(x, A) be the (unique) solution of the differential equation
Ty=124y, (0=<2z<o0), (2)
where 7'y = qy — y”, under the initial conditions
y¥(0,2) =sinx, 9 (0, 1)) = —cosx (—n<a <O0). (3)

From this definition it is easily proved that for each z,0 <z < oo, y(z, 1)
is an entire function of 1. Moreover setting 4 = 82 we find that for 0 < z < oo

ly(x,8%) | < K1+ 2z)el*!® s=0+1i7. (4)

Here and throughout we use K for any finite positive constant depending only
on ¢(-). TrroaMARSH proves a slightly different inequality, but his method
implies (4). For the special case « = 0 we have the stronger inequality;

ly(z,8) | < Kzel*l*/(1 4 |8]|2), (5)
see LEVINSON [8]. Let us define M (s) by the formula

28 M(s) = ss8inx — tcosx + ¢ Fe“zq(x)y(x,sz)dx . (6)
0

It is evident from (4) that if 8 = o + 47 then 28M (8) is analytic for v > 0,
and continuous for v >> 0. Moreover we have for s fixed, v > 0,

Y(z,8%) = e M(8) + o(e"*) x — + oo, (7)
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and for r=0,0>0,
y(x, 0%) = eiox Y (o) + e M (0) + o(1) = —> oo. (8)
It follows from (6) that
28 M(s) =ssinx +0(8) |8] >0, —m<ax <O, (9)
= —14 4+ 0(1) |8] >0, =0,
uniformly for v > 0. For the case « = 0 see [8]. It can also be shown that
2s M(s) =a + bs+o(l) |8]|—>0 (10)

uniformly for v > 0. Here a and b are not both 0. The relation (10) is proved
in [8] for the case x = 0. The general case is entirely similar. It is to be noted
that it is only in the demonstration of (10) that the full force of condition ii.
of (1) is needed. It follows from (9) and (10) that M (s) has at most finitely
many zeros on the line 8 = i7, 0 < v < co. Let these zeros be 1 L;, 1 L,, .. .,
1L, where 0<L,<L,<...<UL, . These zeros of M(s) are simple and
M (s) has no other zerosin Ims > 0.

It can be verified that the spectrum S(7') of 7' consists of 0 < 1< o0,
all points of which belong to the continuous spectrum, together with the
points A= —L;2,..., —L,2%, all belonging to the point spectrum. Let us
denote, as in § 1, by H the space of all real LEBESGUE measurable functions
u(z) on 0 < z < oo for which

-

| l]* = {u(x)zda;

is finite. Let us also denote by H” the space of all real LEBESGUE measurable
functions g(A) defined for 4 ¢ S(T') and such that

gl =— flg@WP2—4 | M (VD [2d2+ ZPrg(— L)

k=1
18 finite where

P, (ly(x, —LAPde =1 k=1,...,m.
0

With these definitions it follows that the mappings f—f" and g —g¢g~
defined®) by

1 (3) = f y(z, M f@)dz  AeS(T), (11)

5) Both integrals here must be interpreted as limits in the mean of order two; that is, /™ (1)
A
is the limit in H” of the sequence f; (1) = f y(=, A)f(z)dxz as A - - oo, etc.
0
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and

9" (z) = —,I;-gy(x, Wg(h a4 MVD) | 2dd+ Zy(w, — L) g(— L) Py, (12)
are isometric mappings of H onto H”, and of H” onto H. Moreover these
mappings are inverse; that is () = f, (g°)" = g. Finally f ¢ H is in the
domain D(T) of T if and only if Af~(4) e H™, and in this case we have
(TH™ () = 2{~(4) .

The operational calculus of § 1 now takes the form

P @ =1 [y D We W 1 MEDdL (13)
+k21?/(x, — LA (— L?) o (— Li?) Py

where ¢(4) is any bounded LEBESGUE measurable function on S(7'). Note
that ¢, (7) = ¢o(7) if and only if ¢@,(1) = @,(4) almost everywhere for
0 <1< oo, and @,(—L?) = @(—L;?) for k=1,...,m. Our problem
is, of course, to determine those functions ¢ for which ¢ (7') is a variation
diminishing transformation of H into itself.

For future use it is necessary for us to rewrite the inversion formula (12)
in a form suitable for the application of the calculus of residues. For each s
in the half plane 7 > 0 there exists a function y,(z,s) such that Ty, (x, s)
= 82y, (x, 8), and

| p1(z,8) | < Ke ™, (14)

| %1(2,8) — e | < Ke™|s|7 [|q()]|dé, (15)

for 0 < 2 < oco. For this result see LEviNsoN [8]. Note that 7' — Al anni-
hilates y(x, A) while 7' — 821 annihilates y,(x,s). We also have

|y (,8) —isef®| < Ke ™ [|q(&)|dE. (16)

This is easily deduced from the relation 5.9 of [8]. If a series of analytic func-
tions converges uniformly in a region to a (necessarily) analytic limit then the
derivatives also converge to the derivatives of the limit function. Applying
this principle to e—***y, (x, 8) one easily deduces that for 7> 0

(—3%_)" Ya(z,8) = @2)" e***[1 +0(1)] 2> +oo. (17)

The functions ¥, (z, o) and ¥, (x, o) are annihilated by 7' —¢21, and they are
independant as can be seen from (15). y(z, ¢2) is also annihilated by 7' — 21,
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and is therefore a linear combination of ¥, (z, o) and ¥,(x, o). Using (8) we
see that for ¢ > 0

y(x’02) ZM(G') yl(x3a) +M(G) yl(x)a)' (18)

If in (12) we first make the change of variables 4 = ¢? and then use (18) we
obtain

7 (@) = = [IH v, o) + M@)p (@, o)l g(o?) | M (o) [*do

+ Zy(x, — L) g(— L?) P, .

k=1

Using the relation w,(x, o) = y,(x, —0) and the fact that y(x, —L,?)
= ¢, % (x, 1 L,) this becomes

77 (@) = 2 [z, 0)g(e) M(o)t do (19)

- 00

+ 2y (@, 0 Ly) g(— L*) Py,

k=1

where P, = ¢, P,. We require an alternative expression for P,’. To this end
we set

T (A, 07) = fy(x, ) y(x,i7)dx.
0

Using the differential equations satisfied by ¥ and ¥, and integrating by parts
twice it is easy to show that for k(v) correctly chosen and = +L,, ..., L,

Y1 (A,47) = k(7) [ (A + 7%) . (20)

®

Since (y;) = y, we have

Y@, i1 = = [ k() (2 + o g2, 0) M (o) do (21)
+ 2 gy, § L) B(5) (2 — L) Py

We deform the line of integration in the integral on the right from Im s = 0
to Im s = r, where r is large and positive. This is easily justified using (9),
(10), and (14). We find that if —¢ M, is the residue of 1/M (s) at L, (M, is
then real because M (s) is real on the positive imaginary axis) we have
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a(w,i0) = 2 |2 £ o) (0 — L) (o, L) (—i )|
k=1

+2ni -?z—k(r) (2i7)1y,(, i7) M(ir)—l}

+ Zy1(@,iL3) b(z) (22 — L) Py
=1

+ RB(z),
where
92 oo+ ri

Rz)=— K@ @+ )y (e, 0) M) do.

—oo+7r

It is easy to see that | R(z) | < K e and since by CAucHY’s theorem R (zx)
is independant of 7 it follows that R(x) = 0. Itis nowevident that P,’ = —4M,
k=1,...,m, and also that 2k(t) = vM(¢7). Using this we now obtain
the inversion formula in the required form

7 @) = = [4:(2,0) 9(c") M (o) *do (22)
~ 4 2y,(@,iLy) g(—Ly?) U,y

3. Sufficient Conditions. We assume that conditions i. and ii. of (1) § 2 hold.

Theorem 3a. If b > A-(T) and if @(4,d) = (1 + 1/b)~! then ¢(T,0) is
variation diminishing; that is, for every v e H Ve (T, bd) u] < V[u].
From § 2 we recall the following properties of %, (z, ¢ 7) :

i Ty, + 22y =0;
ii. yy(x,t7) = e *7[1 4 0(1)] as r — oo ; . (1)
iii. y;(z,47) = —7re*[14+0(l)] a8z —>oco.

Let B(x, ) be defined by

)1 (x:it) = r 8in ﬂ(xa T) ’
¥/ (xz,1t) = rcos B(x, 1),
r>0.

Initially B(z, ) is determined only up to an integral multiple of 27; however
once it has been fixed for any value of z it is to be determined for other values
of z in such a way that it is continuous. We note that g(z, r) is equal to an
integral multiple of & only if y,(«,¢t) vanishes and that if f(z;, 7) = n=®



Variation Diminishing Transformations and STurM-LiouviLLE Systems 223

then B(x, r)>mn for x> z,. It is evident from (1) that we may take
f(oc0, T) = — Arctan 7—!. We recall that —w <a < 0. We assert and
will prove that if 72 > A-(T) then

Nn(x,27) >0 (0 <z<oo), (2)
and that
#(0,27)cosx+ #,'(0,27)sinx > 0. (3)
Consider the graph of 8(x, 7).

The assertions (2) and (3) are equivalent to the inequality £(0, v) > — «.
It is therefore sufficient to prove that B(0, 7) < — « is impossible. If
f(0, v) = — «, then — 72 belongs to the point spectrum of 7' contrary
to the assumption 72> A~ (7). In order to proceed we need the following
facts:

i. B(0, 7) is a continuous function of 7;

ii. 7, > v implies that B(0, 7;) > B(0, 7);

ifi. im B00,7)=w=.
The first statement is easily deduced from the continuity of y,(x,s) for
Ims >0,0 < x< oo, see [8, p.22]. The second and third statements are
simple deductions from the STuRM comparison theory applied to the interval
0 <z < oo, see CoppINGTON and LEVINSON [1, p. 210]. It follows that if
B(0, T) < — «, then there will exist a value 7; > v for which B(0, 7;)
= — x. But then — 7,2 belongs to the point spectrum of 7' which is
impossible. Thus (2) and (3) are valid.

Nowlet 4 ¢ D(T'), the domain of 7'. We will show that V[(bI + T)u] >V[u].

Let b = 7% (so that 2> A—(T)).
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A simple computation shows that
: d . d :
(1 + ) w = — (e, 90 () o (0 () w@) (e, i)

Since u e D(T'), we have #(0) = —rsinx, %' (0) = r cosx .
Thus

(;%—) () [ Y1(,07) | zm0 = 7 [41(0, i7) cos & + %, (0, i) sina]y, (0, i 7)2

and thus since B(0, ) > — &« we have

d :
91 () #(0) [42(2,59) | om0 = 3gm w(0).
For example if % (0) > 0 then the graph of u(x)/y,(x,+t) looks as follows.

z
z = u@)y, (@ i7)7?

/'\ . m
S s

It is evident that {u(z)/y,(x,77)} has a change of sign to the left of each
change of sign of % (x) and thus that

Vi{u(@)/y(,07)}] = Viu(x)] .

Next since, as is easily seen,

lim y, (z, 4 7)® {u(x) /4, (%, s7)} = 0O

T —> o

it follows that {y,(x, ¢7)% [u(z)/y,(x,+7)]'} has a change of sign to the right
of each change of sign of {u(x)/y,(z,¢7)} and thus that

Vg (2, iv) {u (@) [ (2, i7)}'}] = V[{w(@) (=, i7)}] .

These results together show that bl + T is variation increasing and so that
(bI + T)! is variation decreasing.

Theorem 3b. Assume that conditions (1) of § 2 hold.
A T)<b <b;<...,2b, <00, c>0, and if
k

¢(4) = [8"*{‘7(1 + /b)) A eS(T), (4)

then ¢(T') is variation decreasing on H .
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Since the product of variation diminishing transformations is variation
diminishing, we see from Theorem 3a that

(P(T, ’)’b/G)"Iij(p(T, bk) = ¢n(T)

is variation decreasing; i.e. Ve, (T)u] < V[u]. We have
lim @, (1) = @(4) 2e8(7).

n —>»

Moreover there is a constant M such that forall n =1, 2, ...
| ()| <M 2e8(T).
Using (13) of § 2 this implies that
lim || p(T)u — @, (T)u || = 0,

n —>» oo

and thus by a simple general argument

Vipg(T)u] <lim Vg, (T)u] < V[u],
as desired. e

As we shall see in § 4, formula (4) gives all the bounded variation decreasing
functions of 7', if A—(T) = 0. If however A—(T)> 0 there is one further
(trivial) variation decreasing function which is described in § 4.

4. Necessary Conditions. We require the following result, which is a special
case of a theorem of SCHOENBERG [9].

Theorem 4a. Let v(0?) ¢ L,(0, o) and let L(x) = 4 y(o?) cos zodo .
7

If for every a(t) € Li(— oo, oo) we have V[L*a] < V[a] then there exists
a function®)

V(0% = d[e IT (1 + 02/b,2)]™? (1)
k

where 0 <c,0<b, <b,<..., b, %< oo such that p(0?) = ¥(o?)
k

almost everywhere for 0 <o < co.
Here

L*a-(z) = ;L(m—t)a(t)dt —oo<r< oo,

and V[a] counts the number of changes of sign of a(z) for — coc <z < o0.

¢) Note that b%’s «correspond to» b’s.
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We again assume that conditions (1) of § 2 are satisfied. We further assume
that ¢(4) is a bounded LEBESGUE measurable function defined on S(7') such
that ¢(7') is variation diminishing in H. Qur objective in the present section
is to prove that ¢(4) must be essentially of the form (9) of § 1. Since the pro-
duct of variation decreasing operators is again variation decreasing it follows
from Theorem 3b that if y(4) = @(4) e~* then y(4) is variation decreasing.
The advantage of working with y(4) is that it is small at co. Let us set

Ka,) = — [ 9(z,0)9(t, o) p(0?) M (o) do (2)
— 4k§y1(x’ vLy) y (8, — Ly®) w(— Ly?) My .

Using (14) and (18) of § 2 it is easily seen that this formula defines K(x, )
as a continuous bounded function of  and ¢ for 0 <z, < & . It follows
from FuBinT's theorem that if u(x) e L;(0, oco) n H then

v(T)u-(x) = fK(x, t)u(t)dt . (3)
Consequently since y(7') is variation diminishing
VIf Kz, t)u(t) 8] < Viu(z)] @)
0

for every u € L,(0, co) ~ H. A simple approximation argument shows that
in fact (4) holds for u € L, (0, o0).

Lemma 4b. Under the above assumptions there exists a function ¥ of the
form (1) such that y(o?) = ¥(0?) almost everywhere for 0 <o < oo.
Let us define

4 = '
e 2
L(z) - dfcos xoy(o?) do. (5)
We will prove that for x and ¢ fixed, — co < 2,2 < oo
lim K(z 4+ r,t 4+ 7)=L(x — t). (8)
7> oo

Note for z and ¢ fixed we will have = + r and ¢ 4 r greater than or equal to 0
for all sufficiently large r, so that K(z + r, ¢ 4+ r) is well defined. We have

Kxz+r,t+r)=1+1,

where

oo

—;2;-- Syi(x+7r,0) y(t + r, 0% y(o?) M(s)'do,

—

I!



Variation Diminishing Transformations and STURM-LIOUVILLE Systems 227
m ]
I, = — 4;52'1?/1(519 +riLy)y (¢ +r, —Li) y(— L) M, .

By (14) and (15) of § 2
Y1(%, 0) = €*%° + 4(u, o)
where |d(u,0)| <K for 0<u,0<oco, and limd(x,s)=0 for
U —>» 00
0<o<oo. By (18) of §2

y(u, o?) = M(o)e~%° 4+ M (c)e'%® + e(u, o)
where

e(u,0) = M(o) 6(u, o) + M (o) 6(u, o).
Consequently

hizx 4+ r,o)y@ + r, o?) = e! @40 M(0) + el@+t+e MY (o) + R(x,t,7, 0)
where |R| < K|M(o)|, and lim R=0. We have I,=J; + J, + J;

where T
_z_ _}; i(a:—-t)ow(o&) do = L(a; — 1),
2= = [ etertsmno (I(G) M (@) p(o*) do,
%_}:R(x t,r,0) (o) M(s)dao.

By the RiEMANN-LEBESGUE theorem

].imJ2=O,

7—> 00

and by LEBESGUE’s theorem on dominated convergence

lim J3 = O .
7> o

It follows from (14) of § 2 that lim /,= 0. These results together establish
7> 00

(6). Let a(x) e L'(— oo, o0); using (4) we find that
V,[f K@+, t+7)a@)dt] < V,[a]

where by V,[a] we mean the number of changes of sign of a on — r < x < co.
Letting r — oo and using LEBESGUE’S limit theorem we see that V[L*a]
< V[a]. We have now only to apply Theorem 4a to obtain our desired result.

15 CMH vol. 36
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Before proceding let us take account of how far we are from our goal. We
have shown that for a function ¥(4) defined (1) (with o2 replaced by 4) y(4)
= ¥(A) almost everywhere for 0 < 1 < co. However we have not yet shown
that b, > L,, k=1,2,..., nor have we proved that ¢ (— L,2) = ¥ (— L,?)
k=1,...,m.

We now divide our argument into two cases, as the constant d of (1) is zero
or is not zero. The first case to which we will return at the end of our discussion
is trivial. In the following lemmas 4¢, 4d, and 4e we confine ourselves to the
case d 7% 0. Without loss of generality we may assume that d = 1.

Lemma 4c¢. Let K(z,?) be defined by (2). If 0<up <2, <...<2,,
0<t<ty...<t,, then

det[ K (x;, £;)] > 0.

Let 0 <é,<é,<...<éy, and 0 <7y <7,<...< 7ty include {z;}}
and {t,)} respectively. The sets {£,}Y and {z;}¥ will be specified more closely
in a moment. An easy deduction from (4) shows that the matrix [ K(§;, 7,)]
t,j=1,..., N is variation diminishing. Since d = 1 in (1) it is evident
that L(0) > 0, while by the RiEMANN-LEBESGUE theorem lim L(x) = 0.
Consequently if 4 is sufficiently large we have >

det [L({i — j} A)]; oy > 0,
det [L({s — j} 4)12 > 0.
By (6) it follows that if r is sufficiently large
det [K(r + 14,7 + jd)]; jo1 >0,
det [K(r + 14, r + jA)12 > 0.

Let {£}¥ include (in addition to {z;}}) {r + 14}, and {z;}{ include (in
addition to {#,}{") {r +44}}*!. Since [K(&,, 7,)]; /., is variation diminishing
two minors of the same size have the same sign, whenever the size is less than
the rank, see [6, Chapter V]. Our desired result now follows.

Lemma4d. Under the above assumptions b, > L,,, and ¢(— L,2) = ¥Y(—L,?
k=1,2,...,m—1.

Although the demonstration of this lemma is very elementary it is never-
theless long and tedious. Also the case « = 0 is in some degree special and to
begin with we assume — & <o« < 0.

It is evident from the discussion in § 3 that if —x <&« < 0 then y,(z,7)
>0 for 0 << oo, 7> L, — ¢ if Jis a sufficiently small positive quantity.
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1f
Yl(xa 'iT) = W(T)yl(x: if)
then

Y,(x,i7) = [K(z,t)y,(t,i7)dt.

By Lemma 4c with » = 1 it follows that
Yi(,i1) >0 O0<x<oo,7>L,— 4. (7)

Alternatively we have the representation

Yi(z,i7) = —;— j'oyl(x, o) k(t) (6 4+ 12! ¥(o?) M (o) 'do (8)

— 4 Ty, iLy) k(7) (72 — L)t p(— L) M,
k=1

see (13) and (22) of § 2. We will show that if the conclusion of our lemma are
not true we can use (8) to contradict (7).

Step 1. b, > L,. Suppose this is false and that b, < L,. Deform the line
of integration in the integral on the right hand side of (8) from Ims = 0,

to Ims = r, where r > b;. We find that if b, = b, = ... = by < by, and if
Yn(s?) = (s + b,2)N ¥ (s?) then
Yi(z,t7) =

i) 2f) (=110 (35) [0 (@00 ()4 7)1 Biv(0) o+ 80 i + B ),

where for some € >0 R(z) = O(e~®+9") as x — co. Using (17) of § 2 we
now see that if b, < L,

Yi(2,47) = c k(7) (v — b))V 1 e~"7[1 + o(1)] (9)

where ¢ is a positive constant independant of . Now k(z) changes sign as 7
crosses L,,, since k(t) = 3v M (i7), see the end of § 2. Therefore if (9) holds
it is possible to contradict (7).

Step 2. b, > L,. The argument here is almost exactly as above. Assume
b, = L,. Choose r > L, and deform the line of integration in (8) to Ims = r.
We obtain

Yy(a, 1) = (2) (V) @) (53] (2, 8) B(x) (6 + o) Pin(e)

(8 + iLy)™N{(s — ¢ L)) M(8)"}]s =iz, + RB(2)
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where R(z) = O(e~l:*9%)  and from this it is apparent that

Yi(z,17) = c k(1) (v2 — L2) 1 M, 2V e~ 51% [1 4 0(1)], (10)
where here again ¢ is a positive constant independant of 7, ete.

Step 3. w(—L®) = ¥Y(—L,%). Choose r> L,, etc. Let 7, be the integral
on the right of (8). Then the usual contour integration argument gives

I, = (271)(2[7) y1 (%, 0 Ly) k(7) (v° — Ly®)~H(— o M) P (— Ly?) + R (=)

where R(x) = O(e~%+9%) for some ¢ > 0. Let I, be the sum on the right
of (8). Then

I, = —4y,(2,1L,) k(7) (v — L®)' M, p(— L?) + B(x)
where again R(z) = O(e~%+9%) for some e > 0. Thus

Yy (#,97) = 4k(7) (v — L*)7 ML[P(— L) — p(— L)) n(z, 1 Ly) + R(z) .
(11)

Since k(7) changes sign across L,, (11) can be made to contradict (7) just as
before, unless y(— L,?) = ¥(—L,?).

Repeated application of steps 1., 2., and 3. proves that b, > L,, and that
v(—L)=¥Y(—-L2k=1,...,m — 1.

Step 4. b, > L,,. Arguing just as in step 2 we find that if 7+ > L,,
Yi(z,47) = c k(7) (v* — L) M, 2V e~ I™2[1 + o(1)] (12)

where ¢ is a positive constant independant of z. Since by (9) of §2 M (i7) < 0
if v>L,, we have M, >0 and k(v) <0. Thus (12) contradicts (7).

It remains to indicate the modifications that are necessary if o« = 0. The
difficulty is that the proof of (7) is in default, due to the fact that no matter
how small 6> 0 is chosen y,(x,%7) has one change of sign in 0 < z < oo,
if L,—d<t<L,. We will prove that for é > 0 sufficiently small and
for each ¢, L, — d<tv<L,, the inequality Y,(z,%t) > 0 holds for all
sufficiently large x, which is all we need. Choose a value z, for which
Y, (%o, tL,,) > 0. Since, as is easily seen, lim Y,(z,¢7) = Y,(»,1L,) there

> L
isad,L, <L, —b8<L, suchthat Y, (2. i7)>0 if L, —8<t<L,.
Now y,;(x,47) has one change of sign, and consequently Y,(z,%t) has
either no changes of sign or one change of sign. If Y,(«, ¢7) has no changes
of sign then since Y,(z,,17) >0 we must have Y,(z,%7) >0 for 0< 2z
< oo. If Y,(x,77) has one change of sign we proceed as follows. Theorem
1a of § 1 together with Lemma 4c shows that since y,(z, ¢7) is first negative
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and then positive, Y,(z,17) must be first negative and then positive, that
is it must be non-negative for all sufficiently large x.

Lemma 4e. Under the above assumptions y(—L,2) = ¥Y(—L,?).

The argument here is somewhat different from that used to prove the pre-
ceding lemma. In what follows we shall for the sake of simplicity assume that
by < by, i.e. N = 1. This involves no loss of generality?). In the formula (2)
let us deform the line of integration from Ims = 0,to Ims = r, where
b, <r<b,. Taking Lemma 4d into account we find that if ¥, (s?) =
(8% + b,%) ¥(s?) then

K(z,t) = I1,(z,t) + I,(x,t) + R(x,1), (13)
where
I(2,t) = 4 M,[P(—L,%) — p(— L))y (x, 1 L)y (¢, — L%,
Iy(x,t) = 2[by M(ihy)]* ¥y (—bi*)y1(z, iby) y (¢, —by?) ,
and where for some ¢ > 0
| R(z,t) | < K e~ BsteaE—0, (14)

Let us examine the asymptotic behaviour of I, and I,. We have
yt, —L,%) = c,y,(x,2L,). Thus if 4M,c,[¥Y(—L,}) —yw(—L,2)]=4,
then

I(x,t)=Ae Im@E+0[] L o(1)]as z,t - oo. (15)
Similarly
I,(z,t) = Be 2@=9[1 4 0(1)] as2,t > oo. (16)

In obtaining these results we have used formulas (7) and (15) from § 2. We
note that B > 0, for the explicit expression for B shows that it is not 0,
and B < 0 is impossible since it would imply K(z,?) <0 for certain large
values of 2 and ¢, which contradicts the case » = 1 of Lemma 4c¢. In order
to prove our lemma it is enough to show that 4 = 0. It is trivial to see that
A > 0, since the contrary assumption would imply K(z,?) <0 for certain
large values etc. By Lemma 4c¢ if 0 <z, < z,, 0 <{, <{t,, then

. K(zq, ty) K(zy, )
4= e[yl o] >0

Let 6 = (b, —L,,)/(b, + L,,) and choose 0 < 4; <i,<1. Weset z; = u,
2y = ul0, t; = A,u,t, = Au. Using (13)—(16) we find that

7) It is always possible to replace (A1) by v(4)[1 + A/p*]~* where L, < p? < b;.
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K(z,,ts) b
— 2 & vebh(M—-MNr g3 4 — oo ,
K(xls tl)
andif 4 £0
K(z,, t,) L
— 2~ e Im(h=du g8 9 —> 00 .
K(xz; tl)

From this it is evident that for large u, 4 < 0. This contradiction shows
that 4 = 0.

Theorem 41. Let the assumptions (1) of § 2 hold. If ¢ is a bounded measurable
function on 8(7') such that ¢(7) is variation diminishing, then there exist

constants d real, ¢ >0, A~ (T)<b; <b,<..., b, 1< oo, such that8)
k
@(A) = d[eMI(1 + A/by)] 2 4  S(T) (17)
k
or
p(A) =0 for AeS(T)—{L,} . (18)

Suppose first that ¥ (0?) in Lemma 4b is not identically zero; i.e. d 0.
In this case our preceding arguments prove that there exist constants d # 0,
c>0, A (T)< b2 <b2<..., 2b,2< oo such that

k

y(o?) = d[e""”if (1 + a2/b;?)] !
and thus that
p(4) = d[ec"ﬂ(l + A/by)]?

where ¢ = ¢ — 1, b, = b,?, etc. Since by assumption 1/) is bounded on S(7)
we must have ¢ > 0.

There remains the case that ¥(¢?) in Lemma 4b is identically zero; i.e.
d = 0. In this case y(0%?) = 0 for 0 < 0 < oco. Using Step 3. of Lemma 4d
we find that in this case y(—L,%) =0 for k=1,...,m — 1. This gives
(18). Since if (1) has the form (18) every function in H is transformed into
a multiple of y,(z,¢L,) it is evident that ¢(7') is (trivially) variation
decreasing.

8) The relations (17) and (18) need hold only almost everywhere for 0 << A < oo.
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