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tlber die Reduktion und die Darstellungen
positiver quaternârer quadratischer Formen

von Oskab Webeb, Zurich

Einleitttng

Die Zahlentheorie ganz rationaler quaternârer Formen ist immer noch in
den Anfângen.

Im 3. Band der «History of the theory of numbers» von Dickson [2], orien-
tiert das zehnte Kapitel ûber die Untersuchungen und Ergebnisse auf diesem
Gebiet bis um 1920.

Ich erwàhne vor allem die zahlreichen Arbeiten Liouvilles, die er in den
Jahren 1860-1865 in seinem Journal publiziert hat. Die von ihm behandelten
positiven quaternâren Formen lassen sich aile als Summe von binâren Formen
auffassen; aie sind vornehmlich vom Typus

f(x, y, z, w) ax* + by* + cz* + dw*.
Dièse Auswahl entsprichfc der verwendeten Beweismethode; die gegebene

Zahl n wird in zwei Summanden zerlegt und jeder Summand dureh die binâre
Teilform dargestellt, wobei die bekannten Darstellungsgesetze binârer Formen
verwendet werden kônnen, also :

f(x, y, z, w) f'(z, y) + f"(z, w) nf + n" n
Zur Bewâltigung dièses Kalkuls hat Liouville eigene Zerlegungsformeln,

seine «formules générales qui peuvent être utiles dans la théorie des nombres»
gefunden. Leider aber hat er die meisten Resultate, insbesondere dièse For-
meln, ohne Beweise verôffentlicht. Einerseits erwâhnt er, da6 aile seine For-
meln aus der Théorie der elliptischen Funktionen abgeleitet werden kônnen,
anderseits betont er ausdrûcklich, daB man zum Beweis nur die elementarsten
Prinzipien der Algebra zu verwenden habe.

Tatsàchlich hat man seither die meisten dieser Formeln elementar beweisen
kônnen. Auch hat Pépin [5], mittels dieser Formeln viele Resultate Liouvilles
nachtrâglich abgeleitet. Andere Ergebnisse konnten nur mit der Théorie ellip-
tischer Funktionen erhalten werden. Dazu gehôrt das Darstellungsgesetz der
Form

F x* + y* + z2 + 5w2,
welches in meiner Arbeit verwendet wird. Chapelon [1] beweist dièses Gesetz
im AnschluB an die Untersuchung der Transformationsformeln 5. Ordnung
der Thetafunktionen1).

x) Seine in [1] auf S. 102 publizierte Formel (92) ist, nach leichten Umrechnungen, mit der
LiotrviLLBschen Formel identisch.
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Erst spâter wurde die Reduktionstheorie der positiven quaternàren Formen
(Minkowski, Jitlia) entwickelt, welehe eine systematische zahlentheoretische
Untersuchung gestattet. Der allgemeinen Reduktionstheorie positiver quadra-
tischer Formen ist die Arbeit [7] meines verehrten Lehrers gewidmet; deren
Studium ist die Grundlage der vorliegenden Arbeit geworden.

Im ersten Kapitel werden die Methoden der Reduktionstheorie auf den

quaternàren Fall spezialisiert. Das Darstellungsproblem wird durch den Begrifï
des Gitters geometrisiert. Von groBer Bedeutung ist im quaternàren Fall, mit
Ausnahme der einzigen Formenklasse mit Diskriminante D 4, die Môglich-
keit der Reduktion naeh sukzessiven Minima, d.h. nach kleinstmôglichen
Basisvektoren im Sinne der durch die Formenklasse im Gitter induzierten
euklidischen Metrik.

Ferner enthàlt das Kapitel die notwendigen und hinreichenden Bedingungen
fur Diskriminantenzahlen.

Im zweiten Kapitel werden die Methoden des ersten Kapitels auf die Formen
mit Diskriminante D 5 angewendet, der kleinsten Diskriminante, die keine
Quadratzahl ist. (Denn im Falle einer Quadratzahl, aber auch nur dann, kann
die Formenklasse durch Anwendung der Idealtheorie auf verallgemeinerte
Quaternionenalgebren untersucht werden.2)

Dièse Anwendung fûhrt miihelos zu den reduzierten Formen und zur Kennt-
nis aller Transformationen, welche reduzierte in reduzierte Formen ûberfûhren.
Es zeigt sich, da6 zu D 5 eine einzige, zweiseitige Klasse existiert.

Im dritten Kapitel wird das Darstellungsproblem fur die Formenklasse
D 5 gelôst. Dabei ergeben sich einfache Darstellungssâtze sowohl fur be-

liebige wie auch fur teilerfremde Darstellungen; im ersten Fall tritt eine gewisse
Teilersumme, im zweiten Fall ein gewisses Primzahlprodukt auf. Beide Funk-
tionen, die durch Eisenstein und Liouville gefunden wurden, kônnen suk-
zessive ineinander umgeformt werden. Zum Beweis der Darstellungssâtze wird
ûber die Summe von Quadraten eine Relation zur LiOTmixEschen Form F
hergestellt.

In den Ergânzungen werden noch andere Beispiele einklassiger Diskrimi-
nanten erwâhnt. Man darfvermuten, da8 dabei im Darstellungsgesetz stets eine

gewisse, von der Diskriminante abhângige Teilersumme auftritt; dièse Funk-
tion steht in Beziehung zur Théorie der quadratischen Reste modulo der
Diskriminante D.

*) H. Gross, Darstellungsanzahlen von quatern&ren quadratischen Stammformen mit qua-
dratischer Diskriminante. Comment. Math. Helv. 34 (I960), 198-221.
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1. KAPITEL

Grundlagen

Der réelle, vierdimensionale Vektorraum EA mit Basisvektoren ë1, e2, e3, e4
kann mittels einer positiv definiten, quaternàren quadratischen Form / metri-
siert werden. Eine solche Form wird in dieser Arbeit kurz als positive quater-
nâre Form bezeichnet; sie hat die Gestalt

4

f f(x1,x2,x3,x4)^ E ÇaXiX*

mit Variabeln x{ und reellen, symmetrischen Koeffizienten gik gki. Ich
schreibe dafur auch

/ f(x,y, z, w) ax2 + by2 + cz2 + dw2 + exy -f- fxz + gxw + hyz +
(1)

indem ofifenbar in dieser nicht-symmetrischen Darstellung die Variabeln mit
x,y,z,w bezeichnet sind und

9u », 922 b, g33 c, gr44 d, 2gl2 e, 2g13 /, 2gl4t gr, 2^23 h,
2g2é &, 2^34 l gesetzt wird.

Ist nun a E ^ et- ein beliebiger Vektor des JS?4, so definiert man
i

die Norm von a : JV a /(«i, #2> a3> aé) ^ ^ und di© Lange von a:

4

Mit der / zugeordneten Bilinearform f(xi9 y{) % QihXxyk erklârt man

das Skalarprodukt zweier Vektoren a E a^,., S Z1 6tef :

i i
(3,5)= Z 0aaA.

Bezeichnet ferner (gik) die Koeffizientenmatrix von /,((?! ihre
Déterminante, so heiBe die réelle Zahl

D= 16-| (?|
Dishiminante der Form /.

Bilden die Vektoren e/ eine neue Basis des E4, so bestehen die Transfor-
mationsgleichungen :

th' E tik l, (k 1 4)
(2)

î1 (<iJfc) Transformationsmatrix mit I TI 4= 0
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Dabei transformieren sich die Vektorkomponenten nach den Gleichungen :

x€= Z tikx\ (i= 1...4). (3)
le

Fordert man die Invarianz der Norm gegenûber Basistransformationen, so
induziert jede solche Transformation vermôge der Gleichungen (3) eine
Transformation der Form f(xl9 x2, xz, #4) in eine neue Form /'(#/, x2 xzr, #4')

Um die Ânderung der quaternàren Form bei solchen Transformationen zu
ûberblicken, kann man die Matrizenrechnung verwenden. Bildet man die
Komponentenmatrizen

X

so sind die Gleichungen (3) âquivalent zur Matrizengleichung :

X TY. (4)

Bedeutet ferner A allgemein die transponierte Matrix von A, so gilt A • B

Ordnet man nun jeder quaternàren Form / die Matrix X G X mit G (gik)

G zu, welche als Elément der 1. Zeile und 1. Spalte Zgikxixk und sonst
lauter Nullen enthâlt, so folgt bei Basistransformation nach (4) :

{TY)= Y{TGT)Y.
Also hat die transformierte Form als Koeffizientenmatrix:

G' TGT
Die Discriminante der neuen Form ist

D' 16|<?'| 19\TGT\ \T\*.16-\G\ \T\*-D, (5)

d.h. sie entsteht aus der ursprûnglichen Diskriminante durch Multiplikation
mit einer Quadratzahl.

Unter den Basistransformationen ist die folgende jACOBiscAe Transformation
von besonderer Wichtigkeit. Sie beruht, nach dem Prinzip der quadratischen
Ergânzung, auf der Identitât:

f(x, y, z, w) =<x(x + <xty + <%2z + *zw)* + fi(y + f}xz + /5aw)2 + y(z
+ âwK
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Offenbar ist die Form / dann und nur dann positiv définit, wenn hierin «, /?,

y, d positive Zahlen sind.
Also existiert die jACOBische Transformation

oc3w)

(6)

welche die Form / in die Form /' Ç\ + £| + £\ + fj ûberfûhrt.
Damit ist gezeigt :

Satz 1: Jede positive quaternâre Form definiert im EA eine euklidische Metrik.
Die Ci heifien deshalb rechtwinklige Vektorkomponenten.

Ferner gilt nach (6) fur die JACOBische Transformation T :

| T'11 | T | -1 ]/<K-p-Y-â und somit nach (5): D Wocpyô

d.h. die Diskriminante D ist notwendig eine positive Zahl. Setzen wir fur
ailes folgende voraus, daB in der Darstellung (1): / f(x, y, z, w) die Koef-
fizienten a, 6, l ganze Zahlen sind (ganzzahlige quaternâre Form), so
ist auch ihre Diskriminante

D

2a
e

f
g

c

26
h
k

f
h
2c

l

g
k
l
2d

(7)

stets eine ganze Zahl.
Berechnet man D nach (7) und schreibt man den Ausdruck modulo 4, so

folgt die Kongruenz :

D =(el + fk + gh)2 mod 4 d.h.

Satz 2. Die Diskriminante D einer ganzzahligen positiven quaternàren Form
ist eine positive ganze Zahl, die modulo 4 kongruent 0 oder 1 ist.

Hievon gilt auch die Umkehrung

Satz 3. Zu jeder positiven ganzen Zahl D > 1 welche kongruent 0 oder l
modulo 4 ist, existiert stets eine ganzzahlige positive quaternâre Form.

Zum Beweis zeige ich die Existenz einer positiven quaternàren Form, in der
mindestens die Koeffizienten / und g NuU sind, also

ax% + by2 + cz2 + dw2 + exy + hyz + kyw + Izw

<x(x + (KlV)2 + fi(y + P,z + faw)2 + y(z + yxw)2 + dw2

Ihre Diskriminante hat, wie leicht zu verifizieren, die Gestalt
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D (4a6 — e2).(4cd - Z2) — éa(dh2 - Ihk + cife2) (8)

und die Koeffizienten oc, /?, y, ô haben die Werte

éab— e2 (4ab — e2) c — ah2
y 1<x a fi y - 7—r1—9éa r éab — e2

D
4[(4a6 —ea)c-aA2]

Also ist dièse Form genau dann positiv, wenn die Bedingungen

a>0, 4tab — e2>0, (4a6 — 62)c — ah2 > 0 (9)
erftillt sind.

Somit ist zu zeigen, daB jede zulâssige Zahl D unter Berûcksichtigung der
Bedingungen (9) auf die (îestalt (8) gebracht werden kann.

1) D gerade
Als SpezialfâUe von (8) erhâlt man fur

a 6 c l, e=l,Z O, A=l, & 0 : D 8d, also
#2 + 2/2 + z2 + dw2 + xy + yz (x + \y)2 + }(y + fa;)2 + \z2 +
und fur
a==6 c=l, e=l, Z 0, fc=l,Jfe=l:D=8d — 4,
also
«2 + y2 + «2 + dM?2 + ^y + y« + yw (a? + Jy)2 + f (y + f z + f
Somit gibt es zu D 0 mod 4 stets positive quaternâre Formen.

2) D ungerade
Aus (8) wird flir

a 6 c=l, e=l, 1=1, A=l,fc 0:D 8d
also

3î2 + y2 + 22 + dw2 -\- xy •+¦ yz + zw
(x + \y)2 + i(y + fz)2 + f(z + f^)2 + (d - f)^2. (10)

Wàhrend damit das Problem bei D 5 mod 8 gelôst ist, finde ieh keine
solche Formel bei D 1 mod 8.

Um den Satz allgemein bei ungeradem D zu beweisen, unterseheide ich fol-
gende drei Fàlle:

1.FalL D besitzt eine Zerlegung vom Tjrpus D A-B mit A B =3
modulo 4.

Jetzt ist D in der Form D (4a6 — e2) (écd — l2) darstellbar, d.h. es exi-
stiert eine positive quaternâre Form, welche die Summe zweier binàrer Formen
ist. Man vergleiche Formel (8) bei h 0, h 0.
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Beispiel: D 33 3-11 (41 - l)(4-3 - 1).

/ x2 + y2 + xy + z2 + 3w2 + zw

2. Fall. D besitzt keine Zerlegung vom Typus D A-B mit A B 3

modulo 4 und ist keine Quadratzahl.
Nach der Théorie der quadratischen Reste gibt es eine Primzahl p 3

mod 4, so daB das JACOBI-Symbol

I 1 -f-1, d.h. —Z>) quadratischer Rest mod p ist.

Denn nach Voraussetzung ist D N2-E, wo £ quadratfrei ist. Sei q ein
Primfaktor von E und E B-q, wobei q und aile Primzahlen von B kon-
gruent 1 modulo 4 sind. Dann gibt es ein m mit

-J — 1; m 1 mod B; m 3 mod 4.

In derselben Restklasse (mod é-E) existiert eine Primzahl p, die nicht in
N aufgeht.

Nun folgt unter Verwendung des quadratischen Reziprozitâtsgesetzes

(-V\ (^E\ _ /jzi\ (B\ (±\ _ _ (P\ (P\ _ _ (m\ (m\ _\P) \PJ \P)\P)\PJ~ \Bj\q) \BJ\q) "*" *'

Damit ist die Kongruenz D + t2 0 mod p lôsbar ; unter den Lôsungen
gibt es sicher eine gerade t 2-A, so daB eine Darstellung

D + 4.A2 (46 - e2) (4d — l!2)

môglich ist. Dièse Darstellung entspricht Formel (8), wenn man dort a c 1,
h 0, & J. setzt, wobei offenbar (9) erfûllt werden kann q.e.d.
Beispiel: D 1009- p 11 ; die Kongruenz D + t2 0 mod 11 hat die Lô-

sung t 6 2 • A
Aus 1009 + 36 11. 95 folgt
/ x2 + Sy2 + z2 + 24w2 + xy + Syw + zw

3. Fall. D besitzt keine Zerlegung vom Typus D A - B mit A =B =3
modulo 4, ist aber eine Quadratzahl.

Es ist D u2v, wobei u 1 mod 4 und keine Quadratzahl ist. Somit ist,
wie soeben beim 2. Fall gezeigt wurde, die Zahl u2*-1 wie folgt darstellbar:

uzv-i + 4-A2 (eh — e2) (4tr — s2)

Daraus folgt

U2v (^2*-i + 4t-A2)u — 4 • A2u (46 — e2) (4r — 82)u — 4 • A2u

wobei sowohl 46 — e2 3 mod 4 als auch (4r — «2) ^ •= 3 mod 4 sind.
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Nun gibt es eine binâre Form

f(h,k) dh2 -lhk + uk2

mit Diskriminante 4ud — l2 (4r — s2)u, was damit identisch ist, dafi
f(h,k) die Zahl u darstellt. Man setze nàmlich fur die zu bestimmenden
Zahlen l, d :

l u, d - ganze Zahl wegen s ungerade, u 1 modulo 4.

Daraus folgt
u** (46 - e2) (4:ud - l2) - ±-A2u

also die Darstellung (8) bei a=l,c u,h==0ik A q.e.d.
Beispiel: D 289 172. u 17, p 3 ; die Kongruenz u + t2 0 mod 3

hat die Lôsung ^ 2 2-^4 D (17 + 4). 17 — 4-17 37-17
-4-17. Also Z= 17, d 6, d.h.
/(A, Jfc) 6A2 - 17A4 + 17ifc2 und
/ x2 + y2 + 17z2 + 6w2 + xy + yw + Ylzw

Die zahlentheoretische Untersuchung einer positiven quaternâren Form
wird geometrisiert durch den Begriff des Gitters, d.h. der Gesamtheit aller
ganzzahligen Linearkombinationen von vier linear unabhângigen Vektoren et-

des Eé.
Die ganzzahlige positive Form / definiert im Gitter eine euklidische Metrik

mit ganzzahligen Normen. Die Existenz eines Gittervektors
d xe1 + ye2 + ze3 + weA

mit Norm N > 0 bedeutet, dafi die Zahl N durch die Form / dargestellt wird.
Bei eigentlicher Darstellung, ggT(x,yiziw) 1, heiBt der Gittervektor
primitiv.

Fur das folgende betraehten wir nur noch jene Basistransformationen, bei
denen die neuen Basisvektoren wieder eine Gitterbasis bilden. Es gilt :

Die Transformation T (tik) ist dann und nur dann eine Transformation
der Gitterbasis, wenn T eine unimodulare Substitution ist, d.h. die

tik ganze Zahlen sind und | T | + 1 oder — 1 ist.
Die durch eine solche Matrix T nach (3) transformierte Form /' heiBt zur

ursprunglichen Form / équivalent. Bei der feineren Einteilung nach eigentlicher
Âquivalenz wird nur die Transformierbarkeit mit | T | +1 zugelassen.

Weil die Relation if âquivalent /» reflexiv, symmetrisch und transitiv ist,
definiert sie eine Einteilung der positiven quaternâren Formen in Klassen
àquivalenter Formen. Dabei ist nach (5) die Gleichheit der Diskriminante eine

notwendige Bedingung der Âquivalenz.
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Um fur dièse Klasseneinteilung ein Reprâsentantensystem zu erhalten,
definiert man die reduzierte Form.

Eine positive quaternâre Form heiBt reduziert, wenn die unendlich vielen
Ungleichungen

/** </(«!,«!, «8^4) *=1...4 (11)

fur aile Système ganzer Zahlen st mit ggT(sk s4) 1 erfullt sind.
Der reduzierten Form entspricht in geometrischer Formulierung die reduzierte

GiUerbasis.
Gehôrt nâmlich zur Gitterbasis ei als metrische Grundform die reduzierte

Form /, so heiBt die Basis reduziert. Nach (11) besagt dies:

fkk N(ek) <f{8l98%,8z,8é) N(s) mit ggT(sk, ,,*4) 1

d.h. die Gitterbasis e{ ist, geometrisch formuliert, reduziert, wenn
a) et kûrzester primitiver Gittervektor,

4
b) e2 kûrzester unter allen Gittervektoren s E st- • ef mit ggT (*2, £3, s4) 1,

4

c) e3 kûrzester unter allen Gittervektoren s S s* • e* mit ggT (s8, s€) 1,
i-l

4

d) e4 kûrzester unter allen Gittervektoren s — S ^ • e{ mit s4 i 1 ist.

(12)

Die Existenz einer reduzierten Gitterbasis ist aus folgenden zwei Grûnden
gesichert :

1) In jeder nicht leeren Menge von Gittervektoren, deren Normen ja eine
Teilmenge der naturliehen Zahlen bilden, gibt es (mindestens) einen kûrzesten
Vektor.

2) Jedes System von Gittervektoren, das zu einer Gitterbasis ergânzt wer-
den kann, heiBt primitives Vektorsystem. Nun gilt folgender Hilfssatz8):

4

Der Gittervektor s Z s{ et bildet mit den Gittervektoren îl9 eh_x

dann und nur dann ein primitives Vektorsystem, wenn der ggT(sk,..., 8A) 1

ist.
Weil somit jedes Gitter in bezug auf jede gegebene Metrik eine reduzierte

Gitterbasis besitzt, hat jede quaternâre Form eine âquivalente reduzierte Form.
Die arithmetischen Bedingungen (11) fur eine reduzierte Form werden we-

sentlich vereinfacht durch den von Minkowski bewiesenen

*) Fur die Begrûndung aller hier nicht bewiesenen Sâtze sei nochmala auf die Arbeit von
B. L. van der Waerden[7]: «Die Reduktionstheorie der positiven quadratischen Formen»
verwiesen.
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Satz4. (Erster Endlichkeitssatz) : Die unendlich vielen Ungleichungen (11)
8%nd bereits erfûllt, wenn man unter ihnen nur jene endlich vielen beriicksichtigt,
die man erhàtt, wenn man fur 84 die Zahlen 0, + 1, — 1 einsetzt.

Damit erhàlt man fur die quaternàre Form (1) folgende endlich viéle Re-
duktionsbedingungen :

a <b <c <d
\e\<a, \f\<a, \g\ <a,
\h\ <b |i| <6 (13)

\l\<c

+ e + f — h < a + b + e + g — k < a + b

— / — 9 — l < a + c —h — k — l < b + c

- f + 9+l<a + c -h+k+l<b + c

+ f — 9 + l < a + c +h — k + l < b + c

+ f + 9 — l < a + c +h + k — l < b + c

— e — / — gr — ^, — A; — 2 < « + 6 -f- c

— e — f + g — h + k + l<a + b + c

+ e-f-g + h + k-l<a + b + c

+ e + f — g-h + k + l<a + b + c

+ e + f + g-~h-k-l<a + b + c

+ e — f + g + h-k + l<a + b + c

Die quaternàre Form heifit eigentlich reduziert, wenn in allen diesen Unglei-
chungen nur das Zeichen < steht.

Ferner entnehme ich der Théorie der positiven quadratischen Formen die
fundamentale Ungleichung der Reduktionstheorie, welche speziell fur quaternàre

Formen besagt;

Satz 5. Ist f eine reduzierte quaternàre Form mit Diskriminante D, so besteht

ztoischen ihren Diagonalkoeffizienten a, 6, c, d und D die Ungleichung:

éabcd ^ D
(Bei ganzzahligen Koeff. ist also D > 4)

Als wichtige Folgerung erhâlt man, wenn man noch die Reduktionsbedingun-
gen Satz 4 (13) berûcksichtigt :
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Zu gegebener, fester Diskriminante D gibt es nur endlich viele Klassen;
ihre Anzahl heiBt Klassenzahl zu dieser Diskriminante.

Denn bei festem D sind aile ganzzahligen Koeffizienten von / beschrânkt.
In derselben Formenklasse kônnen mehrere, jedoch nur endlich viele redu-

zierte Formen auftreten. Damit stellt sich das Problem,
aile jene unimodularen Substitutionen T zu bestimmen, welche eine reduzierte
in eine âquivalente reduzierte Form transformieren. Ist dabei die transfor-
mierte mit der urspriingliehen Form identisch, so heiBt die Substitution
automorph.

Dazu beweist man in der allgemeinen Théorie :

Satz 6. (Zweiter Endlichkeitssatz) : Es gibt nur endlich viele unimodulare
Substitutionen, welche eine reduzierte quaternâre Form in eine âquivalente re-
duzierte Form ûberfûhren.

Zu diesen Transformationen gehoren stets die 24 16 Umkehrtransformationen

X! ± x. (i 1 4)

Bei einer eigentlich reduzierten Form sind dies aile Transformationen, weil
jeder Basisvektor der reduzierten Basis bis auf ± eindeutig bestimmt ist.

Bei einer uneigentlich reduzierten Form (d.h. in gewissen Reduktionsbedin-
gungen gilt das Gleichheitszeichen) gibt es auBer den Umkehrtransformationen
mindestens noch eine weitere Transformation T, welche / in eine âquivalente
reduzierte Form ûberfuhrt.

Ist z.B. a 6 c d,so existieren auBerdem die 4! 24 Vertauschungs-
transformationen, bei denen die Transformation nur in einer Permutation der
Variabeln besteht.

Fur meine Arbeit ist von besonderer Wichtigkeit, daB bei positiven quater-
nàren Formen der Begrifï der reduzierten Gitterbasis etwas weiter als (12)
gefaBt werden kann. Im vierdimensionalen Gitter mit metrischer Grundform
/ versteht man unter sukzessiven Minimalvektoren

vier Gittervektoren 51, 2a, sz, sA mit folgenden Eigenschaften:

a') st ist ein kurzester Gittervektor ^ Ô

b') l2 ist ein kurzester, von st linear unabhângiger Gittervektor,
c;) sz ist ein kurzester, von sl9 dz linear unabhângiger Gittervektor,
d;) 84 ist ein kurzester, von il9 l2, sz linear unabhângiger Gittervektor.

Obschon mehrere Système sukzessiver Minimalvektoren bestehen, sind ihre
Normen Nlt N2, N3, Ni9 die sogenannten
sukzessiven Minima, eindeutig bestimmt.
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W&hrend bei positiven quadratischen Formen in mehr als vier Variabeln,
wo dièse Begriffe ganz analog gebildet werden, die sukzessiven Minimalvek-
toren wohl eine Raumbasis, aber keine Gitterbasis bilden, gilt im quaternàren
Falle mit Ausnahme der einzigen Formenklasse mit Diskriminante D 4 :

Satz 7, In jedem vierdimensionalen Gitter mit Diskriminante D > 4 bildet
jedes System von vier sukzessiven Minimalvéktoren eine reduzierte Gitterbasis. In
der zu dieser Basis gehôrenden reduzierten quaternàren Forrn f gilt

Nk fkk (4=1... 4).

2. KAPITEL

Die Formenklasse mit Diskriminante D 5

In dieser Arbeit wird der Fall der Diskriminante D 5 eingehend behandelt.
Das Ziel dièses Kapitels besteht im Nachweis, dafi zu dieser Diskriminante

eine einzige zweiseitige Formenklasse existiert, deren Formen also zugleieh
eigentlich und uneigentlich âquivalent sind. Dabei werden die allgemeinen
Methoden des 1. Kapitels, insbesondere Satz 7, angewendet.

Nach Formel (10) findet man fur d 1 als reduzierte Form mit D 5 :

x2 + y2 + z2 + w2 + xy + yz + zw

Um fur ailes folgende môglichst einfache Verhâltnisse zu haben, verwende ieh

jene Form, die daraus durch die gerade Permutation P (— J entsteht :

/ x2 + y% + z2 + w2 + #2 + + y
(* + \z + $w)2 + (y + \z)2 + \{z - \w)2 + fw2. (14)

Gleichzeitig betrachte ich / als metrische Grundform des Gitters mit (redu-
zierter) Basis

^=(1,0,0,0) «,= (0,1,0,0) «,==(0,0,1,0) «4= (0,0,0,1).
Neben den Komponenten in bezug auf die Basis ti verwende ich die durch

die jACOBische Transformation (14) gelieferten rechttvinkligen Komponenten:

£i x + \z + \w £2 y + \z iB -^ (z — \w) £4 —— w

Vektorkomponenten bezûglich der et werden in runden, rechtwinklige
Komponenten in geschweiften Klammern geschrieben, also z.B.:
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e, (1 0 0 0) {1 0 0 0}

ea (0 1 0 0) {0 1 0 0}
f 1/2 1

*, (0, 0, 1, 0) |, i, -L-> 0

1/2
é, (o,o,o, i) U, o, —%-,

Wegen a=6=c=d=l haben aile sukzessiven Minima den Wert eins :

N, Nt N3 Nt 1

Man erhàlt deshalb die Gesamtheit der Minimalvektoren

als ganzzahlige Lôsungen der Gleichung Norm s=f(x,y,z>w) — l. Die
jACOBische Darstellung (14) liefert dafùr die Bedingung:

8/ 2(2x + z + tv)2 + 2(2y + z)2 + (2z — w)* + 5w2 8

Danach besitzt das Gitter die folgenden 20 Minimalvektoren, aile mitLange eins :

1) ± 1 0, 0, 0) ± {1 0, 0 0}

2) ± 0, 1 0, 0) ± {0, 1 0 0}

3) ±(-1, 0, 1, 1) ± lo, \, -Ç,

4) ±( 1, 1,-1,-1) ± jo, i, ^p-
-n

5) ± 0 0 0 1) ± {i 0

6) ±( 1, 0, 0,-1) ±

7) ± 0, 0, 1 0) ± |

0°' 4 '

8) ±( 0,-1, 1, 0) ± \\,-\, -^-' °

—Vïï
9) ±( 1, 1,-1, 0) ± " 1

io) ±( i, 0,-1, o) ± U.-J,
Die Skaîarprodukte zweier verschiedener Minimalvektoren sind in der nach-

stehenden Tabelle zusammengestellt. Dabei bedeutet z.B.
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12 das Skalarprodukt des +Vektors 1) mit dem +Vektor 2).

s Skalarprodukt

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

s

0
0

0

*
*
4

*
*
4

2
2

2
2

2

2

2

2

2

1

3

4
5

6

7

8

9
10

s

0

4
0

0

4

2

4

~4

3

3

3

3

3

3

3

3

3

1

2

4

5

6

7

8

9

10

s

0

4

-*
4

4
0

0

-4

4

4

4
4

4

4

4

4
4

1

2

3

5

6

7

8

9

10

s

0

4

-4
-4

4
0

-4
4

0

5

5

5

5

5

5

5

5

5

1

2

3

4

6

7

8

9

10

8

4
0

4

-4
-4

0

0

4

4

6

6

6

6

6

6
6

6

6

1

2

3

4
5

7

8

9

10

8

4
0

-4
4

4

4
0

0

7

7

7

7

7

7

7

7

7

1

2

3

4

5
6

8

9

10

s

4
4
4
0
0

4

4
0

-4

8

8

8

8

8

8

8

8

8

1

2

3

4

5

6

7

9

10

8

4
1
2

0

-4
0

4

4

~4
0

9

9

9

9

9

9

9

9

9

1

2

3

4

5

6

7

8

10

8

4
4
0

4

4
0

0

-4
4

10

10

10

10

10

10

10

10

10

1

2

3

4

5

6

7

8

9

8

4

-4
-4

0

4
0

-4
0

4

(15)

Die Kenntnis der Minimalvektoren gestattet nach Satz 7 (Kap. 1) folgendes
elementares Verfahren:

Je vier linear unabhângige Minimalvektoren bilden eine reduzierte Gitter-
basis, und umgekehrt besteht jede reduzierte Basis aus je vier lin. unabh.
Minimalvektoren. Die zur reduzierten Basis gehôrende metrische Fundamental-
form /' ist

reduziert und zur Farm f équivalent.

Gleiehzeitig liefert die Transformationsmatrix eine unimodulare Transformation

T, welehe die Form / in die âquivalente Form /' transformiert.
Dabei bestehen zwei Fâlle:
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1) /' /. T ist eine automorphe Substitution.
2) f =fi f. f ist eine weitere reduzierte Form derselben Formenklasse.
In Ûbereinstimmung mit Satz 6 gibt es nur endlich viele Transformationen

T der beschriebenen Art.

1) Automorphe Substitutionen

Die Gesamtheit der automorphen Substitutionen bildet eine endliche Gruppe,
weil offenbar das Produkt zweier solcher Substitutionen wieder automorph ist.

Von den Umkehrtransformationen sind einzig E Einheitstransformation
und — E automorph ; von den Vertauschungstransformationen ist auBer E die
Transformation F, welche die Basisvektoren 1, 3 und die Basisvektoren 2, 4

vertauscht, automorph:

x'
y'
z1

w'

z

w
X

V

V —
/ °

1 °
1

\ 0

0

0

0
1

1

0

0
0

°\
1 \
0

0 /

|F|
V2

F(/)

+ 1

/.

Jede automorphe Substitution A gibt AnlaB zu den folgenden vier auto-
morphen Substitutionen, wobei die Gesamtheit der Basisvektoren unverandert
bleibt:

EA=A, —E A —A AV —AV. (16)

Im allgemeinen ergeben je vier Minimalvektoren sl9 s2,^3,^4 mit den Ska-
larprodukten

eine automorphe Substitution.
Beispiel: Nach Tabelle (15) ist dies fur die Minimalvektoren 7, 9, 1, 3 der

Fall. Die neue Gitterbasis ist

Die Transformationsmatrix T (tik) ent-
hâlt nach (2) in der kten Spalte die Kom-
ponenten von ek in bezug aufdie Basis ti
und hat deshalb die Gestalt :

x' y + z — w
y1 y
z' x — y + w

\ / wr w
In der Tat ist

f(xf,y',z'9 wf) x* + y* + z* + w* + xz + xw + yz

13 CMH vol. 30



196 OSKAB WSBEB

Weil die Déterminante | T | den Wert — 1 hat, folgt, daB die durch / defi-
nierte Formenklasse zweiseitig ist. Denn ist /' eine quaternâre Form, die aus /
durch unimodulare Transformation G entsteht:

/' <?(/), so gilt auch/' 6?T(/);

von den beiden Transformationen ist die eine eigentlich, die andere uneigent-
lich unimodular.

Ferner gilt T2 E; die Zerlegung der automorphen Gruppe in Restklassen
nach der Untergruppe {T, T2 E} zeigt, daB in der Gruppe gleich viéle

eigentlieh als auch uneigentlich automorphe Substitutionen existieren.
Die Transformation T werde symbolisch mit (7, 9, 1, 3) bezeichnet, d.h. die

Spaltenvektoren ihrer Matrix sind die Minimalvektoren +7, + 9, +1, + 3

der Tabelle (15). Wenn ich mich derselben symbolischen Schreibweise bediene,
besitzt die Form /4) folgende automorphe Substitutionen, wobei von den vier
Substitutionen (16) nur eine notiert wird:

(1, 2, 7,5) E (7, 9, 1, 3) T (1, 3, 5, 8) (1, - 4, 5, 7)

(1, -3, 6, 9) (1, 4, 6, 10) (1, -2, 8, 5) (1, -4, 8, 10)

(1, 2, 9, 6) (1, 4, 9, 7) (1, - 2, 10, 6) (1, - 3, 10, 8)

(2, - 6, 3, 9) (2, 5, 3, - 8) (2, - 5, 4, 7) (2, 65 4, - 10)

(2, 1, 7, 4) (2, 6, 7, 9) (2, -1,-8, 3) (2, - 6, - 8, - 10)

(2, 1, 9, 3) (2, 5, 9, 7) (2, -1, -10, 4) (2, -5,-10, -8)
(3, 8, - 4, - 10) (3, -9,-4, 7) (3, 1, 5 2) (3, 9, 5, 7)

(3, -1,-6, 2) (3, - 8, - 6, - 10) (3, 1, 7, - 4) (3, 8, 7, 5)

(3,-1, -10, -4) (3, -9,-10, -6) (4, -1, -5, 2) (4, -10, -5, -8)
(4, 1, 6, 2) (4, 7, 6, 9) (4, -1,-8,-3) (4, -7,-8,-5)
(4, 1, 9, - 3) (4, 10, 9, 6) (5, -7,-6, 9) (5, -8,-6, 10)

(5, 2, 9, - 6) (5, - 8, 9, 3) (5, - 2, 10, - 6) (5, - 7, 10, - 4)

(6, 2, 73 - 5) (6, - 10, 7, 4) (6, - 2, 8, - 5) (6, - 9, 8, - 3)

(7, -4, 8, - 10) (7, - 9, 8, 3) (7, - 5, - 10, 8) (7, -9, - 10, 6)

(8, -5,-9, 7) (8, - 10, - 9, 6) (9, - 3, 10, - 8) (9, - 7, 10, 4)

Total 240 automorphe Substitutionen.
Zusammenfassend gilt

Satz 8. Die Formenklasse {/} besitzt eine Gruppe von 240 automorphen
Substitutionen, von denen die eine Hâlfte eigentlieh, die andere Hàlfte uneigentlich
unimodular ist.

Die Formenklasse ist somit zweiseitig.

*) Ist T fur die Form / automorph, so gflt fur f G(f) : QTQ-1(f) f, das heiût die
automorphen Substitutionen von / und f entsprechen sich eineindeutig.
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2. Beduzierte Formen

Die aus vier linear unabhàngigen Minimalvektoren gebildeten reduzierten
Gitterbasen, welche nicht zu automorphen Substitutionen fiïhren, haben als
metrisehe Grundformen neue reduzierte Formen derselben Klasse.

Reduzierte Formen, die durch Umkehr- und Vertauschungstransformatio-
nen gebildet werden kônnen und nach Satz 8 zu / in jedem Falle eigentlich
àquivalent sind, kônnen in derselben Teilmenge vereinigt werden.

Zur Abkurzung werde z2 -{- y2 + z2 + w2 Q gesetzt.

Teilmenge 1:

Aus der gegebenen Form / entstehen durch Umkehrung und Vertauschung :

Q

Q
Q
Q
Q

Q

Q
Q

Q

Q

Q

Q

±
±
±
±
±
±
±
±
±
±
±
±

xz
xz
xz
xz
xw
xw
xy
xy
xy
xy
xy
xy

±
±
±
±
±
±
±
±
±
±
±
±

xw
yw
yz
xw
yz
yz
yw
yz
xw
xw
xz
xz

±
±
±
±
±
±
±
±
±
±
±
±

yz
zw
yw
yw
zw
yw
zw
zw
zw
yz
zw
yw

Weil aile acht Vor-
zeichenkombinationen (17)
zulâssig sind, besteht
die Teilmenge aus

12.8 96 reduzierten Formen.

Teilmenge 2:

Zur Gitterbasis (7, 9, 1, 6) gehôrt nach Tabelle (15) die neue reduzierte Form

f2 x2 + y2 + z2 + w2 + xz + xw + yz + zw
(x + \z + \w)2 + (y + iz)2 + l(z + \w)2 + %w2.

Die eigentlich unimodulare Transformation T, welche / in /2 transformiert, ist

x' y -f z + w
T (7, 9, 1, 6) / 0 1 0 0 \ yr y

z1 x — y

Durch die Umkehrtransformationen, von denen zwei automorph sind,
entstehen acht Formen :
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Q
Q

Q

Q

Q

Q

Q

Q

+ xz
+ XZ

— XZ

+ xz
— XZ

— XZ

+ xz
— xz

+ xw
— xw
+ xw
+ xw
— xw
— xw
— xw
+ xw

+ yz
+ yz

- yz

- yz
+ yz

- yz

- 2/2

+ yz

+ zw
— zw
— zw
+ zw
+ zw
+ zw
— zw
— zw.

(18)

Die ûbrigen Vorzeichenkombinationen sind wegen den Reduktionsbedin-
gungen nicht zulâssig; die ausgeschlossenen Formen sind indefinit, z.B.

Q -\- xz -{- xw — yz — zw
(x + \z + \w)2 + (y- W + \{z - Iwf -lw\ D -3

Durch die Vertauschungstransformationen, von denen zwei automorph sind,
entstehen zwôlf Kombinationen der Variabeln; zu jeder dieser Kombinationen
sind die obigen acht Anordnungen der Vorzeichen môglich. Somit besteht die
Teilmenge 2 aus

12.8 96 reduzierten Formen.
Teilmenge 3:

Zur Gitterbasis (1, 10, 9, 5) gehôrt nach Tabelle (15) die neue reduzierte
Form

/3 x2 + y2 + z2 + w2 + xy + xz + xw + yz + yw + zw
(* + \y + \z + \w)2 + l(y + \z + \w)2 + }(z

Die eigentlich unimodulare Transformation, welche / in /3 transformiert, ist

x' x + y + z

T (1, 10, 9, 5) / 0 0 1 0 \ y1 z

zf —y — z

Durch die Umkehrtransformationen entstehen die acht Formen:

Q -f- xy + xz + %w + yz -\- yw + zw
Q + xy + xz — xw + yz — yw — zw
Q _j_ Xy — xz + xw — yz + yw — zw
Q — xy + xz + xw — yz — yw + zw (19)
Q — Xy — xz — xw + yz -f- yw + zw
Q + xy — xz — xw — yz — yw + zw
Q — xy + xz — xw — yz + yw — zw
Q — a?y — 0:2; -f- xw + yz — yw? — zt#
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Von den 64 Vorzeichenkombinationen werden die ubrigen, welche auf in-
definite Formen fûhren, durch die Reduktionsbedingungen ausgeschlossen.

Weil die Vertauschungstransformationen zu den automorphen Substitutio-
nen von /3 gehôren, besteht die Teilmenge 3 aus 8 reduzierten Formen.

Damit enthâlt die Formenklasse {/} insgesamt
200 reduzierte Formen.

Fordert man nach Minkowski bei einer reduzierten Form auBerdem, daB
die gemischten Koeffizienten /t- k (i ^ k) aile positiv oder Null sind, so exi-
stieren nur 25 normierte reduzierte Formen.

Nun soll noch, wie eingangs des Kapitels erwâhnt wurde, bewiesen werden,
daB damit nicht nur die reduzierten Formen der Klasse {/}, sondern iiberhaupt
aile reduzierten Formen mit Diskriminante D 5 aufgestellt sind.

Um das zu zeigen, benutze ich die fundamentale Ungleichung des Satzes 5:

4abcd < D 5.

Also kommen fur jede reduzierte Form mit D 5 nur die Werte
a b c d==l in Frage, d.h. in einem Gitter, das durch eine solche

Form metrisiert ist, haben aile Minimalvektoren die Lange eins und je vier
linear unabhângige bilden eine Gitterbasis.

Nach den Reduktionsbedingungen (13) kônnen die gemischten Koeffizienten
e l nur die Werte 0, +1, — 1 haben. Die Klassenzahl zu 5 5 kann
also bestimmt werden, wenn man aile reduzierten Formen mit

a b c d=l, e bis Z 0, + 1, — 1

bildet. Denn in dieser Menge sind aile Klassen mit D 5 vertreten.
Die dazu erforderliche Rechenarbeit wird abgekurzt, wenn man

Satz 2: D (e l + fk + gh)2 mod 4

benutzt, weil damit sofort die Paritât der Diskriminante entschieden werden
kann.

Beachtet man neben Satz 2 die Tatsache, daB man bei Vertauschung der
Variabeln stets in derselben Klasse bleibt, so erhàlt man nur noch die folgenden
Fâlle:
a) Nur die Koeffizienten g und h sind ungerade; die andern Koeffizienten sind

gerade : D 1 mod 4

x2 + y2 + z2 + w2 ± xw ± yz
(* ± l")1 + (»± W + l# + i™2, also D 9

b) Nur die Koeffizienten /, g und h sind ungerade; die andern Koeffizienten
sind gerade : D 1 mod 4
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Aile Formen sind reduziert und haben D 5 ; offenbar erhàlt man
genau die reduzierten Formen der Teilmenge 1 (17).

c) Nur die Koeffizienten /, g, h und l sind ungerade; die andern Koeffizien-
ten sind gerade : D 1 mod 4

Aile Formen, die reduziert sind, haben D 5. Man erhâlt die
Teilmenge 2 (18).

d) Aile sechs Koeffizienten e, /, g, h, Je, l sind ungerade: D 1 mod 4
Aile Formen, die reduziert sind, haben D 5. Man erhàlt die

Teilmenge 3 (19).
Damit ist endgiiltig bewiesen :

Satz 9. Zur Diskriminante D 5 existiert eine einzige zweiseitige Formen-
klasse.

Die Klasse enthàlt 200 reduzierte Formen, jedoch nur 25 normierte reduzierte
Formen.

3. KAPITEL

Darstellungcn durch die Formenklasse mit Diskriminante D 5

In diesem Kapitel werden die Darstellungen durch die Formenklasse D 5

untersucht.
Zu diesem Zwecke genùgt es, einen Reprâsentanten dieser Klasse zu be-

trachten, also die ganzzahligen Lôsungen der Gleiehung

f(x, y, z, w) z2 + y* + z2 + w2 + xz + xw + yz n

zu bestimmen, wobei n eine beliebig vorgegebene natiirliche Zahl ist.
Gesucht werden Oesetze fur die Anzahl der Lôsungen / n; dièse Anzahl

werde in diesem Kapitel mit
a) f(n) bezeichnet, wenn beliebige Darstellungen, die also einen ggT > 1

haben dûrfen, zugelassen sind,
b) fe(n) bezeiehnet, wenn nur eigentliche, d.h. teilerfremde Darstellungen ge-

zâhlt werden.
In jedem Falle heiBen zwei Darstellungen f(x,y,z9w) n, f(xf ,y',z\ wf)
n dann und nur dann gleich, wenn x a/, y y', z zf, w wr ist.
Ist / die metrische Grundform eines Gitters, so werden im Falle
a) die verschiedenen Gittervektoren mit Norm n,

im Falle
b) die verschiedenen primitiven Gittervektoren mit Norm n gezâhlt.
Durch Auflôsung der zu / n gleichwertigen Gleiehung
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# + z + w)2 + 2(2y + z)2 + (2z — w)2 + 5w2 8/ (20)

habe ich auf induktivem Wege fur die eigentlichen Darstellungen der Zahl n
folgende Begeln gefunden :

1. Jede natûrliche Zahl n wird eigentlich dargestellt.

2. n Primzahl ^ 5. Die Darstellungszahl hângt auBer n von der Restklasse
mod 5 ab, in der n liegt.
a) n p=2,3 mod 5, d.h. p ist (quadratischer) Nichtrest mod 5.

Die Regel gilt auch fur p 2 : fe(2) 30 so daB die Primzahl 2

keine besondere Stellung einnimmt.
b) n q 1, 4 mod 5, d.h. q ist (quadratischer) Rest mod 5.

/.(î) 20.(?+l)
3. n natûrliche, zu 5 teilerfremde Zahl, also

r s

n IIpkuk - IIqkvk pk Nichtreste mod 5 qk Reste mod 5

a) n 2, 3 mod 5

/e(w) 30 n-77(1 — 27(1 + —
b) n 1, 4 mod 5

/#(n) 20^.77(1 - —) • i7(l + —)
Der Fall 2) ist in 3) als Spezialfall enthalten.

4. n natûrliche, durch 5 teilbare Zahl, also

n 5u-IIpkuk nqkvk mit -a > 0

a) n 10, 15 mod 25, d.h. ra/5 =2,3 mod 5.

b) n =0,5, 20 mod 25, d.h. »/5 =0, 1, 4 mod 5

fAn) 2én-n(l--±-).n(l+~
*»i pfc *«i qk

Die in diesen Formeln auftretende Funktion
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kann allgemein ak zahlentheoretische Funktion P(n) definiert werden.
Istnamlich n lit? diePrimzahlzerlegungderbeliebigennatiirlichenZabi

n und verwendet man das JACOBI-Symbol

(1)= + 1, falls a Rest mod 5

falls a Nichtrest mod 5

— ] o falls a O mod 5

so kann die in Rede stehende Funktion wie folgt dargestellt werden :

P(n) n n \l + (-jj t-1] n \v + UÇ\ F-1] (21)

fur n> 1; P(l) 1

P(n) ist also stets eine natùrliehe Zahl.
Zusammenfassend gilt bei den eigentlichen Darstellungen durch die Formen-

klasse D 5 :

Satz 10:

30-P(n)1. 71

2. n
3. %

4. n

52,
1>

10

0,

3

4

5

15

,20

mod
mod
mod
mod

5

5

25
25

26-P(n)

Die folgenden Ausfuhrungen enthalten den Beweis dièses Satzes sowie das
entsprechende Gresetz fur beliebige Darstellungen f(n).

Zuerst einige Beispiele zu Satz 10 :

/#(1) 20, d.h. es gibt 20 Minimalvektoren, siehe Kapitel 2.

/a(4 n) { 4 • fe(n), falls n gerade
{ 2 • fé(n), falls n ungerade

denn 4 n und n haben mod 5 dasselbe quadratische Restverhalten.

/•(6) 40, /#(7) - 180, /#(8) 120, /#(9) 120

/#(5) 120, /#(10) - 130, /.(15) 260, /#(20) 240, /#(25) 600.

Um Satz 10 zu beweisen, wird ein gerades Vielfaches einer reduzierten Form /
(der Klasse D 5) ak quaternâre Form mit nur rein quadratischen Gliedern
dargestellt:

k-f(x9 ytz,w) aX2 + b Y* + cZ* + dW*
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wobei X o^x + oc2y + cc^z + oc^w k gerade, natûrliche Zahl;
Y PtX + p2y + p3z + pàw a,b,c,d>0;
Z y1x + YiV + y3% + y*w aile Koeffizienten ganze Zahlen.
W ^a + <52y + «M + #4^

Die Môglichkeit einer solchen Darstellung wird bei der jACOBischen
Transformation verwendet; ein Beispiel mit

k 8 liefert Gleichung (20) :

8./=2P + 2 Y2 + Z2 + 5 W2

Dabei ist 8-/ bereits das kleinste Vielfache einer reduzierten Form / der Klasse
D 5, das so umgeformt werden kann.

Die Gleichung (20) fûhrt, wenn man die Identitât

2I2 + 2P=(I+ Y)2 + (X - Y)2

verwendet, auf die besonders einfache Gestalt

/ xz + V% + 32 + W2 + XZ + #W + ^2
8 / (2x + 2y + 2z + w)2 + (2x — 2y + îi;)2 + (2z — w)2 + 5w2

(22)
Also kann jeder Darstellung f(x,yiz^w) n vermôge der Formeln

A 2x + 2y + 2z + w, B -(2x - 2y + w)
C -(2z-w), D=-w9 { '

eindeutig eine Darstellung

A2 + B2 + C2 + 5 D2 8 n
zugeordnet werden.

Damit ist der Zusammenhang mit der von Liouvillb (siehe Einleitung) be-
handelten Form

F (X, Y, Z, W) X2 + Y2 + Z2 + 5W2

hergestellt.
Fur ailes Folgende beziehen sich groBe Buchstaben auf dièse Form -F, kleine

Buchstaben auf die obige Form /.
Die Umkehrung der Formeln (22*) ergibt:

A-B + C + 2D A + B + C + Dx^ i y== _

C + D n

Somit stellt sich zuerst die Frage, ob auch jeder ganzzahligen Lôsung
F Sn vermôge (23) eine ganzzahlige Lôsung / n entspricht.
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Aus A2 + B2 + C2 + 5 D2 8 n folgt modulo 4:

A2 + B2 + C2 + D2 0 mod 4

Daraus erhâlt man die Folgerungen :

1. In jeder Lôsung F Sn sind die Zahlen A, B, C, D entweder aile gerade
oder aile ungerade.

2. In den Formeln (23) sind z, w stets ganze Zahlen.

3. Die Zahlen (A - B + C + 3D) und (A + B + G + D), siehe Formeln
(23), liegen in derselben Restklasse mod 4, denn dièse Aussage ist mit
B =D mod 2 gleichwertig.

Es bleibt also noch zu untersuchen, wann x und y in den Formeln (23)

ganze Zahlen sind.
a) A9 B, G, D sind gerade Zahlen.

Mit A 2A', B 2 j?', G 2C", D 2Df gilt A'2 + B'2 + C"2 + 5D'2
2w, also

A'* + B12 + C'2 + D'2 =A' + Bf + C + D' 0 mod 2

Somit ist y und wegen Folgerung 3. auch x eine ganze Zahl, d.h.
jeder geraden Lôsung F Sn entspricht umgekehrt eine ganzzahlige Lôsung

b) A, B, G, D sind ungerade Zahlen.

Mit A, B,C, D betraehten wir aile Lôsungen ±A, ±B, ±C, ±D von
F Sn, insgesamt 16 Lôsungen.

Weil modulo 2: ±A ±B ±C ±D =1 + 1 + 1 + 1=0 ist, gilt
±A ±B ±C ±D 0 oder 2 modulo 4

Von den 16 Môglichkeiten fûhren, wie man leicht verifiziert, genau je acht
zu den Restklassen 0 oder 2 modulo 4, d.h.
bei ungerader Darstellung F Sn liefert nur die Hâlfte nach (23) Darstel-
lungen von f n.

Nach a) und b) besteht, wenn man mit f(n) bzw. F(n) die Anzahl beliebiger
Darstellungen f n bzw. F n bezeichnet, die Anzahl f(n) aus allen
geraden Lôsungen F Sn und der Hâlfte aller ungeraden Lôsungen F Sn.

Weil offenbar die Anzahl der geraden Lôsungen F Sn : F (2n) betrâgt,
gilt
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Damit ist das Darstellungsgesetz der Form /, d.h. der Formenklasse D 5,
auf das entsprechende Gesetz der Form F zurùckgefûhrt.

Nach LiouvrLLE5) wird nun die natiirliche, gerade Zahl N durch die Form

F X2 + Y2 + Z* + 5TF2

in folgender Anzahl dargestellt:

N 2<*-5P-m mit oc>O, ggT(m, 10) 1

i + (-i)a(^)] • [2a+1 ~ (-lî"'5]\£m(-j)d (25)

— quadratische Restsymbole, ô zu d konjugierter Teiler
\ 5/ q y, jg von m.

mJ \ 5

Der wesentliche Bestandteil der Formel ist die Funktion

(s
\

— Summation liber aile Teiler d von n> (26)
5/

welche allgemein als zahlentheoretische Funktion definiert werden kann und
bei beliebigen Darstellungen an die Stelle der frtiher definierten Funktion
P{n), (21), tritt.

bei n ±2 mod 5, të\ - 1 gilt ij\ - (~j so da8 8(n)

bei (—I -f-l den ÛberschuB der Teilersumme 5 k ± 1 iiber die Teiler-

summe 5Jfc ± 2,

bei (-— 1 —1 den ÛberschuB der Teilersumme 5 k ± 2 iiber die Teiler-

summe 5 A ± 1 bedeutet.
Wie Liouville erwâhnt (Le. Seite 4), kann 8(n) als Produkt dargestellt

werden.
Ist nâmlich

n II t? die Primzahlzerlegung von n,
so gilt :

Dabei ist jeder Faktor eine geometrische Reihe, welche bei geradem Expo-
nenten mit 4-1, bei ungeradem Exponenten mit + 1 oder — 1 endet, je nach-
dem die Primzahl quadratischer Rest oder quadratischer Nichtrest modulo 5 ist.

*) Journal de Mathématiques, Jahrgang 1864, S. 1-12, vgl. die Bemerkungen der Einleitung.
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Beweis: Es ist n au • q mit ggT(a, q) 1

S In) E

die Funktion aS(w) ist also distributiv.
u Iap\ u (a\p Ia\Nunist /S(a«) E (-y) aw~^ E (-y) aw~^ a« + (y) a""1

womit gleichzeitig die Behauptung bewiesen ist, falls w nur eine Primzahl ent-
hâlt. Nimmt man also an, der Satz sei fur (&—1)-Primzahlen schon bewiesen,
so gilt er aueh fur 4-Primzahlen q.e.d.

Korollar. Aus der Gestalt der Faktoren, d.h. der geometrischen Reihen folgt
sofort, da8 die Funktion S(n) stets positiv, also eine natûrliche Zahlist.

Wir bestimmen nun zu gegebener Zahl n 28-5^-m die Funktion f(n) auf
Grund der Gleichungen (24) und (25).

2.f(n) F(2*+*-5P-m) + F(29+^5P-m) 1/3- ^
(m) + 1/3. fy+i - (-l)e- fe.)] [2^ + (_!)•. 5]

also

f(n) 5/3-[ 5^+i - (- 1)'- (-£)] • [2-+* + (- 1)*] • S(m) (28)

Weil bei der Fonnenklasse D 5 die Primzahl 2 keine besondere Stellung
einnimmt, mu6 sich dies auch formelmâBig ausdrûcken lassen. Um das zu
zeigen, setze ich

n 5P*n' mit nf 2*«m

und betrachte statt S (m) die Funktion 8(nf).
Unter Benutzung der Produktdarstellung (27) folgt:

8(n') {2* -2e-1 + 2*+2 -+ ...}
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Setzt man den letzten Ausdruck in (28) ein und beachtet man

so folgt abschlieBend das Darstellungsgesetz fur beliebige Darstellungen durch
die Formenklasse D 5 :

11. Die naturliche Zahl n 5&*n' mit ggT(nf, 5) 1 wird durch
die Formenklasse D 5 in folgender Anzahl dargestellt :

Zum Beispiel gilt bei p 0, also n n' und

n ± 1 mod 5 : f(n) 20 • 8(n)
n ±2 mod 5 : f(n) 30. S(n)

Satz 10 kann auf Satz 11 zurûckgefûhrt werden; dabei ist zu zeigen, wie
beim Ùbergang von beliebigen zu eigentlichen Darstellungen die Funktion (26)

durch die Funktion (21)

zu ersetzen ist.
Satz 11 kann abkiirzend durch

f(n)= X-8(n')9 n 5P.nf,

bezeichnet werden. Dabei ist A X I /?, I —1

ein Faktor, der vom Exponenten /? und vom quadratischen Restverhalten n'
mod 5 abhàngt.

Wir befassen uns vorerst nur noch mit jenen Darstellungen, die auBer der
Primzahl 5 keinen gemeinsamen Teiler > 1 besitzen, d.h. bei denen der ggT
hôchstens noch Diskriminantenteiler enthalt. Es gilt der

Hilfssatz. Die Anzahl der Lôsungen f(x,y,z,w) n mit ggT (#, y, z9 w)
5tt, u > 0 wird bei gleichbleibendem X durch die Formel

jr(n)= A-P(n')
gegeben.
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Beweis: Wir verwenden die bereits bewiesene Produktdarstellung (27) von
S(nr) und denken uns in f(n) X - 8(nr) die Funktion 8(n') in dieser Weise
dargestellt.

Es sei mm n ôP-n' und n' pk -n", wobei n" den Primfaktor p nicht
mehr enthàlt.

1. Schritt: Wir subtrahieren von f(n) aile Darstellungen, welche den ge-

meinsamen Teiler p enthalten; ihre Anzahl ist offenbar / —- falls k > 2 ist.

[Falls k < 2 ist, gibt es gar keine solchen Darstellungen; dann aber hat S(nf)
in bezug auf p schon die Form von P(n!). Analoges gilt fur die folgenden
Schritte.]

Der l.Rest besteht aus Darstellungen, deren ggT zu p teilerfremd ist:

Der Wert von A bleibt dabei erhalten, weil fl fest ist und zwei Zahlen, die
sich um eine Quadratzahl unterscheiden, dasselbe quadratische Restverhalten
haben.

Auf Grund der nach dem 1. Schritt erzielten Gleiehung ist es naheliegend,
folgendes Korollar zu beweisen :

Korollar. Es sei n! u-v, wobei der Faktor u nur die Primfaktoren px,
• • • y Vm enthâlt.

Ist nun f(n) A*S(nf) die Anzahl beliebiger Darstellungen durch die
Formenklasse D 5, so ist

gm(n) X-P(u)-8(v)
die Anzahl jener Darstellungen von n, deren ggT zu den m in ihr enthaltenen
Primzahlen plf pm teilerfremd ist. Ist insbesondere m die Anzahl der
in nf enthaltenen Primzahlen, also v 1 und 8(1) 1, so ist das Korollar
mit dem Hilfssatz identisch.

Der behandelte 1. Schritt besagt, daB das Korollar fur m 1 richtig ist.
Nach der Méthode der vollstândigen Induktion dûrfen wir die Gultigkeit des
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Korollars nach m-Schritten, d. h. fur ra-Primzahlen, die in einer beliebigen
natûrlichen Zahl N enthalten sind, annehmen.

Bei N n sei also

Um das Korollar auch bei (m + 1)-Primzahlen zu beweisen, sei v q* • w,
wobei w die Primzahl pm+1 q nicht mehr enthalte.

Jetzt sind noch die Darstellungen mit gemeinsamem Teiler q zu eliminieren.
Weil man die Darstellungen mit gemeinsamem Teiler px, pm bereits
subtrahiert hat, besteht die zu eliminierende Anzahl aus den Darstellungen

\
— 1 die zu Pi, pm teilerfremd sind.

Naeh Induktionsvoraussetzung bei N -y ist dièse Anzahl

Somit erhàlt man naeh (m + 1)-Schritten den Rest

A. P(u) • S(w)
A • P(w • q*) • /S(w) womit das Korollar bewiesen ist.

Es besteht also ein sukzessiver tîbergang, der von Satz 11 ûber das Korollar
zum Hilfssatz und von diesem, wie jetzt noch zu zeigen ist, nach Satz 10 fuhrt,
wenn man die Darstellungen mit gemeinsamem Teiler 5 eliminiert.

Ich unterscheide fûnf Fâlle; in den ersten vier Fâllen ist offenbar die Funk-
tion g (ri) des Hilfssatzes bereits mit fe(n), der Anzahl eigentlicher Darstellungen,

identisch.

2. Fall: fi 0 n riy n Nichtrest mod 5

/•(n) g(n) 5.^5 -(y)J -P(») 30-P(n)

2. Fall: j8 0 » w' n Rest mod 5.

/.(n) g(n) 5. [5 -^J.P(n) 20-P(n)

/î 1 n 5-n;, w' Nichtrest mod 5.

/.(n) ^(n) 5. [25 -(—)] 'P(n') 26-P(»)

wegen
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4. Fall: 0 1 n 5 • w', n' Rest mod 5.

/.(») g(n) 5- ^25 ~(^)] -P(»') 24-P(n)

; /S > 2 w 5* n'

Jetzt sind in g(n) noch aile jene Darstellungen enthalten, die den gemein-
samen Teiler 5 besitzen, ihre Anzahl ist aber

-nf) Somit:
fe(n) g(&-n') - g{&-*-n')

wegen &-P(n') P(n).

Mittels der LioxrviLLESohen Formel (25), welche sich auf die Form

F X2 + Y2 + Z2 + 5 W2

bezieht, ist somit das Darstellungsproblem der Klasse D 5 vollstândig ge-
lôst und bewiesen.

4. Ergânzungen

Gewisse Betrachtungen dieser Arbeit kônnen auch in anderen Fàllen durch-
gefûhrt werden.

a) Der untersuehten Form

/ x2 + y2 + z2 + w2 + xz + #w + yz mit D 5

entspricht allgemein die fur jede naturliche Zahl d reduzierte Form

fd z2 + y2 + z2 + dw2 -f arz + #w + ^2

mit der jACOBischen Darstellung

h (* + 4* + i^)2 + (y + l^)2 + i(z - |w)2 + (d - f)^2,
also der Diskriminante D 8 d — 3

Der Formel (22) entspricht die Identitât

8 • fd (2« + 2y + 2z + w)2 + (2x — 2y + w)2 + (2z — w)2 + Dw2

so daB das Darstellungsgesetz der dureh fd repràsentierten Klasse liber die

ganz analog zu beweisende Formel (24) :
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auf die Form

zuriickgefuhrt werden kann.

Beispiel: d 2.

f x2 + y2 + z2 + 2-w2 + xz + xw + yz, D 13

Zu D 13 existiert nur eine zweiseitige Klasse, wie man nach dem bei D 5

benutzten Verfahren beweist.
Auf empirischem Wege finde ich fur beliebige Darstellungen durch die For-

menklasse Z> 13 folgendes Gesetz bestâtigt, jedoch ohne Beweis:

n i&.n' mit ggT (13, n') 1

b) Um gewisse Analogien der Darstellungsgesetze besonders hervorzuheben,
sei noch die Untersuchung der quaternâren Formen mit D 8 kurz mitgeteilt.

Reduzierte Formen :

/ x2 + y2 + z2 + w2 + xz + yz
(#•+• i^)2 + (y + \%)% + i^2 + ^2.

g x2 + y2 + z2 + w2 + xz + xw + zw
(* + ** + |^)2 + t/2 + |(z + jw)t + 1^2 m

Die Form gr ist zu / eigentlich âquivalent vermôge der Transformation

0 0 0 \ x1 x
T= / 0 0-1 0 \ y1 -z | y | + 1.

1 0 0 z' y
0 1 1/ w'=s-fw

Die Klasse / ist zweiseitig, weil / z.B. die automorphe Substitution

i I 0 -1 0 — 1 i mit Déterminante
| A | — 1 besitzt.

AuBer den durch Umkehr- und Vertauschungstransformationen entstehen-
den Formen gibt es keine weiteren reduzierten Formen mit D 8, so daB zu
D 8 wieder nur eine einzige ztveiseitige Klasse existiert.

14 CMH vol. 36
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Nun besteht die Identitât :

2 • / (x + y + zY + (x - yf + z* + 2. w*.

womit die Form / auf die Form

F Z2 + Y2 + Z2 + 2 • W2

bezogen werden kann. Auf Grund der Zuordnungen

A x + y + z, B x — y G z, D w;

A+B-C A-B-C n nx== _ 9 y== _ 2 c, w D

entsprechen sich die ganzzahligen Lôsungen f(x,y,z,w) n und
F (A, B, G, D) 2n eineindeutig, d.h.
die natûrliche Zahl n wird durch die Form / in gleicher Anzahl dargestellt wie
die Zahl 2n durch die Form F.

Die Form F wurde von Liouville (J. Math. Pures Appl. 1861, S. 225f.)
vollstândig behandelt und seine Resultate wurden von Pépin bewiesen6). Da-
mit lautet das Gesetz fiir beliebige Darstellungen durch die Formenklasse

D= 8:
Satz 12. Die natûrliche Zahl n 2u-nr ,nf ungerade, wird durch die Formen-

Masse mit Diskriminante D 8 wie folgt dargestellt:

Das zugehorige Gresetz fur eigentliche Darstellungen kann wie beim tîber-
gang von Satz 11 zu Satz 10 bewiesen werden; dabei tritt an die Stelle der
Funktion

Man darf also annehmen, daB bei einklassigen Diskriminanten D im Gesetz

fur beliebige Darstellungen die Funktion

im Gesetz fur eigentliche Darstellungen die Funktion

eine wesentliche Rolle spielt7).

«) [5] Pbwn.

')BeiDsl mod 4 ist (~-\ /-M
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