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Uber die Reduktion und die Darstellungen

positiver quaternirer quadratischer Formen

von OSKAR WEBER, Ziirich

Einleitung

Die Zahlentheorie ganz rationaler quaternérer Formen ist immer noch in
den Anfingen.

Im 3. Band der «History of the theory of numbers» von Dickson [2], orien-
tiert das zehnte Kapitel iiber die Untersuchungen und Ergebnisse auf diesem
Gebiet bis um 1920.

Ich erwihne vor allem die zahlreichen Arbeiten LiouviLLES, die er in den
Jahren 1860-1865 in seinem Journal publiziert hat. Die von ihm behandelten
positiven quaterniren Formen lassen sich alle als Summe von binéren Formen
auffassen; sie sind vornehmlich vom Typus

flx,y,2,w) =ax? 4+ by? + c2? + dw?.

Diese Auswahl entspricht der verwendeten Beweismethode; die gegebene
Zahl n wird in zwei Summanden zerlegt und jeder Summand durch die binére
Teilform dargestellt, wobei die bekannten Darstellungsgesetze bindrer Formen
verwendet werden kénnen, also:

Hz,y,z,w)=f(z,9) + 'z, w)=2"+2n"=n.

Zur Bewiltigung dieses Kalkiils hat L1ouviLLE eigene Zerlegungsformeln,
seine «formules générales qui peuvent étre utiles dans la théorie des nombres»
gefunden. Leider aber hat er die meisten Resultate, insbesondere diese For-
meln, ohne Beweise veroffentlicht. Einerseits erwiahnt er, daf3 alle seine For-
meln aus der Theorie der elliptischen Funktionen abgeleitet werden konnen,
anderseits betont er ausdriicklich, daf3 man zum Beweis nur die elementarsten
Prinzipien der Algebra zu verwenden habe.

Tatséchlich hat man seither die meisten dieser Formeln elementar beweisen
konnen. Auch hat PEpin [5], mittels dieser Formeln viele Resultate LiouvviLLES
nachtriglich abgeleitet. Andere Ergebnisse konnten nur mit der Theorie ellip-
tischer Funktionen erhalten werden. Dazu gehort das Darstellungsgesetz der
Form

F =22+ y? 4 22 4 5w,
welches in meiner Arbeit verwendet wird. CHAPELON [1] beweist dieses Gesetz
im AnschluB an die Untersuchung der Transformationsformeln 5. Ordnung
der Thetafunktionen?).

1) Seine in [1] auf 8. 102 publizierte Formel (92) ist, nach leichten Umrechnungen, mit der
LrouviLLEschen Formel identisch.
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Erst spater wurde die Reduktionstheorie der positiven quaterniren Formen
(MinrowsKI, JULIA) entwickelt, welche eine systematische zahlentheoretische
Untersuchung gestattet. Der allgemeinen Reduktionstheorie positiver quadra-
tischer Formen ist die Arbeit [7] meines verehrten Lehrers gewidmet; deren
Studium ist die Grundlage der vorliegenden Arbeit geworden.

Im ersten Kapitel werden die Methoden der Reduktionstheorie auf den
quaterniren Fall spezialisiert. Das Darstellungsproblem wird durch den Begriff
des Gitters geometrisiert. Von grofler Bedeutung ist im quaterniren Fall, mit
Ausnahme der einzigen Formenklasse mit Diskriminante D = 4, die Moglich-
keit der Reduktion nach sukzessiven Minima, d.h. nach kleinstmoglichen
Basisvektoren im Sinne der durch die Formenklasse im Gitter induzierten
euklidischen Metrik.

Ferner enthélt das Kapitel die notwendigen und hinreichenden Bedingungen
fiir Diskriminantenzahlen.

Im zweiten Kapitel werden die Methoden des ersten Kapitels auf die Formen
mit Diskriminante D = 5 angewendet, der kleinsten Diskriminante, die keine
Quadratzahl ist. (Denn im Falle einer Quadratzahl, aber auch nur dann, kann
die Formenklasse durch Anwendung der Idealtheorie auf verallgemeinerte
Quaternionenalgebren untersucht werden.2)

Diese Anwendung fiihrt miihelos zu den reduzierten Formen und zur Kennt-
nis aller Transformationen, welche reduzierte in reduzierte Formen iiberfiihren.
Es zeigt sich, daBl zu D = 5 eine einzige, zweiseitige Klasse existiert.

Im dritten Kapitel wird das Darstellungsproblem fiir die Formenklasse
D = 5 gelost. Dabei ergeben sich einfache Darstellungssidtze sowohl fiir be-
liebige wie auch fiir teilerfremde Darstellungen; im ersten Fall tritt eine gewisse
Teilersumme, im zweiten Fall ein gewisses Primzahlprodukt auf. Beide Funk-
tionen, die durch EI1sENSTEIN und LiouviLLE gefunden wurden, konnen suk-
zessive ineinander umgeformt werden. Zum Beweis der Darstellungssiatze wird
iiber die Summe von Quadraten eine Relation zur LiouvviLLeschen Form F
hergestellt.

In den Erginzungen werden noch andere Beispiele einklassiger Diskrimi-
nanten erwidhnt. Man darf vermuten, dafl dabei im Darstellungsgesetz stets eine
gewisse, von der Diskriminante abhéngige Teilersumme auftritt; diese Funk-
tion steht in Beziehung zur Theorie der quadratischen Reste modulo der
Diskriminante D.

%) H. Gross, Darstellungsanzahlen von quaterniéiren quadratischen Stammformen mit qua-
dratischer Diskriminante. Comment. Math. Helv. 34 (1960), 198-221.
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1. KAPITEL

Grundlagen

Der reelle, vierdimensionale Vektorraum £, mit Basisvektoren ¢,, é,, é,, &,
kann mittels einer positiv definiten, quaterniren quadratischen Form f metri-
siert werden. Eine solche Form wird in dieser Arbeit kurz als positive quater-
nire Form bezeichnet; sie hat die Gestalt

4
=0, 2e, 25, 0)) = X g2,

!k=

mit Variabeln x; und reellen, symmetrischen Koeffizienten g¢,, = g,;. Ich
schreibe dafiir auch

f=fz,y,2,w) =ax?+ by? + c2* 4+ dw? + exy + fxz + gew + hyz + kyw
+ lzw, (1)

indem offenbar in dieser nicht-symmetrischen Darstellung die Variabeln mit
x,y,z,w bezeichnet sind und

911 =0,93:=Db,953=10,94a=4d,29,,=¢,29,; = [, 2914 = ¢, 2953 =k,
299y =k, 29,, = 1 gesetzt wird.

Ist nun @ = X a;¢; ein beliebiger Vektor des E,, so definiert man
i

die Norm von @ : N (@)= f(a,, @y, a3,a,) > 0 und die Ldnge von a:
|d| = I/N(Ei). \

Mit der f zugeordneten Bilinearform f(z,, y,) = ]:Z' | I Y erklirt man
k=

das Skalarprodukt zweier Vektoren @ = X a,¢,, b= X b8, :
i i

@,%) = )i Gix sy .
Bezeichnet ferner G = (g,,) die Koeffizientenmatrix von f, | G | ihre Deter-
minante, so heile die reelle Zahl

D=16-|G|
Digkriminante der Form f.
Bilden die Vektoren &,' eine neue Basis des E,, so bestehen die Transfor-
mationsgleichungen:

&) = 2 1, ¢ k=1...4
€x ; ik € ( ) (2)

T = (t,;) = Transformationsmatrix mit |7 |+0.
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Dabei transformieren sich die Vektorkomponenten nach den Gleichungen:

xi=ftikx'k ('i=1...4). (3)

Fordert man die Invarianz der Norm gegeniiber Basistransformationen, so
induziert jede solche Transformation vermoge der Gleichungen (3) eine Trans-
formation der Form f(x,, z,, z,;, ,) in eine neue Form f'(x,’, ), =, =) .

Um die Anderung der quaterniren Form bei solchen Transformationen zu
iiberblicken, kann man die Matrizenrechnung verwenden. Bildet man die
Komponentenmatrizen

2,000 2, 000

N 7 0 . xz’ . -0
X __ xs . . O Y_- w3’ . . O
zy - - 0 x4' ()

so sind die Gleichungen (3) équivalent zur Matrizengleichung:
X="T.Y. (4)
Bedeutet ferner A allgemein die transponierte Matrix von 4, so gilt 4-B
=B.A.
Ordnet man nun jeder quaterniren Form f die Matrix X G X mit G =(g,;)

= G zu, welche als Element der 1. Zeile und 1. Spalte Xg,,z,z, und sonst
lauter Nullen enthilt, so folgt bei Basistransformation nach (4):

f«>TY)G(TY)=YTGT)Y.
Also hat die transformierte Form als Koeffizientenmatrix:
¢=TGT.
Die Diskriminante der neuen Form ist
D=16|@|=16|TQT|=|T|*16.|Q|=|T|*D, (5)

d.h. sie entsteht aus der urspriinglichen Diskriminante durch Multiplikation
mit einer Quadratzahl.

Unter den Basistransformationen ist die folgende JAcoBI1sche T'ransformation
von besonderer Wichtigkeit. Sie beruht, nach dem Prinzip der quadratischen
Erginzung, auf der Identitit:

f(,y,2, w) =a(x + 0,y + &9z + xgw)? + B(y + f12 + Baw)® + y (2 + pw)?
+ dwt.
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Offenbar ist die Form f dann und nur dann positiv definst, wenn hierin «, 8,
y, 8 positive Zahlen sind.
Also existiert die JacoBische Transformation

& = V;c_(x + %Y + x32 + xyw)

£y = VB-(y + Bz + Baw)

— (6)
&3 = V')’ (2 +.le)
54 == Vd'w ’

welche die Form f in die Form f = & 4 £ + & + & berfiihrt.
Damit ist gezeigt:
Satz 1: Jede positive quaternire Form definiert im E , eine euklidische Metrik.
Die &, heiflen deshalb rechtwinklige Vektorkomponenten.
Ferner gilt nach (6) fiir die JacoBische Transformation 7' :

|T-1|=|T|-'= |/a-f-y-8 und somit nach (5): D= 16.a8yd,

d.h. die Diskriminante D ist notwendig eine positive Zahl. Setzen wir fiir
alles folgende voraus, daBl in der Darstellung (1): f = f(z, ¥y, 2, w) die Koef-
fizienten a,b,...,1 ganze Zahlen sind (ganzzahlige quaternire Form), so
ist auch ihre Diskriminante

2ae [ g
e 2b b k

D=|f b 2¢1 (7)
g k 1l 2d

stets eine ganze Zahl.
Berechnet man D nach (7) und schreibt man den Ausdruck modulo 4, so
folgt die Kongruenz:

D =(el+ fk + gh)?mod 4, d.h.
Satz 2. Die Diskriminante D einer ganzzahligen positiven quaterndren Form

18t etne positive ganze Zahl, die modulo 4 kongruent O oder 1 ist.
Hievon gilt auch die Umkehrung

Satz 3. Zu jeder positiven ganzen Zahl D > 1, welche kongruent 0 oder 1

modulo 4 ist, existiert stets eine ganzzahlige positive quaterndre Form.

Zum Beweis zeige ich die Existenz einer positiven quaternéren Form, in der
mindestens die Koeffizienten f und g Null sind, also

ax?® + by? + c2? + dw? + exy + hyz + kyw 4 lzw
= o(z + *,9)* + By + B1z + Paw)® + y(z + y,w)* + dw?.
Thre Diskriminante hat, wie leicht zu verifizieren, die Gestalt
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D = (4ab — ¢?)-(4cd — I?) — 4a(dh?® — lhk + ck?) (8)
und die Koeffizienten «, 8, y, 4 haben die Werte
x—a B= 4ab— e? __ (4ab—e?)c — ah?
o o 4a y= 4ab — e?
P D

~ 4[(dab— e?) ¢ — ah?]
Also ist diese Form genau dann positiv, wenn die Bedingungen

a>0, 4ab—e2>0, (4ab—e2)c —ah?>0 (9)
erfiillt sind.
Somit ist zu zeigen, daB jede zuldssige Zahl D unter Beriicksichtigung der
Bedingungen (9) auf die Gestalt (8) gebracht werden kann.

1) D gerade

Als Spezialfille von (8) erhilt man fiir
a=b=c=1,e=1,l=0,h=1,k=0:D = 8d, also
22+ + 22t dw 2y +yz= (v + $y)* + 2(y + %2)* 4 §2% 4 dw?
und fiir
a=b=c=1,e=1,1=0,h=1,k=1:D=8d — 4,
also
2+ gt + 22+ dut + 2y +yz +yw= (z + }9)* + ¥ + §z + o)’
+ £z — 3w)t 4+ (@ — Hw?.

Somit gibt es zu D = 0 mod 4 stets positive quaternire Formen.

2) D ungerade
Aus (8) wird fiir
a=b=c=1,e=1,1=1, h=1,k=0: D =8d — 3,
also
224yt + 22+ dwrt 2y 4 yz 4 2w =
(+ 3y + 2y + §2)° + §(z + §w)* + (d — §)w’. (10)

Wihrend damit das Problem bei D =5 mod 8 gelost ist, finde ich keine

solche Formel bei D =1 mod 8.
Um den Satz allgemein bei ungeradem D zu beweisen, unterscheide ich fol-

gende drei Fille:

1. Fall. D besitzt eine Zerlegung vom Typus D = A-B mit 4 =B =3
modulo 4.
Jetzt ist D in der Form D = (4ab — e?) (4cd — I?) darstellbar, d.h. es exi-
stiert eine positive quaternire Form, welche die Summe zweier binérer Formen
ist. Man vergleiche Formel (8) bei A =0, k = 0.
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Beispiel: D = 33 =3.11 = (4-1 — 1) (4-3 — 1).
f=a*+ y2 + xy + 22 + 3w? 4 zw.
2. Fall. D besitzt keine Zerlegung vom Typus D= A-B mit 4 =B =3
modulo 4 und ist keine Quadratzahl.
Nach der Theorie der quadratischen Reste gibt es eine Primzahl p =3
mod 4, so daf} das JacoBI-Symbol
(::5;?—) = +1, d.h. (— D) quadratischer Rest mod p ist.
Denn nach Voraussetzung ist D = N:. K, wo K quadratfrei ist. Sei ¢ ein
Primfaktor von £ und E = B-.q, wobei ¢ und alle Primzahlen von B kon-
gruent 1 modulo 4 sind. Dann gibt es ein m mit

(-2’;-) = —1; m =1mod B; m =3 mod 4.
In derselben Restklasse (mod 4-E) existiert eine Primzahl p, die nicht in

N aufgeht.
Nun folgt unter Verwendung des quadratischen Reziprozitétsgesetzes

52)- 69 - - B ~(3)() -+

Damit ist die Kongruenz D + 2 =0 mod p losbar; unter den Ldsungen
gibt es sicher eine gerade ¢ = 2-4, so dafl eine Darstellung

D+ 4.4 = (4b — ¢) (4d — I?)

moglich ist. Diese Darstellung entspricht Formel (8), wenn mandort ¢ = ¢ =1,
h =0, k= A setzt, wobei offenbar (9) erfiillt werden kann q.e.d.
Beispiel: D = 1009-p = 11; die Kongruenz D + 2 = 0 mod 11 hat die Lo-

sung t=6=2-4.

Aus 1009 + 36 = 11. 95 folgt

f=a*+ 392 + 22 4 24w? + 2y + 3yw + 2w.

3. Fall. D besitzt keine Zerlegung vom Typus D =A-B mit 4 =B =3
modulo 4, ist aber eine Quadratzahl.
Es ist D = 42", wobei v =1 mod 4 und keine Quadratzahl ist. Somit ist,

wie soeben beim 2. Fall gezeigt wurde, die Zahl u2*-1 wie folgt darstellbar:

w1 4 4.42% = (4b — e?) (4r — 8?).
Daraus folgt

u® = (u2v1 4 4. A%)u — 4 - A% = (4b — e2) (47 — 8%)u — 4. A%u,

wobei sowohl 4b —e? =3 mod 4 als auch (47 — 8?)u =3 mod 4 sind.
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Nun gibt es eine bindre Form
f(h,k) = dh* — lhk + uk?

mit Diskriminante 4ud — 2 = (4 — s2)u, was damit identisch ist, daB
f(h, k) die Zahl u darstellt. Man setze niémlich fiir die zu bestimmenden
Zahlen 1, d :

r — 82 4 u

1 = ganze Zahl wegen s ungerade, « = 1 modulo 4.

l=u,d =

Daraus folgt
u%® = (4b — e?) (dud — 1) — 4-A%u,
also die Darstellung (8) bei a =1, ¢c=%,h=0,k= A4 q.e.d.
Beispiel: D = 289 = 172, u = 17, p = 3; die Kongruenz % + 2 =0 mod 3
hat die Losung ¢ =2=2-4. D= (17 + 4)-17 — 4.17 = 3.7-17
—4.17. Also I =17, d = 6, d.h.
f(h,k) = 6h® — 17hk + 17k* und
f=22+9y*+ 1722 4 6w? + zy + yw + 17zw.

Die zahlentheoretische Untersuchung einer positiven quaterniren Form
wird geometrisiert durch den Begriff des Giiters, d.h. der Gesamtheit aller
ganzzahligen Linearkombinationen von vier linear unabhingigen Vektoren &,
des E,.

Die ganzzahlige positive Form f definiert im Gitter eine euklidische Metrik
mit ganzzahligen Normen. Die Existenz eines Gittervektors

3 = xé, + yé, + 2¢5 + we,
mit Norm N > 0 bedeutet, daB die Zahl N durch die Form f dargestellt wird.
Bei eigentlicher Darstellung, gg7'(z,y,z,w) =1, heit der Gittervektor
primitiv.

Fiir das folgende betrachten wir nur noch jene Basistransformationen, bei
denen die neuen Basisvektoren wieder eine Gitterbasis bilden. Es gilt:

Die Transformation 7' = (¢,;) ist dann und nur dann eine Transformation
der Gitterbasis, wenn 7' eine unimodulare Substitution ist, d.h. die

¢, ganze Zahlen sind und | 7' | = + 1 oder —1 ist.

Die durch eine solche Matrix 7' nach (3) transformierte Form f' heiflt zur
urspriinglichen Form f dquivalent. Bei der feineren Einteilung nach eigentlicher
Aquivalenz wird nur die Transformierbarkeit mit | 7' | = 4 1 zugelassen.

Weil die Relation «f équivalent f» reflexiv, symmetrisch und transitiv ist,
definiert sie eine Einteilung der positiven quaterniren Formen in Klassen
dquivalenter Formen. Dabei ist nach (5) die Gleichheit der Diskriminante eine
notwendige Bedingung der Aquivalenz.
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Um fiir diese Klasseneinteilung ein Reprisentantensystem zu erhalten,
definiert man die reduzierte Form.
Eine positive quaternéire Form heiBt reduziert, wenn die unendlich vielen
Ungleichungen
fer <1(81,85,85,8) k=1...4 (11)

fir alle Systeme ganzer Zahlen s, mit gg7'(s, ..., 8,) = 1 erfiillt sind.
Der reduzierten Form entspricht in geometrischer Formulierung die redu-
zierte Glitterbasis.
Gehort ndamlich zur Gitterbasis ¢; als metrische Grundform die reduzierte
Form f, so heiit die Basis reduziert. Nach (11) besagt dies:

frr= N(E) < [(81,82,835,8) =N (3) mit ggT'(sz,...,8) =1

d.h. die Gitterbasis €, ist, geometrisch formuliert, reduziert, wenn
a) ¢, kiirzester primitiver Gittervektor,

4
b) ¢, kiirzester unter allen Gittervektoren § = X' s, ¢; mit gg7' (85, 85, 8,) =1,
im1
4

c) é; kiirzester unter allen Gittervektoren § = X' s;- é; mit gg7" (8, 8,) = 1,
im1

4

d) ¢, kiirzester unter allen Gittervektoren § = X s,.é; mit s, = + 1 ist.
im1

(12)

Die Existenz einer reduzierten Gitterbasis ist aus folgenden zwei Griinden
gesichert:

1) In jeder nicht leeren Menge von Gittervektoren, deren Normen ja eine
Teilmenge der natiirlichen Zahlen bilden, gibt es (mindestens) einen kiirzesten
Vektor.

2) Jedes System von Gittervektoren, das zu einer Gitterbasis ergéinzt wer-
den kann, heit primitives Vektorsystem. Nun gilt folgender Hilfssatz3):

4
Der Gittervektor § = X s, é;, bildet mit den Gittervektoren &,, ..., &,_,
i1
dann und nur dann ein primitives Vektorsystem, wenn der gg7'(s,,..., 8,) = 1
ist.

Weil somit jedes Gitter in bezug auf jede gegebene Metrik eine reduzierte
Gitterbasis besitzt, hat jede quaternire Form eine #quivalente reduzierte Form.

Die arithmetischen Bedingungen (11) fiir eine reduzierte Form werden we-
sentlich vereinfacht durch den von MINKOWSKI bewiesenen

%) Fiir die Begriindung aller hier nicht bewiesenen Sitze sei nochmals auf die Arbeit von
B. L. vAN pER WAERDEN [7]: «Die Reduktionstheorie der positiven quadratischen Formen»
verwiesen.
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Satz 4. (Erster Endlichkeitssatz): Die unendlich vielen Ungleichungen (11)
sind bereits erfitllt, wenn man unter thnen nur jene endlich vielen beriicksichtigt,
die man erhilt, wenn man far s; die Zahlen 0, +1, — 1 einsetzt.

Damit erhidlt man fiir die quaterndre Form (1) folgende endlich viele Re-
duktionsbedingungen :

le| <a,|f|<a,|g]|<La,
|h| <b, |E| <D, (13)
[T <c
—e—f—h<a-+b —e — 9 —k<a-+b
—e+f+h<a-+b —e+g+k<a-+b
+e—f+h<a-+b +e—g+k<a+b
+e+f—h<a+b +e+9g—k<a+b
—f—g—-—1<a+c —h —k—1<5b+c
—f+9g+1 <a+c —h4+k+1<b+c
+f—9+1 <a+c +h—k+1 <06+ c
+f+9—-—1<a+c +h4+k—-1<0b+c
—e—f—9g—h—k—-—1<a-+b-+c
—e+f—g+h—Fk+1<a+b+c
—e+f+gt+h+k—-—1<a+b+c
—e—~f4+g—h+k+1<a+b-+c
+e—f—g+h+k—1<a+b+ec
+e+f—9g—b+Ek+1<a+b+c
te+f+g—h—k—1<a+b+e
+e—f+g+hb—Fk+1<a+b+ec

Die quaterndre Form heiBt eigentlich reduziert, wenn in allen diesen Unglei-
chungen nur das Zeichen < steht.

Ferner entnehme ich der Theorie der positiven quadratischen Formen die
fundamentale Ungleichung der Reduktionstheorie, welche speziell fiir quater-
nére Formen besagt;

Satz 5. Ist f eine reduzierte quaterndre Form mit Diskriminante D, so besteht
zwischen thren Diagonalkoeffizienten a, b, ¢, d und D die Ungleichung:

4dabcd £ D
(Bei ganzzahligen Koeff. ist also D > 4)

~ Als wichtige Folgerung erhilt man, wenn man noch die Reduktionsbedingun-
gen Satz 4 (13) beriicksichtigt:
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Zu gegebener, fester Diskriminante D gibt es nur endlich viele Klassen;
ihre Anzahl hei8t Klassenzahl zu dieser Diskriminante.

Denn bei festem D sind alle ganzzahligen Koeffizienten von f beschrinkt.

In derselben Formenklasse konnen mehrere, jedoch nur endlich viele redu-
zierte Formen auftreten. Damit stellt sich das Problem,
alle jene unimodularen Substitutionen 7' zu bestimmen, welche eine reduzierte
in eine &quivalente reduzierte Form transformieren. Ist dabei die transfor-
mierte mit der urspriinglichen Form identisch, so heilt die Substitution
automoryph.

Dazu beweist man in der allgemeinen Theorie:

Satz 6. (Zweiter Endlichkeitssatz): Es gibt nur endlich viele unimodulare
Substitutionen, welche eine reduzierte quaterndre Form in eine dquivalente re-
duzierte Form iiberfithren.

Zu diesen Transformationen gehoren stets die 2¢ = 1 6 Umkehriransformationen

xtl=:!:x, (i=1..-4)-

Bei einer eigentlich reduzierten Form sind dies alle Transformationen, weil
jeder Basisvektor der reduzierten Basis bis auf 4+ eindeutig bestimmt ist.

Bei einer uneigentlich reduzierten Form (d.h. in gewissen Reduktionsbedin-
gungen gilt das Gleichheitszeichen) gibt es auBBer den Umkehrtransformationen
mindestens noch eine weitere Transformation 7', welche f in eine édquivalente
reduzierte Form iiberfiihrt.

Ist z.B. a = b = ¢ = d, so existieren aullerdem die 4! = 24 Vertauschungs-
transformationen, bei denen die Transformation nur in einer Permutation der

Variabeln besteht.

Fiir meine Arbeit ist von besonderer Wichtigkeit, dafl bei positiven quater-
niren Formen der Begriff der reduzierten Gitterbasis etwas weiter als (12)
gefaBBt werden kann. Im vierdimensionalen Gitter mit metrischer Grundform
f versteht man unter sukzessiven Minimalvektoren

vier Gittervektoren 3,, §,, §;, §, mit folgenden Eigenschaften:

a') 3, ist ein kiirzester Gittervektor = 0,

b’) &, ist ein kiirzester, von §, linear unabhéngiger Gittervektor,

¢’) §, ist ein kiirzester, von &,, §, linear unabhéngiger Gittervektor,

d’) 3, ist ein kiirzester, von §,, 3,, §, linear unabhéingiger Gittervektor.
Obschon mehrere Systeme sukzessiver Minimalvektoren bestehen, sind ihre

Normen N,, N,, N,, N,, die sogenannten
sukzessiven Minima, eindeutig bestimmt.
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Wihrend bei positiven quadratischen Formen in mehr als vier Variabeln,
wo diese Begriffe ganz analog gebildet werden, die sukzessiven Minimalvek-
toren wohl eine Raumbasis, aber keine Gitterbasis bilden, gilt im quaterniren
Falle mit Ausnahme der einzigen Formenklasse mit Diskriminante D = 4:

Satz 7. In jedem vierdimensionalen Gitter mit Diskriminante D > 4 bildet
jedes System von vier sukzessiven Minimalvektoren eine reduzierte Gitterbasis. In
der zu dieser Basis gehorenden reduzierten quaterniren Form f gilt

Ny=fy (k=1...4).

2. KAPITEL
Die Formenklasse mit Diskriminante D = 5

In dieser Arbeit wird der Fall der Diskriminante D = 5 eingehend behandelt.

Das Ziel dieses Kapitels besteht im Nachweis, da3 zu dieser Diskriminante
eine einzige zweiseitige Formenklasse existiert, deren Formen also zugleich
eigentlich und uneigentlich &dquivalent sind. Dabei werden die allgemeinen
Methoden des 1. Kapitels, insbesondere Satz 7, angewendet.

Nach Formel (10) findet man fiir d = 1 als reduzierte Form mit D = 5:

224yt 22+ w4 2y +yz+ 2w.
Um fiir alles folgende moglichst einfache Verhiltnisse zu haben, verwende ich

rTyew ) entsteht:
w

jene Form, die daraus durch die gerade Permutation P = (
f=224+y 422+ w4 2z 4 2w + yz
=@+ 32+ Jw)P + (y + 32)* + 3(z — Fw)® + 3w?. (14)

Gleichzeitig betrachte ich f als metrische Grundform des Gitters mit (redu-
zierter) Basis

g, =(1,0,0,0) &,=1(0,1,0,0) &,=(0,0,1,0) &,=(0,0,0,1).

Neben den Komponenten in bezug auf die Basis ; verwende ich die durch
die JacoBische Transformation (14) gelieferten rechtwinkligen Komponenten:
2 Y10
Si=x+3z4+ 3w &=y + iz §3=12—(z—-—§w) 54=Tw,

Vektorkomponenten beziiglich der ¢, werden in runden, rechtwinklige Kom-
ponenten in geschweiften Klammern geschrieben, also z.B.:
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é,=(1,0,0,0 = {1,0, 0, 0}
»=(0’190,0)={0’1a0,0}

€2
és=1(0, 0, 1,0)==§,%,——‘g, 0}
é,=(0,0,0), 1).—_{g,0, _;/E, V?}

Wegen a = b =c¢ =d = 1 haben alle sukzessiven Minima den Wert eins:
N,=Nyg=N,=N,=1.
Man erhilt deshalb die Gesamtheit der Minimalvektoren
. § = xe, + yéy + 2é3 + wé,

als ganzzahlige Losungen der Gleichung Norm § = f(z,y,2,w) = 1. Die
Jacosische Darstellung (14) liefert dafiir die Bedingung:

8f =22z + 2+ w)? 4+ 2(2y + 2)2 + (22 — w)? 4 5w?* = 8.
Danach besitzt das Gitter die folgenden 20 Minimalvektoren, alle mit Lange eins:
1) &+( 1, 0, 0, 0)= 4+{1, 0, 0 , 0}
2) +( 0, 1, 0, 0)= +{0, 1, 0 , 0}

3):‘:("’19 0, 1, l)=:j:{0, %: _‘;E’ ‘V“i—-‘o“'}

4) +( 1, 1,—1,-1)=;{:{0, 3, —V_ -—lf(')'}
5) £( 0, 0, 0, 1) = & {1} 0, _V— Vm}
6) +( 1, 0, 0,—1) = i{g, 0, l?, ”‘i_}
) +( 0, 0, 1, 0)=i{g, %,l—;—z—, 0}
8 £( 0,—1, 1, 0) = :I:{%,—-%, VE,O}
0t o o— sl b 2

10)3‘:( 1, 0,—-1, O)'—::I:{%’_%’ "%2—" 0}

Die Skalarprodukte zweier verschiedener Minimalvektoren sind in der nach-
stehenden Tabelle zusammengestellt. Dabei bedeutet z.B.
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12 das Skalarprodukt des +Vektors 1) mit dem - Vektor 2).

8 = Skalarprodukt

8 8 ] 8 8
12| 0o (21| 0 |31| 0 |41] 0 ]|51] }
13| 0|23 % |32| 3 [42]| 3 |52 0
14| 0 |24 % |34|—3|43|—3|53]| 1
15| + /25| 0 |35] 3 |45|—3]|564]|—1
16| 3 (26| 0 |36|—3|46]| 3 |56|—1
17| 2 |27 % |387| 3 |47]| 0|57 0
18| 3+ |28|—%|38| 0 |48 —1|58]| 0
19| 3 (29| 3 |39 o |49 L |59 1
1100 3 |210 —%|310 —3|410 0 |5 10 1%

(16)

8 8 8 8 8
61| 3 71| % |81 3 (91| 1 [101] }
62| 0 |72]| % [82|—3]|92]| % |102]—1%
63|—3|73| % [83| 0 |93| 0 |[103]—3%
64| 3 |74| 0 |84 —1]|94| 1 |104] O
65| —4|75| 0 [85] 0 |95 4 |105] }
67| 1 |76| % [86] 3 |96| 0 |[106] O
68| 3+ |78 % |87] 3 |97] o [107] -1
69| 0 |79] 0 [89|—31]|98|—3|108] 0
610/ 0 |710—3[810 o |910] } |109] }

Die Kenntnis der Minimalvektoren gestattet nach Satz 7 (Kap. 1) folgendes
elementares Verfahren:

Je vier linear unabhiéingige Minimalvektoren bilden eine reduzierte Gitter-
basis, und umgekehrt besteht jede reduzierte Basis aus je vier lin. unabh.
Minimalvektoren. Die zur reduzierten Basis gehérende metrische Fundamental-
form f' ist

reduziert und zur Form [ dquivalent.

Gleichzeitig liefert die Transformationsmatrix eine unimodulare Transfor-
mation 7', welche die Form f in die &quivalente Form f’ transformiert.
Dabei bestehen zwei Fille:
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1) f' = f. T ist eine automorphe Substitution.

2) f' £ f. [' ist eine weitere reduzierte Form derselben Formenklasse.

In Ubereinstimmung mit Satz 6 gibt es nur endlich viele Transformationen
T der beschriebenen Art.

1) Automorphe Substitutionen

Die Gesamtheit der automorphen Substitutionen bildet eine endliche Qruppe,
weil offenbar das Produkt zweier solcher Substitutionen wieder automorph ist.

Von den Umkehrtransformationen sind einzig E = Einheitstransformation
und — F automorph; von den Vertauschungsiransformationen ist auller £ die
Transformation V, welche die Basisvektoren 1, 3 und die Basisvektoren 2, 4
vertauscht, automorph:

z = 2 001 0 |V|=+1
2 = 1 0 0 O ViH)=f.
w =y 010 0

Jede automorphe Substitution 4 gibt Anlafl zu den folgenden vier auto-

morphen Substitutionen, wobei die Gesamtheit der Basisvektoren unveréndert
bleibt :
EA=A, —EA=—-A4, AV, —AV. (16)

Im allgemeinen ergeben je vier Minimalvektoren §,, &,, §;, §, mit den Ska-
larprodukten
3,83 =0, 8183 = 8,8, = %, 8983 = %, 828, =0, 3,38,=0,

eine automorphe Substitution.
Beispiel: Nach Tabelle (15) ist dies fiir die Minimalvektoren 7, 9, 1, 3 der
Fall. Die neue Gitterbasis ist

é,)=( 0,0, 1,0) Die Transformationsmatrix 7' = (¢,,) ent-
€/ =( 1, 1,—1, 0) hilt nach (2) in der kten Spalte die Kom-
€,/ =( 1,0, 0,0) ponenten von €.’ in bezug auf die Basis ¢,
¢/ =(—1,0, 1,1) und hat deshalb die Gestalt:

o 1 1 -—1 ¥ =y+z—w

T=|] 0 1 0 0 y =y

1 -1 0 1 =z —y+w

O 0 o0 1 w = w
In der Tat ist

f,y,z,w)y=a2+y*+22+wt+aztzwtyz=f.

13 CMH vol. 36
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Weil die Determinante | 7' | den Wert — 1 hat, folgt, daB3 die durch f defi-
nierte Formenklasse zweiseitig ist. Denn ist f' eine quaternire Form, die aus f
durch unimodulare Transformation @ entsteht:

f' = G(f), so gilt auch ' = GT(f);

von den beiden Transformationen ist die eine eigentlich, die andere uneigent-
lich unimodular.

Ferner gilt T? = E ; die Zerlegung der automorphen Gruppe in Restklassen
nach der Untergruppe {7',72 = E} zeigt, daBl in der Gruppe gleich viele
eigentlich als auch uneigentlich automorphe Substitutionen existieren.

Die Transformation 7" werde symbolisch mit (7, 9, 1, 3) bezeichnet, d.h. die
Spaltenvektoren ihrer Matrix sind die Minimalvektoren +7, 49, +1, 43
der Tabelle (15). Wenn ich mich derselben symbolischen Schreibweise bediene,
besitzt die Form f4) folgende automorphe Substitutionen, wobei von den vier
Substitutionen (16) nur eine notiert wird:

(1,2,7, 5) = (7,9,1,8) =T (1, 3, 5, 8) (1, 4, 5,7)
(1, — 3, 6, 9) (1, 4, 6, 10) (1, —2, 8, 5) (1, —4, 8, 10)
(1,2, 9, 6) (1,4,9,7) (1, —2, 10, 6) (1, —3, 10, 8)

(2, —6, 3, 9) (2, 5,3, —8) (2, —5, 4, 7) (2, 6, 4, — 10)
21,17, 4) (2, 6,7, 9) 2, —1, —8,3) (2, —6, —8, —10)
(2, 1,9, 3) (2, 5,9, 7) 2, —1, —10,4) (2, —5, —10, —8)
(3,8, —4, —10) (3, —9, —4,7) (3,1,5 2) (3,9, 5, 7)

(3, —1,—6,2) (3, —8,—6,—10) (3,1,7, —4) (3, 8,7, 5)

(3, —1, —10, —4) (3, —9, —10, —6) (4, —1, —5,2) (4, —10, —5, —8)
4,1, 6, 2) (4,7, 6, 9) (4, —1, —8, —3) (4, —7, —8, —5)
(4,1,9, —3) (4, 10, 9, 6) (5, —7, —6,9) (5, —8, —6, 10)
(5, 2,9, —6) (5, —8, 9, 3) (5, —2,10, —6) (5, —17, 10, —4)
(6, 2,7, —5) (6, —10, 7, 4) (6, —2,8, —5) (6, —9,8, —3)

(7, —4,8,—10) (7, —9, 8, 3) (7, —5, —10,8) (7, —9, — 10, 6)
(8, =5, —9,7) (8, —10,—9,6) (9, —3,10, —8) (9, —7, 10, 4)

Total = 240 automorphe Substitutionen.
Zusammenfassend gilt

Satz 8. Die Formenklasse {f} besitzt eine Gruppe von 240 automorphen Sub-
stitutionen, von denen die eine Hilfte eigentlich, die andere Hilfte uneigentlich
unimodular ist.

Die Formenklasse ist somit zwetseitig.

4) Ist T fiir die Form f automorph, so gilt fir f = G(f): AT G () = f/, das heit die
automorphen Substitutionen von f und f entsprechen sich eineindeutig.



Uber die Reduktion und die Darstellungen positiver quaternirer quadratischer Formen 197

2. Reduzverte Formen

Die aus vier linear unabhéngigen Minimalvektoren gebildeten reduzierten
Gitterbasen, welche nicht zu automorphen Substitutionen fithren, haben als
metrische Grundformen neue reduzierte Formen derselben Klasse.

Reduzierte Formen, die durch Umkehr- und Vertauschungstransformatio-
nen gebildet werden kdnnen und nach Satz 8 zu f in jedem Falle eigentlich
aquivalent sind, konnen in derselben Teilmenge vereinigt werden.

Zur Abkiirzung werde 22 -+ y? -+ 22 4+ w? = @ gesetzt.

Teilmenge 1:

Aus der gegebenen Form f entstehen durch Umkehrung und Vertauschung:

Q@ + =zz
Q + =zz
Q + =zz
Q@ + =zz
Q@ 4+ zw
Q@ + zw
@ + =y
Q + =y
Q@ + =zy
Q + =y
Q + =zy
@ + =zy

Teilmenge 2:

H B B HH HHHHH

xw
Yyw
Yz
rw
Yz
Yz
Yyw
Yz
xw
xw
x2
xz

H H H H B B H H H H R

Yz
2w
Yyw
Yyw
2w
yw
Zw
2w
ZW
Yz

2w

yw

Weil alle acht Vor-
zeichenkombinationen  (17)
zulédssig sind, besteht

die Teilmenge aus

12.8 = 96 reduzierten Formen.

Zur Gitterbasis (7, 9, 1, 6) gehort nach Tabelle (15) die neue reduzierte Form

fa=a?+y?+ 224+ w4 224 2w+ yz + zw
= (¢ + 42 + dw)® + (v + 32)° + $(2 + $w)* + §w?.

Die eigentlich unimodulare Transformation 7', welche f in f, transformiert, ist

T=(7,91,6) =

0

1
0
0
0

1
0
0
—1

¥ =y+z+w
Yy =y

2 =x—y

w = —w

Durch die Umkehrtransformationen, von denen zwei automorph sind, ent-

stehen acht Formen:
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Q + 2z 4+ zw + yz + zw

Q@ + 2z — zw + yz — zw

Q — 2z + 2w — Yz — zw

Q@ + x2z + zTw — yz + zw (18)
Q — 2z — zw + yz + zw

Q — 2z — zzw — Yz + zw

Q + zz2 — 2w — yz — 2w

Q — 2z 4+ zzw 4+ yz — zw.

Die iibrigen Vorzeichenkombinationen sind wegen den Reduktionsbedin-
gungen nicht zulédssig; die ausgeschlossenen Formen sind indefinit, z.B.

Q + zz2 + zTw — yYyz — zw
= (@ + 3z + $w)* + (y — 42" + $(e — Juw)* — fu?, D= —3.

Durch die Vertauschungstransformationen, von denen zwei automorph sind,
entstehen zwolf Kombinationen der Variabeln; zu jeder dieser Kombinationen
sind die obigen acht Anordnungen der Vorzeichen moglich. Somit besteht die
Teilmenge 2 aus
12.8 = 96 reduzierten Formen.
Teilmenge 3:

Zur Gitterbasis (1, 10, 9, 5) gehort nach Tabelle (15) die neue reduzierte

Form
s=22+y:+ 224w+ 2y + 22+ 2w+ yz + yw + zw
= (¢ + 3y + 4z + dw) + }(y + 32 + 3w)* + §(2 + w)* + w®.

Die eigentlich unimodulare Transformation, welche f in f; transformiert, ist

1 1 1 0 =xz4+y+z
T = (1, 10, 9, 5) = 0 0 1 0 y =z

0 —1 —1 0 2= —y —2

0 0 0 1 w = w

Durch die Umkehrtransformationen entstehen die acht Formen:

Q + 2y + 2z + zw + yz + yw + zw
Q + z2zy + 22 — zzw + Yz — Yyw — 2w
Q + 2y — 22 4+ zw — yz + Yyw — zw
Q@ — 2y + 2z + zw — yz — Yyw + zw (19)
Q — 2y — xz2 — zw + yz + yw + zw
@ + 2y — 2z — 2w — yz — yYyw + zw
Q — zy + 22 — 2w — Yz + Yyw — zw
Q — 2y — 2z + zw + Yz — Yyw — zw
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Von den 64 Vorzeichenkombinationen werden die iibrigen, welche auf in-
definite Formen fiithren, durch die Reduktionsbedingungen ausgeschlossen.

Weil die Vertauschungstransformationen zu den automorphen Substitutio-
nen von f, gehoren, besteht die Teilmenge 3 aus 8 reduzierten Formen.

Damit enthilt die Formenklasse {f} insgesamt

200 reduzierte Formen .

Fordert man nach MiNkKowsKI bei einer reduzierten Form aufBlerdem, daB3
die gemischten Koeffizienten f,,.(¢ % k) alle positiv oder Null sind, so exi-
stieren nur 25 normierte reduzierte Formen.

Nun soll noch, wie eingangs des Kapitels erwiahnt wurde, bewiesen werden,
daB damit nicht nur die reduzierten Formen der Klasse {f}, sondern iiberhaupt
alle reduzierten Formen mit Diskriminante D = 5 aufgestellt sind.

Um das zu zeigen, benutze ich die fundamentale Ungleichung des Satzes 5:

4abcd < D=5.

Also kommen fiir jede reduzierte Form mit D = 5 nur die Werte
a=b=c=d=1 in Frage, d.h. in einem Gitter, das durch eine solche
Form metrisiert ist, haben alle Minimalvektoren die Lénge eins und je vier
linear unabhiéngige bilden eine Gitterbasis.

Nach den Reduktionsbedingungen (13) kénnen die gemischten Koeffizienten
e...l nur die Werte 0, -1, —1 haben. Die Klassenzahl zu D = 5 kann
also bestimmt werden, wenn man alle reduzierten Formen mit

a=b=c=d=1,ebisl=0,+1, —1

bildet. Denn in dieser Menge sind alle Klassen mit D = 5 vertreten.
Die dazu erforderliche Rechenarbeit wird abgekiirzt, wenn man

Satz 2: D = (el + fk + gh)? mod 4

benutzt, weil damit sofort die Paritdt der Diskriminante entschieden werden
kann.

Beachtet man neben Satz 2 die Tatsache, da man bei Vertauschung der
Variabeln stets in derselben Klasse bleibt, so erhidlt man nur noch die folgenden
Fille:

a) Nur die Koeffizienten ¢ und % sind ungerade; die andern Koeffizienten sind
gerade: D =1 mod 4.

24y 422wt aw fyz=
=(x 4+ $w)? + (y + 342)* + $2* + $w?, also D=9.

b) Nur die Koeffizienten f, g und A sind ungerade; die andern Koeffizienten
sind gerade: D =1 mod 4.
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Alle Formen sind reduziert und haben D = 5; offenbar erhilt man
genau die reduzierten Formen der Teilmenge 1 (17).
¢) Nur die Koeffizienten f, g, 2 und ! sind ungerade; die andern Koeffizien-
ten sind gerade: D =1 mod 4.
Alle Formen, die reduziert sind, haben D = 5. Man erhilt die Teil-
menge 2 (18).
d) Alle sechs Koeffizienten e, f, g, A, k, I sind ungerade: D =1 mod 4 .
Alle Formen, die reduziert sind, haben D = 5. Man erhilt die Teil-
menge 3 (19).
Damit ist endgiiltig bewiesen:

Satz 9. Zur Diskriminante D = 5 existiert eine einzige zweiseitige Formen-
klasse.

Die Klasse enthilt 200 reduzierte Formen, jedoch nur 25 normierte reduzierte
Formen.

3. KAPITEL
Darstellungen durch die Formenklasse mit Diskriminante D = 5

In diesem Kapitel werden die Darstellungen durch die Formenklasse D = 5
untersucht.

Zu diesem Zwecke geniigt es, einen Reprisentanten dieser Klasse zu be-
trachten, also die ganzzahligen Losungen der Gleichung

fle,y,z,wy=a2+y2 4+ 22+ wH2zt+awtyz=mn

zu bestimmen, wobei n eine beliebig vorgegebene natiirliche Zahl ist.
Gesucht werden Geseize fiir die Anzahl der Losungen f = n; diese Anzahl
werde in diesem Kapitel mit
a) f(n) bezeichnet, wenn beliebige Darstellungen, die also einen g¢g7 > 1
haben diirfen, zugelassen sind,
b) f,(n) bezeichnet, wenn nur eigentliche, d.h. teilerfremde Darstellungen ge-
zéhlt werden.
In jedem Falle heiBlen zwei Darstellungen f(x,y,z,w) =n, f(z',y, 2, w')
= n dann und nur dann gleich, wenn z =2,y =9y, z2=2", w=w' ist.
Ist f die metrische Grundform eines Gitters, so werden im Falle
a) die verschiedenen Gittervektoren mit Norm = =,
im Falle
b) die verschiedenen primitiven Gittervektoren mit Norm = n gezihlt.
Durch Auflésung der zu f = n gleichwertigen Gleichung
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22z 4+ 2z 4+ w)2 + 22y 4 2)? 4 (22 — w)? + 5w? = 8f (20)

habe ich auf induktivem Wege fiir die eigentlichen Darstellungen der Zahl »
folgende Regeln gefunden:

1. Jede natiirliche Zahl n wird eigentlich dargestellt.

2. n = Primzahl # 5. Die Darstellungszahl hiingt auBer » von der Restklasse
mod 5 ab, in der = liegt.

a) n =p =2,3 mod 5, d.h. p ist (quadratischer) Nichtrest mod 5.

fo(P) =30-(p — 1)
Die Regel gilt auch fir p=2:f,(2) =30, so daB die Primzahl 2
keine besondere Stellung einnimmt.

b) n =q =1, 4 mod 5, d.h. ¢ ist (quadratischer) Rest mod 5.
folg) = 20-(¢ + 1)

3. n = natiirliche, zu 5 teilerfremde Zahl, also

r 8
n = Il p,** - II q,"* P = Nichtreste mod 5, ¢, = Reste mod 5 .
k=1 k=1

a) n =2,3 mod 5.
8 1
fe(n)-—30nﬂ(l-——) I+ —)
P k=1 x
b)n =1,4 mod 5.
fo(m) = 20m-II(1 — ——) - II(1 + —)
k=1 Pr kw1 Qx
Der Fall 2) ist in 3) als Spezialfall enthalten.
4. n = natiirliche, durch 5 teilbare Zahl, also
n = 5%.J p,** - 1T ¢,°* mit > 0.

k=1 k=1
a) n =10, 15 mod 25,d.h. n/5 =2, 3 mod 5.

fo(n) = 26m - [I(1 ——) [T(1+—)
k=1 Pre k=1 G
b) » =0, 5, 20 mod 25, d.h. /56 =0,1,4 mod 5.
fom) =24n (1 — =) 11 +—)
k=1 P k=1 qx
Die in diesen Formeln auftretende Funktion

- 17(1——~—) 17(1+——~)

kw1l
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kann allgemein als zahlentheoretische Funktion P(n) definiert werden.
Ist nimlich n = ITt¢ die Primzahlzerlegung der beliebigen natiirlichen Zahl
n und verwendet man das JAcoBI-Symbol

(%.) = + 1, falls @ Rest mod 5
(_g.) = — 1, falls @ Nichtrest mod 5
a

(_5_)—__—_0, fallsa =0 mod 5,

so kann die in Rede stehende Funktion wie folgt dargestellt werden:
Pn)=n -ﬂ[l + (—;-) t—l] - ﬂ'[te + (-;—) t"—l] (21)
fir n>1; P(1)=1.

P(n) ist also stets eine natiirliche Zahl.
Zusammenfassend gilt bei den eigentlichen Darstellungen durch die Formen-
klasse D = 5:

Satz 10:
1. n=2,3 mod 5 f,(n) = 30 - P(n)
2. n=1,4 mod 5 f,(n) = 20 - P(n)
3. n=10,15 mod 25 f,(n) = 26 - P(n)
4. n=0,5,20 mod25 fo(n) = 24. P(n)

Die folgenden Ausfithrungen enthalten den Beweis dieses Satzes sowie das
entsprechende Gesetz fiir beliebige Darstellungen f(%).

Zuerst einige Beispiele zu Satz 10:
f.(1) = 20, d.h. es gibt 20 Minimalvektoren, siehe Kapitel 2.

f,(4n) = {4-f,(n), falls n gerade
{2-f,(n), falls n ungerade ,
denn 4 » und » haben mod 5 dasselbe quadratische Restverhalten.

fa(6) = 40, f,(7) = 180, fc(8) = 120, f,(9) = 120.
£,(6) = 120, £,(10) = 130, f,(15) = 260, f,(20) — 240, f,(25) = 600.

Um Satz 10 zu beweisen, wird ein gerades Vielfaches einer reduzierten Form f
(der Klasse D = 5) als quaterniire Form mit nur rein quadratischen Gliedern
dargestellt:

k-fx,y,2,w)=aX2+bY2+4cZ>+dW?
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wobei X = oq2 + agy + x32 + x,w k = gerade, natiirliche Zahl;
Y = Bz + By + B3z + Baw a,b,c,d>0;
Z = yx+ ¥y + vz + yw alle Koeffizienten ganze Zahlen.
W = 6,z + 8,y + 632 + S,w

Die Moglichkeit einer solchen Darstellung wird bei der JacoBischen Trans-
formation verwendet; ein Beispiel mit
k = 8 liefert Gleichung (20):

8.f=2X24+2Y24 Z2 4 5 W2,

Il

Dabei ist 8-f bereits das kleinste Vielfache einer reduzierten Form f der Klasse
D = 5, das so umgeformt werden kann.
Die Gleichung (20) fithrt, wenn man die Identitit

2X: 422 =(X+ Y2+ (X — Y)

verwendet, auf die besonders einfache Gestalt
f=2*4+y*+22+ w4+ 2z + 2w + yz,
8f= (224 2y + 22+ w)2 + (22 — 2y + w)? + (22 — w)? + 5w?.
(22)
Also kann jeder Darstellung f(z,y, 2, w) =n vermoge der Formeln

A=2x+4+2y+224+w, B= —(2x— 2y + w)

C =—(22—w), D= —w), (22°)

eindeutig eine Darstellung

A2+ B*+ (C* 4+ 5D*=8n

zugeordnet werden.

Damit ist der Zusammenhang mit der von LrouviLLE (siehe Einleitung) be-
handelten Form

F(X,Y,Z,W)=X%2+4 Y2+ Z%4 5W?

hergestellt.

Fiir alles Folgende beziehen sich gro3e Buchstaben auf diese Form F', kleine
Buchstaben auf die obige Form f.

Die Umkehrung der Formeln (22°) ergibt:

A— B+ C+3D A+ B+ C+4+D
L == y =
1 4
_C+D

z = 3 w= —D

(23)

Somit stellt sich zuerst die Frage, ob auch jeder ganzzahligen Losung
F = 8n vermoge (23) eine ganzzahlige Losung f = n entspricht.
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Aus A% 4 B?+ (0?4 5 D? = 8n folgt modulo 4:
A2+ B+ C*+ D? =0 mod 4.

Daraus erhdlt man die Folgerungen:

1. In jeder Losung F = 8n sind die Zahlen A, B, C, D entweder alle gerade
oder alle ungerade.

2. In den Formeln (23) sind z, w stets ganze Zahlen.

3. Die Zahlen (A — B+ C + 3D) und (4 + B + C + D), sieche Formeln
(23), liegen in derselben Restklasse mod 4, denn diese Aussage ist mit
B =D mod 2 gleichwertig.

Es bleibt also noch zu untersuchen, wann z und y in den Formeln (23)

ganze Zahlen sind.
a) A, B, C, D sind gerade Zahlen.

Mit A=2A4",B=2B,C=2C",D=2D" gilt A2 + B> + C'? 4 5D
= 2n, also
A2 4+ B2 4+024+D2=A4A"+B +C'+D" = 0mod 2.

Somit ist ¥ und wegen Folgerung 3. auch « eine ganze Zahl, d.h.
jeder geraden Losung F = 8n entspricht umgekehrt eine ganzzahlige Losung
f=mn.

b) 4, B, C, D sind ungerade Zahlen .

Mit A, B, C, D betrachten wir alle Losungen 44, 4+ B, 4+C, +-D von
F = 8n, insgesamt 16 Losungen.

Weil modulo 2: +4 +B 4+C +D=1+1+1+41=0 ist, gilt

+A4 + B 4+C +D =0 oder 2 modulo 4 .

Von den 16 Moglichkeiten fithren, wie man leicht verifiziert, genau je acht
zu den Restklassen 0 oder 2 modulo 4, d.h.
bei ungerader Darstellung F' = 8 n liefert nur die Hilfte nach (23) Darstel-
lungen von f=n.

Nach a) und b) besteht, wenn man mit f(n) bzw. F (n) die Anzahl beliebiger
Darstellungen f = n bzw. F' = n bezeichnet, die Anzahl f(n) aus allen ge-
raden Losungen F = 8n und der Hilfte aller ungeraden Losungen F = 8n.

Weil offenbar die Anzahl der geraden Losungen F = 8n: F (2 n) betrigt,
gilt

) = LB - @) | p(an) dh.

f(n) = F(8n) —|2-F(2n) . (24)
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Damit ist das Darstellungsgesetz der Form f, d.h. der Formenklasse D = 5,
auf das entsprechende Gesetz der Form F zuriickgefiihrt.
Nach LiouviLLe®) wird nun die natiirliche, gerade Zahl N durch die Form

F=2X*+ Y+ 2%+ 5W2
in folgender Anzahl dargestellt:
N = 2%.58.m mit « >0, ggT(m,10) =1,

m 0

F(N)=§[5B+1+ (_~1)a<-_5—>] : [2a+1- (_1)a.5]. z (-5_)01 (25)

8-de=mm
(—7%) , (—2-) = quadratische Restsymbole, § = zu d konjugierter Teiler von m.

Der wesentliche Bestandteil der Formel ist die Funktion

Sn)= 2 (_‘2_) Summation iiber alle Teiler d von n, (26)

5.de=n 5
welche allgemein als zahlentheoretische Funktion definiert werden kann und
bei beliebigen Darstellungen an die Stelle der friiher definierten Funktion
P(n), (21), tritt.

. n\ [0\ [d
Bei n:ilmod5,<——5——)—lgﬂt<—5—)_(—5-) ,

bei n = 42 mod 5, (—g’—) = —1 gilt (—g—) = ——(%), so daf} S(n)

bei (—751) = 41 den UberschuB der Teilersumme 5% + 1 iiber die Teiler-
summe 5k 4 2,
bei (—7—&—) = —1 den UberschuB der Teilersumme 5k + 2 iiber die Teiler-

5
summe 5k 4+ 1 bedeutet.
Wie LiouviLLE erwihnt (l.c. Seite 4), kann S(n) als Produkt dargestellt
werden.

Ist namlich
n = I ¢ die Primzahlzerlegung von =,
8o gilt:
S(n):l][t"—i—(——;—)te—l—{—te—z—l—(—;-)t’"“—{—...] (27)

Dabei ist jeder Faktor eine geometrische Reihe, welche bei geradem Expo-
nenten mit 4 1, bei ungeradem Exponenten mit 4 1 oder — 1 endet, je nach-
dem die Primzahl quadratischer Rest oder quadratischer Nichtrest modulo 5 ist.

8) Journal de Mathématiques, Jahrgang 1864, S. 1-12, vgl. die Bemerkungen der Einleitung.
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Beweis: Es ist n =a%-q mit gg7T(a,q) =1.

J "2)d1d, _z (-‘5.51.) (-"5_2> dydy = 8 (a¥) - 8();

Sm=2(
-au
g

die Funktion S(n) ist also distributiv.

u a? u a \p a
Nunist S(a¥) =2 (-—5—) a*? =X (—5—) avt—? = q* + (-5-) a*-! + q%-32
P=0 p=0
a

+<—5—)a“"3+ .

womit gleichzeitig die Behauptung bewiesen ist, falls # nur eine Primzahl ent-
hilt. Nimmt man also an, der Satz sei fiir (¢—1)-Primzahlen schon bewiesen,
so gilt er auch fiir 2-Primzahlen q.e.d.

Korollar. Aus der Gestalt der Faktoren, d.h. der geometrischen Reihen folgt
sofort, daB die Funktion S(n) stets positiv, also eine natiirliche Zahl ist.

Wir bestimmen nun zu gegebener Zahl n = 2°.58.m die Funktion f(n) auf
Grund der Gleichungen (24) und (25).

2.f(n) = F(2°+3.58.m) + F(2*+1.56.m) = 1/3. [5ﬁ+1 — (= 1) (—’;-”-)]

. [2¢+4 + (—-1)‘.5].S(m) + 1/3- [5B+1 — (—=1)°. (.%".)] . [2‘+2-|- (--1)’-5]

m

-8(m)=1/3. [5ﬁ+1 — (—=1)- (-5-)] - [10.28+1+ 10-(— 1)‘] . 8(m);
also

fm = sj3-| spen — (=1 (B | [+ (=2 [ sem) o)

Weil bei der Formenklasse D = 5 die Primzahl 2 keine besondere Stellung
einnimmt, muB sich dies auch formelmiBig ausdriicken lassen. Um das zu
zeigen, setze ich

n =580 mit n' = 2°m

und betrachte statt S(m) die Funktion S(n').
Unter Benutzung der Produktdarstellung (27) folgt:

S(nl) — {23 — 9¢—1 + o8 +2 ___+ . }S(m) —

_ 2[1 — (=4 _
= 372 . S (m) ==

1/3-[2°+1 4 (—1)°]- S(m) .

f
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Setzt man den letzten Ausdruck in (28) ein und beachtet man

s (m\ __[(20m)\ (7
-(5)=(57) = (5)
so folgt abschlieBend das Darstellungsgesetz fiir beliebige Darstellungen durch

die Formenklasse D = 5:

Satz 11. Die natiirliche Zahl n = 58.n' mit gg7T(n', 5) = 1 wird durch
die Formenklasse D = 5 in folgender Anzahl dargestellt:

f(n)=5- [53“ — (%)] S(n') .

Zum Beispiel gilt bei g = 0, also » ==’ und

n=+1mod5: f(n)=20-.-8(n)
n=+4+2mod5:f(n)=30-S(n).

Satz 10 kann auf Satz 11 zuriickgefithrt werden; dabei ist zu zeigen, wie
beim Ubergang von beliebigen zu eigentlichen Darstellungen die Funktion (26)

é
S(n') = 2 <-5—) d
8d=n’
durch die Funktion (21)

Pn) = H[te + (%) te—l]

zu ersetzen ist.
Satz 11 kann abkiirzend durch

fn) = 1-8(n'), n =580,

/
bezeichnet werden. Dabei ist 4= 4 [ B; (%—)]
ein Faktor, der vom Exponenten 8 und vom quadratischen Restverhalten n’
mod 5 abhingt.
Wir befassen uns vorerst nur noch mit jenen Darstellungen, die auller der
Primzahl 5 keinen gemeinsamen Teiler > 1 besitzen, d.h. bei denen der gg7T
hochstens noch Diskriminantenteiler enthilt. Es gilt der

Hilfssatz. Die Anzahl der Losungen f(z,y,z,w) =n mit ggT (z,y, 2z, w)
= 5%, u > 0 wird bei gleichbleibendem A durch die Formel

g(n) = A-P(n')
gegeben.
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Beweis: Wir verwenden die bereits bewiesene Produktdarstellung (27) von
S(n') und denken uns in f(n) = A-8(n') die Funktion S(n’) in dieser Weise
dargestellt.

Es sei nun 7 = 58.n" und #’ = p*-n'’, wobei n’’ den Primfaktor p nicht
mehr enthilt.

1. Schritt: Wir subtrahieren von f(n) alle Darstellungen, welche den ge-

meinsamen Teiler p enthalten; ihre Anzahl ist offenbar f (-2%) , falls & > 2 ist.

[Falls k < 2 ist, gibt es gar keine solchen Darstellungen; dann aber hat S(n’)
in bezug auf p schon die Form von P(n’). Analoges gilt fiir die folgenden
Schritte.]

Der 1.Rest besteht aus Darstellungen, deren ggT zu p teilerfremd ist:

) — 1 (2) =

=2 ~1{0" +(%) pEt 4 pE 4 ] -8 (n"")

L

-
— APt (-—g) PPt .]-S(n”)

— 3| o+ (B) ot |50

— A-P(p¥)-8(n").

Der Wert von A bleibt dabei erhalten, weil g fest ist und zwei Zahlen, die
sich um eine Quadratzahl unterscheiden, dasselbe quadratische Restverhalten
haben.

Auf Grund der nach dem 1. Schritt erzielten Gleichung ist es naheliegend,
folgendes Korollar zu beweisen :

Korollar. Es sei n’ = u-v, wobei der Faktor % nur die Primfaktoren p,,
.« P enthélt.
Ist nun f(n) = A-8(n’') die Anzahl beliebiger Darstellungen durch die
Formenklasse D = 5, so ist

Im(n) = 4- P(u)-S(v)

die Anzahl jener Darstellungen von 7, deren ggT zu den m in ihr enthaltenen
Primzahlen p,, ..., p, teilerfremd ist. Ist insbesondere m die Anzahl der
in n’ enthaltenen Primzahlen, also v = 1 und 8(1) = 1, so ist das Korollar
mit dem Hilfssatz identisch.

Der behandelte 1. Schritt besagt, da das Korollar fiir m = 1 richtig ist.
Nach der Methode der vollstindigen Induktion diirfen wir die Giiltigkeit des
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Korollars nach m-Schritten, d.h. fir m-Primzahlen, die in einer beliebigen
natiirlichen Zahl N enthalten sind, annehmen.
Bei N = n sei also

Im(n) = A-P(u)-S(v) .

Um das Korollar auch bei (m -+ 1)-Primzahlen zu beweisen, sei v = ¢¢- w,
wobei w die Primzahl p,,_ , = ¢ nicht mehr enthalte.
Jetzt sind noch die Darstellungen mit gemeinsamem Teiler ¢ zu eliminieren.

Weil man die Darstellungen mit gemeinsamem Teiler p,,...,p, bereits
subtrahiert hat, besteht die zu eliminierende Anzahl aus den Darstellungen
der Zahl (—%) , diezu p,,...,p, teilerfremd sind.

Nach Induktionsvoraussetzung bei N = Ené- ist diese Anzahl

= A-P(u)-S(¢*~2-w).
Somit erhilt man nach (m + 1)-Schritten den Rest

A-Pu)-S(gt-w) — A-P(u)-S(g*~2-w) =
= 2-P(u)-8(w)-[8(") — S(g*~?)] =
= A-P(u-q) - S(w), womit das Korollar bewiesen ist.

Es besteht also ein sukzessiver Ubergang, der von Satz 11 iiber das Korollar
zum Hilfssatz und von diesem, wie jetzt noch zu zeigen ist, nach Satz 10 fiihrt,
wenn man die Darstellungen mit gemeinsamem Teiler 5 eliminiert.

Ich unterscheide fiinf Fille; in den ersten vier Fillen ist offenbar die Funk-
tion g(n) des Hilfssatzes bereits mit f,(n), der Anzahl eigentlicher Darstellun-
gen, identisch.

1. Fall: $ =0, n=mn', n = Nichtrest mod 5 .
n

f,(r) =g(n)=>5- [5 —(——5——)] -P(n) = 30-P(n)

2.Fall: B=0,n=mn', n= Rest mod 5.

£(n) = g(n) = 5- :5 —(-’;-)] .P(n) = 20- P(n)

3.Fall: B=1, n=5-n, n = Nichtrest mod 5.
nl

f,(n) = g(n) =5- :25 —(—5-)] .P(n') = 26 P (n)

wegen 5-P(n') = P(n).
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4. Fall: B=1,n=5-n", n' = Rest mod 5.
fum) = gn) = 5- | 25 — () | -Pw) = 24-Pw
wegen§-P(n') = P(n).

§. Fall: >2,n=25q".

Jetzt sind in g(n) noch alle jene Darstellungen enthalten, die den gemein-
samen Teiler 5 besitzen, ihre Anzahl ist aber

= g(6f—2.n') . Somit:
fo(n) = g(58-n') — g(5F-2.2') =
- 5.[5ﬁ+1—(l"5i)]-1>(n') - 5~[5ﬁ—1——(—ng,—)]-P(n')=24-5ﬂ-P(n')=24-P(n)
wegen 58. P(n') = P(n).
Mittels der LiouviLLEschen Formel (25), welche sich auf die Form
F=X24+ Y+ 22+ 5-W?

bezieht, ist somit das Darstellungsproblem der Klasse D = 5 vollstéindig ge-
168t und bewiesen.

4. Ergiinzungen

Gewisse Betrachtungen dieser Arbeit kénnen auch in anderen Féllen durch-
gefithrt werden.
a) Der untersuchten Form

f=2*+y*+22+w+ 224+ 2w+ yz2mit D=5
entspricht allgemein die fiir jede natiirliche Zahl d reduzierte Form
fa=x*+ 92+ 22+ dw? 4+ 22 + 2w 4 yz
mit der JacoBischen Darstellung
fa=(z+ 3z + w)* + (v + $2)* + 4(z — w)* + (@ — Pu?,

also der Diskriminante D =8d — 3.
Der Formel (22) entspricht die Identitat

8-fa=02x2 + 2y + 22+ w)? + (22 — 2y + w)? 4+ (22 — w)? + Dw?,

so daB das Darstellungsgesetz der durch f, reprisentierten Klasse iiber die
ganz analog zu beweisende Formel (24):
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f(n) = F(8n) —;— F(2n)

auf die Form
F=X24 Y2422+ D.-We

zuriickgefiihrt werden kann.

Beispiel: d = 2.
f=x2*4+y*+2+ 2w+ 224+ 2w+ yz, D=13.
Zu D = 13 existiert nur eine zweiseitige Klasse, wie man nach dem bei D = 5

benutzten Verfahren beweist.
Auf empirischem Wege finde ich fiir beliebige Darstellungen durch die For-
menklasse D = 13 folgendes Gesetz bestatigt, jedoch ohne Beweis:

n = 13%.n' mit ggT (13,2') =1
n' é
= ) ¢ Qe i . —_
A ll?ﬁ (13>] dﬁ'(l?»)d
Sdm=n’
b) Um gewisse Analogien der Darstellungsgesetze besonders hervorzuheben,
sei noch die Untersuchung der quaternéiren Formen mit D = 8 kurz mitgeteilt.
Reduzierte Formen:
f=2+y*+ 22+ w* + zz + yz2
(2 + 32)* + (¥ + 32)* + 32° + w?.
2+ y? 22+ w4 2z + 2w+ 2w
= (z + §z + Jw)® + 92 + §(z + Jw)® + §ut.

Die Form g ist zu f eigentlich #quivalent vermoge der Transformation

Il

I

g

1

1 0 0 0 xr x

T=[]0 0 —1 0 y = —2z |T|=+1.
0 1 0 0 =y
0 0 1 1 w=z+4+w

Die Klasse f ist zweiseitig, weil f z.B. die automorphe Substitution

1 0 0 0

A= 0 —1 0 —1 mit Determinante
0 0 1 0 | A | = — 1 besitzt.
0 0 0 1

AuBler den durch Umkehr- und Vertauschungstransformationen entstehen-
den Formen gibt es keine weiteren reduzierten Formen mit D = 8, so daB zu
D = 8 wieder nur eine einzige zweiseitige Klasse existiert.

14 CMH vol. 36
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Nun besteht die Identitat:
2 f=(x+y+2P+(r—y?+22+2 w2,
womit die Form f auf die Form
F=X:1L Y21 Z21 2.2
bezogen werden kann. Auf Grund der Zuordnungen
A=z+y+2z, B=x—y,C=z, D=uw,
x__A—{—B——C’ _A—-—B-C
= 2 ¥ = 2
entsprechen sich die ganzzahligen Losungen f(z,y,z,w) =n und
F(4, B,C, D) = 2n eineindeutig, d.h.
die natiirliche Zahl » wird durch die Form f in gleicher Anzahl dargestellt wie
die Zahl 2n durch die Form F.

Die Form F wurde von Liouvinre (J. Math. Pures Appl. 1861, S. 225f.)
vollsténdig behandelt und seine Resultate wurden von PEPIN bewiesen®). Da-
mit lautet das Gesetz fiir beliebige Darstellungen durch die Formenklasse
D=28:

Satz 12. Die natiirliche Zahl n = 2%-n', n' ungerade, wird durch die Formen-
klasse mit Diskriminante D = 8 wne folgt dargestells:

=2 - (2)] 2, 5

Das zugehorige Gesetz fiir eigentliche Darstellungen kann wie beim Uber-
gang von Satz 11 zu Satz 10 bewiesen werden; dabei tritt an die Stelle der
Funktion

,2=0,w=D

S(n)= 2 (_?_) d  wieder P(n) =11 [t‘ = (%) t""‘] .

Sd==n 0

Man darf also annehmen, daB bei einklassigen Diskriminanten D im Gesetz
fiir beliebige Darstellungen die Funktion

S=2(—§-)d,

im Gesetz fiir eigentliche Darstellungen die Funktion
p—a|e+ () o]

eine wesentliche Rolle spielt?).

) [5] PrrIN. )

7) Bei D= 1mod4 ist (—?—)z(-—ﬁ-)
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