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liber vektorielle Differentialgleichungen erster Ordnung
mit konstanten Koeffizienten

von Haks Egli, Zurich

I. Die homogène lineare Differentialgleichung

§ 1. Grundlagen

In diesem ersten Paragraphen wollen wir die im folgenden beniitzten grund-
legenden Begriffe und Sâtze kurz angeben1).

1.1. Die Vektorfunktion. Unter einer Vektorfunktion y y(x) verstehen
wir eine Abbildung, die jedem x aus dem m-dimensionalen Raum iî™ einen
Vektor y des ?i-dimensionalen Raumes Rny zuordnet. Der Definitionsbereich
einer Vektorfunktion kann auf ein Gebiet in E% eingeschrànkt werden.

Wir werden nur zweidimensionale Vektorràume mit reeller Struktur benut-
zen. Die euklidische Metrik wird definiert durch eine symmetrische, positiv
definite Bilinearform Sxy (Skalarprodukt). Der Betrag | x | des Vektors x
ist durch | x | + VSxx â 0 erklârt.

1.2. Die Ableitung. Die Vektorfunktion y(x) ist im Punkt x des Defini-
tionsbereiches stetig, falls

\y{x + h)-y(x)\-+O fur | h | -> 0

Die Funktion y (x) heiBt im Punkt x differenzierbar, falls es eine in h € B%

lineare Abbildung y1(x)h von R% in JB^ gibt, so da8 die Gleichung

y{x + h) - y(x) yf(x)h + | h | (h; x)

gilt, wobei (h ; x) einen y-Vektor bezeichnet, dessen Betrag gegen Null strebt,
wenn | h \ gegen Null geht.

Die Ableitung, das heiBt der lineare Operator y1 (x), ist eindeutig bestimmt,
falls die Funktion y (x) iiberhaupt differenzierbar ist.

In bezug auf irgend welche Koordinatensysteme entspricht der Operator
y1 (x) der jACOBischen Funktionalmatrix.

l) Fur Einzelheiten und die Beweise der angefûhrten Sâtze verweisen wir auf F. und B. Ne-
VANLINNA [1],
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1.3. Die zweite Ableitung. Falls der lineare Operator y1 (x) einer differen-
zierbaren Vektorfunktion y (x) selbst wieder differenzierbar ist, erhâlt man
als zweite Ableitung einen bilinearen Operator y"{x). Es gilt dann fur ein
genugend kleines h und ein beliebiges le die Beziehung

y'(x + h)k - y'(x)k y'(x)hk + \h\ (h; x)k
mit | (h; x) | -> 0 fur | h\ -» 0.

Falls der zweite Ableitungsoperator in einer Umgebung des Punktes x
existiert, so gilt die Symmetrie

y"(x)hk y" (x)kh (Vertauschbarkeit der Difïerentiationen).
1.4. Die Differentialgleichung erster Ordnung. Die Differentialform einer Dif-

ferentialgleichung erster Ordnung lautet

dy f(x, y)dx oder y'dx f(x, y)dx
wo x ein Vektor aus R™, y y(x) eine zu bestimmende Vektorfunktion
x -> y € Eny und f{x,y) ein durch das Punktepaar x, y eindeutig bestimmter
Operator ist, der den Raum R™ in den Raum Rny abbildet.

Eine solche Difïerentialgleiehung ist unter folgenden Voraussetzungen in der
Umgebung des Punktes x0 eindeutig losbar:

1°. Der Operator f(x,y) ist fur | x — x0 \ < rœ, \ y — y0 \ < ry stetig dif-
ferenzierbar.

2°. Der Operator

verschwindet fur aile Wertepaare x,y des betrachteten Gebietes.

1.5. Die homogène lineare Differentialgleichung. Fur die homogène lineare
Differentialgleichung erster Ordnung mit konstantem Operator B

dy Bdxy
vereinfacht sich die Integrabilitâtsbedingung 2° zu

BhBk BkBh.
Die Lôsung der Differentialgleichung heifit dann

y(x) (E + B(x-x0) + -zy B(x-xo)B(x-xo) +
\+ — B(x-xo)B(x-xo)B(x-xo) + ...)yo.

Es ist also eine Exponentialreihe, die man wie folgt abgekiirzt schreiben kann :

y(x) e**—*y0 (exp B(x - xo))yo 2),

¦) Da wir das Symbol e in anderer Bedeutung verwenden werden, benûtzen wir fur die
Exponentialfunktion die Bezeichnung exp.
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1.6. Die Matrix eines bilinearen Operators. Wenn wir in den beiden Râumen
i?£ und JSJ zwei Koordinatensysteme fixieren, so ist dem bilinearen Operator
B eine Matrix (B*9) zugeordnet. Fur zweidimensionale Vektorràume besteht
dièse Matrix (B*v) aus 8 Zahlen, die wir wie folgt anordnen :

§ 2. Der bilineare Operator Bxy
In diesem Paragraphen soll der bilineare Operator Bxy untersucht werden

unter Annahme der Integrabilitàtsbedingung

BhBk BkBh. (2.1)

2.1. Nicht ausgeartete Folle. Der bilineare Operator B heiBt ausgeartet,
wenn ein x =£ 0 (bzw. y ^ 0) existiert, so daB Bxy 0 fur jedes y (bzw. x)
gilt. Wir nehmen vorerst an, daB dièse Ausartung nicht zutrifft.

Unter dieser Voraussetzung untersuehen wir die Nullstellen von Bxy.
Zunâchst ist es auf Grund der Linéarisât von B klar, daB B(0, y) B (x, 0)

0 und daB, wenn x, y ein Lôsungspaar ist, auch B(Xx) (/uy) 0 fur
jedes réelle X und fi. Dièse Lôsungen Xx.iiy sollen im folgenden als wesent-
Beli gleich betrachtet werden.

Wir unterscheiden nun folgende Fâlle:
1) B ist définit. Das soll heiBen, daB Bxy #: 0 fïir jedes x ^ 0, y ^ 0.

2) B ist semidefinit. So bezeichnen wir den Fall, wo Bxy 0 genau ein
Lôsungspaar x x1=^=0,y y1^0 besitzt.

3) B ist indefinit. In diesem Fall hat Bxy 0 genau zwei verscMedene
Lôsungspaare x1,y1 und x%i y2.

DaB dièse Fâlle tatsâchlich vorkommen kônnen, werden wir spâter sehen.

Dagegen wollen wir jetzt zeigen, daB keine andern Fâlle môglich sind.
Zunâchst ist es ausgeschlossen, daB fur ein x xx ^ 0 zwei verschiedene

y y1^09y y2^0 als Lôsungen vorkommen. Denn dann wâren yx und
y2 linear unabhângig und wiirden die ganze Ebene aufspannen. Mit dem An-
satz y yyx -f ôy% erkennen wir, daB Bo^y 0 ftir jedes y wâre. Dies ist
aber unmôglich, solange wir B als nicht ausgeartet voraussetzen.

Nun nehmen wir an, daB mindestens zwei verschiedene Lôsungspaare
x o% î£ 0, y yx ^ 0 und x x% # 0, y y2 # 0 existieren. Nach obi-

gem sind xx und x2 und ebenfalls yx und y2 linear unabhângig. Wir kônnen
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also fur zwei beliebige Vektoren x und y die Koordinatendarstellung

x ^xx + Ç2x2, y riiy1 + rj2y2

ansetzen. Dann ist

Bxy Z&rpBxtyt ^r^Bx1yt + Shj1Bxty1

Wenn wir jetzt die Integrabilitàtsbedingung (2.1) zu Hilfe nehmen, gilt

0 Bx1Bx2y2 Bx2Bxxy2, 0 Bx2Bx1y1 Bx1Bx2y1.

Da Bx2y nur die nicht triviale Lôsung y y2 hat, so muB nach der ersten
Gleichung Bxxy2 y2 sein. Und àhnlich ergibt sich aus der zweiten Gleichung
die Beziehung Bx2yx yx. Also wird

Bxy ?r?y2 + !?r?yx

Hieraus schliefit man, daB Bxy 0 nur unter der Bedingung l1^2 Prj1 0

môglich ist. AuBer x 0 oder y 0 sind also die beiden Lôsungen

fi 0, ri1 0 (|2 ^0,^ 0), somit x x2, y y2

£2 Oj ^2 0 (£i .£ o, fli ^ 0), somit x xliy y1

allein môglich. Damit ist gezeigt, daB es auBer den Lôsungspaaren xl9 yx und
x2, y2 keine anderen Lôsungen mehr gibt.

2.2. Dos Einheitselement. Stets unter Annahme der Integrabilitàtsbedingung

(2.1) zeigen wir, daB es fur einen nicht ausgearteten Operator B ein
und nur ein «Einheitselement» x e gibt, so daB

Bey y
fur jedes y gilt.

Beweis 1°. Wir fixieren einen Vektor y y0 ^ 0, der nicht mit den Null-
stellen von Bxy zusammenfâllt, das heiBt, es ist Bxy0 ^ 0 flir jedes x =fi 0,
und betrachten die lineare Abbildung x -> Bxy0. Dièse Abbildung ist regu-
làr. Wâre sie nàmlich irregulâr, so wurde ein x x0 ^ 0 existieren, fur das

Bxoyo 0, was bei der getroffenen Wahl von y0 nicht môglich ist.
Ptir dièse regulâre Abbildung x->BxyQ ist die Gleichung Bxyo yo ein-

deutig lôsbar; wir bezeichnen die Lôsung mit x e.

2°. Fur die so festgelegten Vektoren y0 und e gilt identisch in x die
Integrabilitàtsbedingung (2.1)

BeBxy0 BxBey0 Bxy0 (2.2)
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Da x->Bxy0 regulâr ist, gibt es zujedem y ein wohlbestimmtes x, sodaB
Bxy0 y. Die Gleichung (2.2) wird dann zu

Bey y,
und sie ist fur aile y erfûllt.

3°. Es sei el ein zweites Einheitselement. Dann ist B(e — e')y 0 fur
aile y, woraus sofort e! e folgt.

2.3. Symmetrisierung des Operators B. Wir versuchen nun, eine regulàre
lineare Transformation Y der y-Ebene so durchzufûhren, daB der transfor-
mierte Operator B Y~XBY symmetrisch wird.

Eine solche Transformation ist durch die Gleichung

Ty Byz

gegeben, wobei z keine Nullstelle von Bxz ist, sonst aber beliebig fixiert
werden kann.

Wegen der Integrabilitâtsbedingung (2.1) ergibt sich

Byx Y"xByYx Y^ByBxz Y^BxByz Y~xBxYy Bxy
also die gewiinschte Symmetrie.

Nach Ausflihrung dieser Transformation bleibt der oben bestimmte Vektor
e Einheitselement, denn es gilt

Bey Y^BeYy Y^Yy y

Wegen der Symmetrie ist e nun nicht nur Links- sondern auch Rechts-
einheitselement.

Wàhrend die Nummern 2.2 und 2.3 fur aile nicht ausgearteten Operatoren
B gultig sind, gehen wir jetzt zur speziellen Behandlung der drei môglichen
Fâlle (définit, semidefinit, indefinit) ûber. Dabei nehmen wir an, daB B bereits
symmetrisiert worden ist.

2.4. Der definite Fall. In diesem Fall gilt der Satz :

Die Gleichung Bxx a ist fur jeden Vektor a lôsbar, wobei die Lôsung
x bis auf das Vorzeichen eindeutig bestimmt ist.

Beweis. a) Eindeutigkeit. Aus Bxx Bxrx' a folgt wegen der
Symmetrie von B die Gleichung Bxx — Bx'x' B(x — x') (x + #') 0, die

nur erfûllt sein kann, wenn x xr, oder wenn x — x'. Somit ist x bis
auf das Vorzeichen eindeutig bestimmt.

b) Existenz. Pur a 0 ist x 0 die Lôsung der Gleichung Bxx a.
Wir nehmen jetzt an, es sei a # 0.
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Zum Beweis der Existenz einer Lôsung von Bxx a fïïhren wir die Norm
(p(x) \ Bxx — a\ ^0 ein. Wir werden zeigen, daB es einen Wert x 6

gibt, so daB <p(b) 0, womit dann die Behauptung bewiesen ist.
Hierzu betrachten wir die Funktion | Bxx | auf dem Kreis | x \ 1. Als

stetige Funktion erreicht sie hier ein Minimum /?, das wegen der Definitheit

von 2? sicher positiv ist. Aufdem Kreis \x\ =p gilt \Bxx\—q2 B ^Q2P\
Q Q

es ist also | Bxx | ~> oo for | x \ -» oo. Wir fixieren q so, daB q2(} 3 | a |,

Kreis | as | g wird dann nach der Dreiecksunglei-+ 1/ —-

chung

-q-

<p(x) — | a | 2 | a

Im abgeschlossenen Bereich | x \ ^ q hat <p(x) ein Minimum m ^ 0, das
in mindestens einem Punkt # xQ erreicht wird. Dieser Punkt x0 liegt
sicher im Innern des Kreises | x | ^ q; denn fur | as | g ist ç>(o?) SS 2 | a |,
und andererseits ist y(0) \ a \ ^m, also cp(x) g 2m fur | x | ^.

Wir zeigen nun, daB (p(x0) | BxQx0 — a \ 0. Zum indirekten Beweis
nehmen wir an, es sei q>(x0) > 0. Schreiben wir dann x x0 + M, so wird

| Bxoxo — a PBhh

Die Gleiehung Bxoh — (BxoxQ — a) hat genau eine Losung h h0

und es ist damit
0,

- a) (1 -
Fur jedes 0 < X < | gilt also die Abschàtzung

Wegen hQ

sofern
0 ist BhQh0^ 0, und der letzte Klammerausdruck ist positiv,

Fûr aile Werte

£ ist, wird also

Da x0 im Kreise
Punkte x xQ +
m widerspricht.

0, die kleiner als die kleinere der Zahlen ^ ™ und

<p{xo + Mio)<<p(xo) m.

| < q liegt, so folgt hieraus, daB es in diesem Kreis
geben wtirde, wo ç?(#) < m, was der Définition von
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Es mu8 daher <p(z0) m 0, BxQx0 a sein, w.z.b.w.

2.5. Nach dem eben bewiesenen Satz ist speziell die Gleichung Bxx — e

bis auf das Vorzeichen eindeutig lôsbar. Wir bezeichnen die eine dieser zwei
Lôsungen mit x % (i ^ 0, c) und stellen die Resultate zusammen :

e, Bei Bie i BU — e (2.4)

Fuhrt man ein Koordinatensystem mit den beiden ausgezeichneten Vektoren
e und i als Basis ein, so erhâlt die dem Operator B entsprechende Matrix
wegen der Integrabilitâtsbedingung (2.1) und den Gleichungen (2.4) die Form

(2.5)

Damit Iâfit sieh nun auch der Nachweis fiihren, daB es wirklich definite
bilineare Operatoren gibt. Wir behaupten, daB bei beliebiger Wahl der Basis-
vektoren e und i jeder durch eine Matrix der Form (2.5) festgelegte Operator
définit ist.

Zum Beweis bemerke man, daB das System

(BxyY £V - £V 0 {Bxyf IV + IV 0

nur dann eine nicht triviale Losung x (f1, |2) hat, wenn die Déterminante
(r)1)2 + (rç2)2 verschwindet. Fur jedes y ^ 0 folgt somit aus Bxy 0 nur
die Losung x 0, womit die Definitheit von B bewiesen ist.

DaB fur eine Matrix (2.5) die Integrabilitâtsbedingung (2.1) erfullt ist und
die Gleichungen (2,4) gelten, ist offensichtlich.

2.6. DersemidefiniteFatt. Im semidefiniten JFall hat die Gleichung Bxy 0

genau ein nicht triviales Lôsungspaar x x1 ^ 0, y yx ^ 0. Nach der
Symmetrisierung mûssen die beiden transformierten Vektoren xx und yx

zusammenfallen, da sonst noch eine zweite nicht triviale Nullstelle vorhanden
wâre.

Wir haben also auch in diesem Fall zwei ausgezeichnete Riehtungen, nâm-
lich das Einheitselement e und die Nullstelle xL== yx j. Dièse beiden
Vektoren e und j nehmen wir als Basis. Unter Benutzung der Relationen

Bee c Bej Bje j % Bjj 0 (2.6)

sowie der Integrabilitâtsbedingung (2.1) ergibt sich folgende Matrix fur den

Operator B :
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(2.7)

1

0

0

0

0
1

1

0

Umgekehrt ist der durch eine Matrix der Form (2.7) festgelegte Operator
immer semidefinit.

2.7. Der itulefinite Fail. Wenn wir, nach vollzogener Symmetrisierung des

Operators B, die beiden nicht trivialen Lôsungspaare der Gleichung Bxy 0
mit xl9 yx bzw. x2, y2 bezeichnen, so kann man schlieBen, daB einerseits xx
und y2, andererseits x2 und y1 zusammenfallen mûssen. Sonst kônnte man
aus der Symmetrie sofort die Existenz von zwei weiteren nicht trivialen
Lôsungen herleiten.

Der Einheitsvektor e kann nach seiner definierenden Eigenschaft weder mit
xx noch mit dem von xx linear unabhângigen x2 zusammenfallen. Es gibt
also zwei wohlbestimmte Zahlen oc, (t =/= 0, so daB e ocxx + (}x2.

Setzt man dann k <xx1 — jS#2> so ^^ e un(^ ^ linear unabhângig, imd
es ist

Bhk (x2Bx1x1 + P2Bx2x2 Bee e

Wenn man e und k als Basis wàhlt, so findet man wegen

Bee e, Bek Bke k Bkk e (2.8)

und der Integrabilitâtsbedingung (2.1) fur den Operator B die Matrix

(2.9)

Umgekehrt definiert eine Matrix der Form (2.9) immer einen indefiniten
Operator.

2.8. Zwammenfassung. Falls der Operator B nicht ausgeartet ist, so lâBt
sich nach einer passenden regulâren Transformation der Variablen y ein Ko-
ordinatensystem so wâhlen, daB die dem Operator B entsprechende Matrix
die Form

(2.10)
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erhâlt, wobei ju, die Werte — 1, 0, 1 hat, je nachdem, ob der definite, semi-
definite oder indefinite Pall vorKegt.

Umgekehrt stellt jede Matrix der Form (2.10) einen definiten, semidefiniten
oder indefiniten bilinearen Operator dar, und zwar unabhàngig von der Wahl
des Koordinatensystems.

2.9. Die ausgearteten Fâlle. Wir nehmen jetzt an, B sei bezuglich x aus-
geartet, es gebe also ein x xx ^ 0 mit Bxxy 0 fur aile y.

Wenn dann fur ein beliebig fixiertes x =£ xx die lineare Abbildung y-+ Bxy
regulâr ist, sprechen wir von einfacher Ausartung. Ist dièse Abbildung irregu-
lâr, existiert also ein Kern y yQ ^= 0, so ist B auch bezuglich y ausgeartet;
wir heiBen ein solches B zweifach ausgeartet. Wenn der Kern die ganze t/-Ebene
umfaBt, wenn also B der Null-Operator ist, nennen wir B total ausgeartet.

Bevor wir auf Einzelheiten eingehen, beweisen wir den Satz, daB ein bi-
linearer Operator B, der bezuglich y ausgeartet ist (Bxyx 0 fur aile x),
unter Annahme der Integrabilitâtsbedingung (2.1) auch bezuglich x
ausgeartet ist.

Zum indirekten Beweis nehmen wir an, B sei in bezug auf x nicht
ausgeartet. Dann ist fur irgendein y ^ y1 die Abbildung x-±Bxy regulàr.
Wir bestimmen x xx ^ 0 so, daB Bx1y y1. Aus der Integrabilitâtsbedingung

(2.1) folgt dann

Bx1Bxy BxBxty Bxyx 0 fur aile x

also Bxxy ¦=¦ 0 fur aile y. Das ist aber ein Widerspruch zu unserer Annahme.
Damit ist gezeigt, daB ein bezuglich y ausgearteter Operator Bxy wegen

(2.1) immer mindestens zweifach ausgeartet ist.
Sei nun B einfach ausgeartet. Fur die regulâre Transformation y ~> Bxy

bestehen dann nach der allgemeinen Eigenwert-Theorie folgende Môglich-
keiten:

1. Es existieren keine Eigenvektoren, das heiBt, es gibt kein y ^ 0, fur
das Bxy Xy (A reell). Wir nennen diesen Fall ausgeartet-definit.

2. Es existiert genau ein Eigenvektor y yx: ausgeartet-semidefiniterFall.

3. Es existieren genau zwei Eigenvektoren y yl9 y y2: ausgeartet-
indefiniter Fall.

Wenn die Transformation y-±Bxy (B ^ 0) irregulâr ist, also bei zwei-
facher Ausartung von B, sind nur der ausgeartet-semidefinite und -indefinite
Fall môglich, da der Kernvektor y y0 immer ein Eigenvektor (mit dem

Eigenwert 0) ist.
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2.10. Die zugehorigen Matrizen. Wir wâhlen die Basis der #-Ebene so, daB
der Vektor xx, fur den Bxxy identisch verschwindet, die Koordinaten
xx (1, — 1) erhâlt. Die Matrix (B*9) hat dann die Form

B2 Bt \ (2.11)

und die Integrabilitàtsbedingung ist von selbst erfullt.
Im ausgeartet-definiten Fall (kein Eigenvektor) transformieren wir die

y-Ebene so, daB die Selbstabbildung y-± Bxy eine Drehung wird. Die trans-
formierte Matrix erhâlt dann die Form

B1

(2.12)

Im ausgeartet-semidefiniten Fall (ein Eigenvektor) wâhlen wir die Basis
der y-Ebene so, daB der Eigenvektor mit dem zweiten Basisvektor zusammen-
fâllt. Die zugehôrige Matrix lautet dann

Bt \ (2.13)

wobei fur Bx ^ 0 einfache und fur Bx 0 zweifache Ausartung vorliegt.
Im ausgeartet-indefiniten Fall (zwei Eigenvektoren) legen wir die y-Basis so,

daB die beiden Eigenvektoren die Koordinaten yx (1, 1) bzw. y% (1, — 1)

erhalten. Die zugehôrige Matrix heiBt

(2.14)

wobei die Ausartung fur \BX\^\B%\ einfach und fur | J^ | » | J3t | zwei-
fach ist.

Zusammenfassend lâBt sich sagen, daB die Matrix eines ausgearteten bi-
linearen Operators B(^0) immer auf die Form

11 CMH vol. 36
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(2.15)
B1

transformiert werden kann, wobei p die Werte — 1, 0, 1 hat, je nachdem, ob
der ausgeartet-definite, -semidefinite oder -indefinite Pall vorliegt. Die Aus-
artung ist genau dann zweifach, wenn (Bt)2 — /a(B2)2 0.

Umgekehrt ist leicht ersichtlich, da8 jede Matrix der Form (2.15) einen
ausgearteten bilinearen Operator darstellt, und zwar je nach dem Wert von
[i einen definiten, semidefiniten oder indefiniten.

§ 3. Einfuhrung passender Ringe

Nach 1.5 laBt sich die Lôsung einer homogenen linearen Differentialglei-
chung dy Bdx y als Exponentialreihe darstellen :

y (x) (exp B(x— xQ))yQ.

Um das Studium dieser Exponentialabbildung zu erleichtern, fûhren wir
im folgenden einen Ring ein, in welchem Bxy als Produkt Bxy inter-
pretiert werden kann.

3.1. Nichtausgeartetes B. Legt man in einem zweidimensionalen Vektor-
raum mit reeller Struktur fur die Basiselemente ^ und e2 die Multiplikations-
formeln

e1-e1 e1, ^.62 62.^ 62, 62-e2 ^ (3.1)

zugrunde, und definiert man als Produkt von zwei Vektoren u 2<xKeK und
K

v £fi*ex den Ausdruck
x

uv ZotKpxeKex, (3.2)

so wird dadurch der Vektorraum zum hyperkomplexen System erweitert, denn
die Multiplikation der Basiselemente ist offensiehtlieh assoziativ. Die durch
(3.1) und (3.2) festgelegte Ringmultiplikation ist kommutativ und e^ ist das
Einselement.

Wenn wir nun dem Operator B das Einselement e^ zuordnen und dann im
Ring das Produkt B-x-y bilden, erhalten wir

Bxy
Genau die selbe Koordinatendarstellung bekommt man, wenn man fur den
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Operator B die Normalmatrix (2.10)

einsetzt. Damit ist gezeigt, da6 man in einem passend definierten Ring Bxy
als Produkt B-xy interpretieren kann, wobei fur B das Einselement des

Ringes einzusetzen ist.
Zur Vereinfachung identifizieren wir, wie es bei den komplexen Zahlen

ûblich ist, die Vielfachen oce1 mit den reellen Zahlen oc. Ferner nennen wir,
in Ûbereinstimmung mit den Bezeichnungen in § 2, das zweite Basiselement

i, j oder k, je nachdem, ob der definite, der semidefinite oder der indefinite
Fall vorliegt.

3.2. Der Ring im definiten Fall. Aus den Multiplikationsvorschriften fur
die Basiselemente

e-e e e-i i-e i ii — e

geht hervor, daB wir hier die Vektoren mit den komplexen Zahlen
identifizieren kônnen. Wir werden deshalb im definiten Fall die bekannten Ergeb-
nisse der komplexen Funktionentheorie erhalten.

3.3. Der Ring im semidefinitenFall. Fur die Basiselemente gelten die
Multiplikationsvorschriften

e-e e, e-j j-e j jj O.

Wir zeigen zuerst, daB der so definierte Ring Nullteiler besitzt. Aus

(oc + Pj) (y + àj) =<xy + (ocô + fr)j 0

folgt nâmlieh auBer den beiden trivialen Lôsungen oc — (} 0 und y b 0

noch die Lôsung oc y 0, fi und à beliebig. Aile Ringelemente der Form
(tj sind also Nullteiler dièses Ringes.

Fur dièse Nullteiler gelten die folgenden leicht zu verifizierenden Sâtze:

1. a b ist genau dann Nullteiler, wenn a oder b Nullteiler ist.
2. Die Gleichung ax b ist genau dann eindeutig lôsbar, wenn a kein

Nullteiler ist.
3. Aus ab ac, a kein Nullteiler, folgt b c.

Die Ringelemente, die nicht Nullteiler sind, teilen wir in zwei elementen-
fremde Klassen ein. Ein Ringelement a oc + (tj gehôrt zur Klasse 1, wenn
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oc > 0, zur Klasse 2, wenn oc < 0. Fur das Produkt von zwei Ringelementen
gilt dann der

Satz 4. a-b gehôrt zur Klasse 1, wenn a und b aus der gleichen Klasse
stammen, a-b gehôrt zur Klasse 2, wenn a und 6 aus verschiedenen Klassen
stammen.

Zum Beweis bilden wir (oc + Pj) (y + ôj) ocy + (ocô + py)j und stellen
fest, daB ocy genau dann positiv ist, wenn oc und y gleiches Vorzeichen haben,
wenn also die zugehôrigen Elemente zur selben Klasse gehôren.

3.4. Der Ring im indefiniten Fall. Die Multiplikationsvorschriften fur die
Basiselemente lauten hier

e-e — e, e-k ke h k-k e.

Auch dieser Ring hat Nullteiler, denn aus

(* + pk) (y + ôk) =ocy + pô+ (otâ + $y)k 0

folgen auBer den beiden trivialen Lôsungen a /S 0 und y ô 0 noch
die zwei Lôsungen

oc /?, y — à bzw. (% — fi y 5

Jedes Ringelement der Form # ± ^^ ist also Nullteiler dièses Ringes.
Die in 3.3 angegebenen Sâtze ûber die Nullteiler (Sâtze 1 bis 3) gelten auch

fur den indefiniten FaU ohne Einschrànkung.
Satz 4 dagegen muB leicht modifiziert werden. Die Ringelemente, die nicht

Nullteiler sind, teilen wir in diesem Fall in vier elementenfremde Klassen ein.
Ein Ringelement a « + fik gehôrt zur

Klasse 1, faUs *>\P\
Klasse 2, falls p > j oc |

Klasse 3, falls - oc > \ p \

Klasse 4, falls — p > j oc \

Wenn man weifi, zu welchen Klassen zwei Elemente a und b gehôren, so
ist dadurch die Klasse von a-b eindeutig bestimmt. Es gelten nâmlich fol-
gende Zusammenhànge (der Index gibt die Klasse an) :

aK.bK c (ic= 1,2,3,4)
û^.6,, =cK (ic=2,3,4)
(h'h =: C4 y «2>64 H y <V&4 C2

Der Beweis verlâuft fur aile zehn Gleiehtingen prinzipiell gleich; wir nehmen
als Beispiel a2-bA c3.
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Sei a2 <* + pk mit p > | oc | und b4 y + ôk mit — ô > \ y |. Wir
wollen zeigen, daB O2'b4 ocy + pô + (ocô -\- py)k zur Klasse 3 gehôrt, da8
also die Ungleichung

\ocô + py\
besteht. Zu diesem Zweck zerlegen wir den Ausdruck — (ocy + pô) ± (oc ô + Py)
in Faktoren :

- (ocy + Pô) ± (ocô + Py) (P T *) (- ô ± y)

Da beide Faktoren rechts nach Voraussetzung positiv sind, haben wir

- (ocy + pô) ± (ocô + Py) > 0 oder - (ocy + pô) > \ ocô + Py \ q.e.d.

3.5. Ausgeartetes B. Die Matrix eines ausgearteten Operators B kônnen wir
nach 2.10 in der Form (2.15)

i?i B2

iB2 Bx

Bx B2

voraussetzen.
Wenn wir dem Operator B das Ringelement B^ + B2e2, dem Vektor

x (f1, ^2) das Elément (Ç1 + l2)^ und dem Vektor y (tj1, rj2) das

Ringelement rj1e1 + ^2«a zuordnen, und wenn wir die Multiplikation wieder
durch (3.1) und (3.2) definieren, so ergibt sich fur Bxy

+ fiBrf) (fi + l2)^ + (B.171 + A^2) (f1 + f1)^,

Das ist genau die Koordinatendarstellung von Bxy, wenn man die Matrix
(2.15) zugrunde legt.

Weil wir die selben Ringe wie fur nicht ausgeartetes B verwenden kônnen,
benûtzen wir auch die gleichen Bezeichnungen : Fur p — 1 nennen wir
den zweiten Basisvektor i, fur p 0 heiBt er j, und fur ju, 1 heiBen wir
ihn k.

§ 4. Die Exponentialabbildung

In diesem Paragraphen untersuchen wir die Abbildung, die durch die

Lôsung y (x) (exp B(x — xo))yo der Differentialgleichung dy Bdxy
vermittelt wird. Als Anfangsbedingung setzen wir zur Vereinfachung y (0) y0
fest.

4.1. Abbildung fur nicht ausgeartetes B. Wir haben in 2.2 gezeigt, daB es fur
jeden nicht ausgearteten Operator B ein eindeutig bestimmtes «Einheitsele-
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ment» e (Bey y fur aile y) gibt. Nun behaupten wir, daB jede Gerade der
Schar x Ce + b( — oo < f < oo, b variabel) durch die Losung y(x) der
Differentialgleichung dy Bdxy auf einen Halbstrahl y exp è-y(b) ab-
gebildet wird.

Beweis. 1°. Auf der Geraden x £e ist y exp Ç-y0 eine Losung der
Differentialgleichung. Denn

dy exp i-diy0 exp ijdÇBey0 B(edÇ) (exp f -2/0) .Betoy

2°. Dièse Losung stimmt fur f 0 mit der allgemeinen Losung ^(x)
uberein.

3°. Unter Verwendung der Funktionalgleichung f(x1 + #2) f(xi)f(x2)
erhalten wir

y (Se + b) /(|e + 6)y0 f(Se)f(b)yQ /(ô).exp |-y0 exp {.y (6)

4.2. Der definiteFall. Wie wir in 3.2 gesehen haben, konnen wir in diesem
Fall die Vektoren als komplexe Zahlen interpretieren. Als Losung der
Differentialgleichung dy dxy (es ist ja B 1) erhalten wir folglich die normale
komplexe Exponentialfunktion y (exp x)y0) die periodisch ist und jeden
Fundamentalstreifen der #-Ebene eineindeutig auf die punktierte t/-Ebene ab-
bildet.

4.3. Der semidefinite Fall. Wir legen den in 3.3 eingefùhrten Ring zugrunde
und untersuchen die Losung y (x) (exp Bx)y0 zunâchst fur die spezielle
Anfangsbedingung y0 1. Wegen j2 j3 • • • =0 erhâlt man

y exp (I1 + Pj) exp fi.(l + f«j),
also

q1 exp fS 7?2 |2-exp I1 (4.1)

Wir sehen, daB eine eineindeutige Abbildung der #-Ebene auf die Halbebene
rj1 > 0 vorliegt. Denn rj1 > 0 ist die notwendige und hinreichende Bedingung
fur die eindeutige Auflosbarkeit des Systems (4.1) nach I1 und f2.

Nach 4.1 geht bei dieser Abbildung jede Gerade x Ce + b in einen
Halbstrahl y exp è-y(b) ûber. (Vgl. Fig. 1.)

Bis jetzt haben wir y0 1 vorausgesetzt. Es bleibt noch zu untersuchen,
in welcher Weise sich der Funktionsverlauf àndert, wenn man die
Anfangsbedingung y0 variiert.

Wàhlt man y0 in der selben Halbebene wie y0 1, ist also rjl > 0, so

bleibt gesamthaft betrachtet die eineindeutige Abbildung der #-Ebene auf die
Halbebene rj1 > 0 bestehen, wie man anhand der Sâtze 1, 2 und 4 in 3.3



Ûber vektorielle Differentialgleichungen erster Ordnung mit konstanten Koeffizienten 169

erkennt. Im einzelnen ist es so, daB gegenûber dem Spezialfall y0 1 jeder
Halbstrahl im selben Sinn wie y0 gedreht ist. Der Drehwinkel ist aber nicht
konstant, sondern geht gegen Null, wenn man sich dem Rand der Halbebene
nâhert, also fur rj1 ->• 0.

Fig. 1

Wàhlt man yQ in der andern Halbebene (tjl < 0), so erhâlt man eine ein-
eindeutige Abbildung der #-Ebene auf dièse Halbebene rj1 < 0. Fur y'o — y0
wàren wir nàmlich im fruheren Fall, und demgegenuber wird jeder Halbstrahl
um 180° gedreht.

Ist y0 Nullteiler (rjl 0), so ist nach Satz 1 in 3.3 auch y(x) — (exp x)y0
Nullteiler. Die #-Ebene wird auf den durch yQ festgelegten Halbstrahl abge-
bildet.

4.4. Der indefinite Fall. Unter Verwendung des in 3.4 eingefûhrten Ringes
erhalten wir fur die spezielle Anfangsbedingung yQ 1

y(x) exp (I1

exp

exp ^(l -\

(Cos f2 + h Sin |2)

2! 3!

also

rj1 exp f^Cos |2, rj2 exp ^-Sin (4.2)

Fur jedes # (f1, |2) istdemnach î^1 > |rça|, und umgekehrt ist ry1 > |^2|
die notwendige und hinreichende Bedingung dafûr, daB sieh das System (4.2)
eindeutig nach I1, £2 auflôsen lâBt. Wir haben somit eine eineindeutige
Abbildung der #-Ebene auf den Quadranten rj1 > \ rj21.

Genau so wie im semidefiniten Fall schlieBt man nun fur allgemeines y0 ^ 1

folgendes :

Wenn y0 Nullteiler ist, so haben wir eine Abbildung auf den dureh y0

festgelegten Halbstrahl.
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Wenn y0 in einem der vier Quadranten liegt, so haben wir eine eineindeutige
Abbildung der #-Ebene auf den durch y0 bestimmten Quadranten, wobei die
Geraden x |e + b in Halbstrahlen y exp Ç-y(b) ûbergehen. (Vgl. Fig. 2.)

A

ig. 2 \

4.5. Die ausgearteten Fâlle. Nach der in 3.5 gegebenen Vorschrift muB dem
Vektor x (I1, f2) das Ringelement (I1 + i2)e1 zugeordnet werden. Wir
ersehen daraus, daB fur aile x mit konstanter Summe I1 + £2

>
also fur eine

ganze Gerade der #-Ebene, y(x) gleich lautet. Und damit ist klar, daB die
Lôsungsfunktion y {x) in keinem Punkt eine regulâre Ableitung besitzt, und
daB der Wertebereich der Funktion unendlich oft ûberdeckt wird.

Um dem Umstand Rechnung zu tragen, daB fur gewisse x das zugehôrige
y (x) gleich ist, fûhren wir mit Vorteil eine neue Variable ein, nâmlich

£=!1 + !2 (- co<|<oo).
4.6. Der ausgeartet-definite Fail. Wir kônnen wieder die komplexen Zahlen

verwenden und erhalten

y(x) (exp (B1 + B2i)Ç)y0 (exp BJ) (exp B2Çi)y0

Das ist nichts anderes als eine logarithmisehe Spirale. Es gilt ja

| y | | exp BJ\.\ exp B2H |-| yQ I (exp BJ) \yo\.
Ob wir fur zunehmendes | eine nach innen oder nach auBen zu durchlau-

fende, rechts- oder linkgsdrehende Spirale erhalten, hângt von den Vorzeichen
von Bx und JB2 ab.

Spezialfâlle. 1. Fur Bt 0 erhalten wir einen unendlichen oft zu durch-
laufenden Kreis mit dem Radius | y0 \.

2. Fur Bz 0 erhalten wir als Bild den Halbstrahl y
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4.7. Der ausgeartet-semidefinite Fall. Die Lôsung y (x) lautet fur diesen Fall

y(x) (exp (Bt + Bj)Ç)y0 (exp B^) (1 + B2Çj)y0

Wir haben in 4.3 gezeigt, welche Auswirkungen die Anfangsbedingung yQ auf
den Funktionsverlauf hat, und beschrânken uns jetzt auf die spezielle
Anfangsbedingung y0 1.

Die beiden Komponenten von y(x) heiBen dann

rj1 exp B^ und rj2 B2Çexp B^
und fur die Ableitungen nach f erhâlt man

^.= B..-™lt* und *£r l

Setzt man Bx B2 =fi 0 voraus, so ist —~r durchwegs positiv, wàhrend -~~
j dç dç

an der Stelle | 5- verschwindet. Es existiert also unter dieser Voraus-

setzung immer ein Extremum. Beachtet man noch, daB rj1, rf->Q fur
| _^ _ oo un(i ^i -> oo^ ^2 —> j. oq fQr | _^ OOj so ha£ man efnen guten tîber-
blick ûber den Funktionsverlauf. (Vgl. Fig. 3.)

Ob das Extremum ein Minimum oder ein Maximum ist, und in welcher

Richtung die Kurve zu durchlaufen ist, hângt von den Vorzeichen von Bx
und JS2 ab.

Spezialfâlle. 1. Fiir Bx 0 (zweifache Ausartung) erhalten wir als Bild
eine zu j parallèle Gerade, denn es ist rj1 rfo 1.

2. Fur JS2 0 erhalten wir den Halbstrahl y(x) (exp

B2>0

R2

\
Kg. 3 Fig. 4
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4.8. Der ausgeartet-indefinite Fall. Wir beschrânken uns auch in diesem
Fall auf die spezielle Anfangsbedingung y0 1, da wir in 4.4 ausgefuhrt
haben, welchen EinfluB die Wahl von y0 hat.

Die Lôsung y(x) lautet dann

y(x) exp {B1 + B2k)Ç exp BJ. (Cos B2i + k Sin B2£),

und fur die Ableitung der beiden Komponenten nach | erhâlt man

-^- exp

Wenn wir
drf

B1\>\B2

expl^f •(2?1«Sin.B2f

voraussetzen, ist

\-B2-Cos

drj1
durchwegs ungleich null,

~-j~- dagegen hat genau eine Nullstelle. Es gibt also eine horizontale, aber

keine vertikale Tangente. Beachtet man dazu noch das asymptotische Ver-
halten der Funktion, so erhâlt man ein gutes Bild des Funktionsverlaufes.
(Vgl. Kg. 4.)

Wenn wir | Bx \ < | B21 voraussetzen, so verhàlt es sich gerade umgekehrt;
wir haben eine vertikale, aber keine horizontale Tangente. Dazu ândert sich
auch das asymptotische Verhalten. (Vgl. Fig. 5.)

A

\
\

\ \
Fig. 5 Fig. 6

Spezialfâlle. 1. Fur \ B1\ \ B2\ (zweifache Ausartung) erhalten wir als
Bild einen zu Bt + B2k parallelen Halbstrahl. (Vgl. Fig. 6.)

2. Fur Bx 0 entsteht eine Abbildung auf den Ast einer gleichseitigen
Hyperbel, denn es ist (rç1)2 — (rç2)2 1.

3. Fur B2 0 wird y(x) (exp B1Ç)y0; wir haben also eine Abbildung
auf den durch yQ festgelegten Halbstrahl.
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4.9. Bemerkung. Es besteht ein interessanter Zusammenhang zwischen den
ausgearteten und nicht ausgearteten Fâllen.

Wenn man nâmlich bei den nicht ausgearteten Pàllen den Argumentbereich
x auf eine durch 0 gehende Gerade einschrânkt, so erhàlt man als Bild dieser
Geraden den Funktionsverlauf des entsprechenden ausgearteten Falles. Je
nach Neigung der Geraden entstehen die verschiedenen Spezialfàlle.

II. Die BiccATische Differentialgleichung

Wir behandeln in diesem Abschnitt kurz die drei Hauptfâlle der Riccati-
schen Differentialgleichung, wobei wieder die in I. 3 eingefiïhrten Ringe Ver-
wendung finden.

§ 1. Die Normalform

1.1. Die Gleichung. Die allgemeine RicCATische Differentialgleichung hat
die Form

y'dx Adx -\- Bdxy + Cdxyy dx e R™, y e R"

A ist ein linearer, B ein bilinearer und C ein trilinearer Operator. Wir setzen
dièse Operatoren, die aile von x abhângen konnten, als konstant voraus.

Im weitern wollen wir noch voraussetzen, daB G in bezug auf die beiden
letzten Argumente symmetrisch ist, daB also Ghyxy^ Ghytyx.

1.2. Die Integrabilitâtsbedingung. Nach der allgemeinen Théorie ûber die
Differentialgleichungen erster Ordnung (siehe I. 1.4.) lautet die
Integrabilitâtsbedingung

(Bh + 2Chy) {Ah + Bky + Ckyy) (Bk + 2Cky) (Ah + Bhy + Chyy)

Weil dièse Gleichung identisch in y erfûllt sein muB, kann man sie in die
vier Gleichungen

BhAk BkAh, (1.1)
BhBky + 2ChyAk BkBhy + 2CkyAh (1.2)

BhCkyy + 2ChyBky BkChyy + 2OkyBhy (1.3)
ChyCkyy CkyChyy (1.4)

auflôsen. Da wir die Operatoren A, B und G als voneinander unabhângig
annehmen, zerfâllt die Gleichung (1.2) weiter in

BhBky BkBhy (1.2a)Und
ChyAk CkyAh (1.2b)
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1.3. Folgerungen ans der Integrabilitâtsbedingung. Wir erkennen (1.2a) als
die in I. 2 behandelte Integrabilitàtsbedingung fur die homogène lineare Dif-
ferentialgleichung. Aus diesem Grund benutzen wir die dort hergeleiteten Re-
sultate und verwenden fur den als nicht ausgeartet vorausgesetzten Operator
B die Normalmatrix (2.15)

0 \
(ix -1,0,1) (1.5)

sowie den dazu passenden Ring mit den Multiplikationsvorschriften (siehe 1.3)

In diesem Ring vereinfaoht sich die Gleichung (1.1) zu

h Ak k-Ah,
was man fur aile h und k, die keine Nullteiler sind, weiter umformen kann zu

Ak Ah
h

Def.
konst. A

Daraus folgt, daB man im Ring Ah als Produkt Ah darstellen kann.
Schreiben wir das Ringelement A in der Form Axe^ + Aze^, so erhâlt die
Matrix (A*) die Form

Ax A2\ (fi= -1,0,1) (1.6)

Wenn die Gleichung (1.2b) fur jeden Operator A der Form (1.6) erfûllt ist,
so ist auch ChyBky CkyBhy. Die Gleiehung (1.3) vereinfacht sich da-
mit zu BhCkyy BkChyy und im Ring zu

h-Ckyy k-Chyy

Analog wie oben fur A schlieBt man, daB sich Chyy als Produkt (Cyy)-h
darstellen lâfit.

Verwenden wir jetzt nochmals die Gleiehung (1.2b) und setzen darin
A 1, so folgert man auf die selbe Art wie schon zweimal, daB im Ring
Cyk weiter zerfâllt in (Gy) • k.

Weil wir Chy1y2 als symmetrisch in bezug auf yx und y% vorausgesetzt
haben, ist gezeigt, daB sich Chyxy% in unserem Ring als Produkt C*h-yx*y%
darsteUt. Setzen wir das Ringelement G in der Form Gxe^ + C%e% an, so
erhâlt die zugehôrige Matrix die Form
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-i,o,i)
(1.7)

Durch Einsetzen in der Integrabilitâtsbedingung ûberzeugt man sich, daB
die Form (1.6) und (1.7) fur die Operatoren A und G nicht nur notwendig,
sondern auch hinreichend ist, sofern man den Operator JB in der Form (1.5)
voraussetzt.

Im folgenden verwenden wir die drei Operatoren JS, A und G immer in der
Normalform (1.5), (1.6) und (1.7) und rechnen ausschlieBlich mit den zuge-
hôrigen Ringelementen B ely A Axe^ + A2ez und G G^ + C2e2.

§ 2. Die Losung bei nicht verschwindender Diskriminante

2.1. Definiter Fail. Da wir es hier mit der bekannten komplexen Riccati-
schen DiflEerentialgleichung

y' A + By + Cy* (2.1)

zu tun haben, fassen wir uns kurz.
Mit der Substitutionsgleichung

Cy=-— (2.2)

fûhrt man (2.1) in eine homogène lineare Differentialgleichung zweiter Ord-

nung iiber, die folgendermaBen lautet :

u" - Bu' + ACu^0. (2.3)

Da wir B* — 4AC ^ 0 vorausgesetzt haben, heiBt die Losung dieser Glei-

chung

\ 7 (B- VB*-4tAC \\ +A;2.exp^ xJ

Setzt man diesen Wert fur u in (2.2) ein, so wird

-4:AC) (exp VW— 4AC x) + k2{B - VW* -
x) + 2CJc2

Hierbei lassen sich die Integrationskonstanten so bestimmen, daB die Anfangs-
bedingung y(0) yQ gilt. Die endgtiltige Losung heiBt dann
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y(x,yo)=(2.4)(-(B- VB*-éAC)-2Cy0) (exp VB*-±ACx) + B+ VW^IÂC+ 2Cy0
'

Wir erkennen, dafi sich die durch (2.4) vermittelte Abbildung aus einer Expo-
nential- und einer Môbiustransformation zusammensetzt. Mit Ausnahme der
beiden singulâren Stellen

(26)

wird jeder Punkt der ^-Ebene (einschlieBlich oo) erreicht, und zwar unendlich
oft. Wir haben also eine eineindeutige Abbildung der #-Ebene auf eine unend-
liehblâttrige RiEMANNsche Flâche mit den beiden Windungspunkten (2.5).

Wâhlt man eine der beiden Stellen (2.5) als Anfangsbedingung, so degene-
riert die Abbildung, denn es ist

- B ± VB2 - 4AC\ _ - B±VB*~ 4AG
y[Xi 20 / " 2G "

2.2. Der semidefinite Fall. Wir ûbertragen das in 2.1 dargestellte normale
Lôsungsverfahren auf den semidefiniten Fall, was unter folgenden zwei Vor-
aussetzungen ohne weiteres môglich ist :

1°. G ist kein Nullteiler (damit wir durch G dividieren kônnen).

2°. Fur die Diskriminante J52 — 4A C oc + (tj ist oc > 0 (damit sich die
Wurzel V & - 4 AC ziehen lâBt).

Zur Interprétation der Lôsung (2.4) untersuchen wir zuerst die linear ge-
brochene Funktion

ax + b

cx
Wir behaupten, dafi dièse Fxmktion die Geraden Ç1 konst. in Gerade

rj1 konst. iiberfûhrt. Zum Beweis bilden wir zuerst den Quotienten

a
__

oc1 + oc2j (oc1 + oc2j) (y1 — y2j)
__

oc1 oc2 y1 — oc1 y2

T - / + y2j W -7"+ W)2 1

und erhalten dann

n ~\cx + d) ~ yip+ô1 ' V \cx + d) * "(y1!^^)2 M ;'
Damit ist gezeigt, daB rj1 fur aile x mit gleicher erster Komponente I1 gleich
ist, und daG rf fur konstantes I1 jeden endlichen Wert genau einmal annimmt.
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Wenn man f1 monoton von 0 gegen + oo gehen làBt, so àndert sich rj1

monoton von ¦—¦ gegen den Grenzwert — wobei fur y1 • ô1 < 0 die Un-
#

stetigkeitsstelle ± oo passiert wird.
Wir kehren jetzt zur Lôsung (2.4) zurûck und untersuchen die erste Kom-

ponente

((l + Vl-*A1C1)rio + 2A1)exV Vl-±AxCxP-(\- Vl-4A1C1)-2Al
~(l-Vl~éA1C1+2C1rih)exvVl-4A1CJ1 + l + Vl-éA1C1 + 2Clr)l

'

Wenn wir I1 das Intervall (— oo, oo) durehlaufen lassen, durchlâuft

exp n — éA1C1 I1 das Intervall (0, oo). Wie wir oben gesehen haben, folgt
daraus, daB sich rj1 monoton zwischen den Grenzen

(1 - VI ~ iA&fjh + 2At - 1 + Vl - 4^(7, ^2^+ Vl - 4^^ + 2(7^4 2^
+ Vl - tAtCJrjk + 2AX - 1 - Vl -

ândert. Damit wissen wir liber den Funktionsverlauf im semidefiniten Pall
Bescheid :

Liegt die Anfangsbedingung y0 zwischen den beiden Grenzgeraden (2.6),
so wird die ganze #-Ebene eineindeutig auf das offene Gebiet zwischen diesen
beiden Grenzgeraden abgebildet, und zwar so, daB die Geraden I1 konst.
in Gerade rj1 konst. iibergehen. (Vgl. Fig. 7a.)

Liegt y0 auBerhalb der beiden Grenzgeraden, so wird die #-Ebene (mit
Ausnahme einer Geraden) in gleicher Weise eineindeutig auf das AuBengebiet
abgebildet. (Vgl. Fig. 7b.)

Liegt y0 auf einer der beiden Grenzgeraden, so artet die Abbildung aus,
denn es ist

/ ^i±Vi^4,A1C1\ __V Y * 2CX ""2CX "" 2CX

2.3. Der indefinite Fall. Um das Lôsungsverfahren von 2.1 ohne Schwierig-
keiten auf den indefiniten Fall ûbertragen zu kônnen, setzen wir voraus

1°. C ist kein Nullteiler.

2°. Fur die Diskriminante B2 — éAC <x + pk ist <*>\p\.
Wie im indefiniten Fall untersuchen wir zunâchst die linear gebrochene

Funktion v Jl—.. Wir behaupten, daB dièse Funktion die Geraden9 cx + d r
è1 ± i2 konst. in Gerade rj1 ± rf konst. iiberfûhrt.
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Zum Beweis formen wir y wie folgt um :

ax + b <x + pk (<z + ph) (y — dk)
__ <xy - pô

y2 - <S2
"~V ~~

ex + d ~~
y + ôk

Daraus bilden wir

2 -

"~
y2 — ô*

(^ ± p) (y T ô)
__ <x±p

(y + (5) (y - (5) y ± à '

Wenn man beachtet, dafi <x aJs Abkûrzung fur <xl I1 + ^212 + i^1 eingesetzt
war und ebenso auch p, y und ô, so erhâlt man endgultig

± y*
P2) ± ^2) (I1 ± I2) + P1 ±

womit gezeigt ist, daB fur konstantes I1 ^ I2 auch tj1 ± rj2 konstant ist.
Genau wie beim semidefiniten Fall schlieBt man nun, daB sich rj1 ± rj2

~—^ undmonoton zwischen den Grenzen und ândert, falls~——^ und —-—¦—rà1 ± â2 y1 ± y2
das Intervall (0, cx>) durchlâuft.

Dièse Resultate ûbertragen wir auf die Lôsung (2.4). Wenn man hier
tj1 ± ri2 bildet, stellt man fest, daB die Variable das Intervall (0, oo) durch-
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V2 &ndertlàuft, wenn man I1 ± f2 von — oo nach + oo gehen làBt. rj1

sich somit monoton zwischen den beiden Grenzen

- i + V\ - HA ± A) (Ci ± 0*)

-1- Kl-4(^i ±A,){C,~±CJ
^i dz

(2.8a)

(2.8b)

Durch die beiden Geradenpaare (2.8) wird die y-Ebene in 4 Gebiete einge-
teilt. Je nach der Wahl der Anfangsbedingung y0 wird die ganze #-Ebene
(eventuell mit Ausnahme von einer oder zwei Geraden) eineindeutig auf eines
dieser vier Gebiete abgebildet, wobei aile Geraden I1 ± P konst. auf
Geradenstûcke I1 ± rj2 konst. abgebildet werden. (Vgl. Fig. 8.)

Die Abbildung artet aus, wenn man y0 auf einer Grenzgeraden wâhlt.

\ /\

\

/ w\
/

Fig. 8

\
X®

\®\

\
2.4. Bemerkungen. 1. Wenn (7 Nullteiler ist, mu8 das Lôsungsverfahren

nur wenig modifiziert werden. Der Funktionsverlauf ist prinzipiell gleich, es

tritt lediglich eine Verschiebung der Grenzgeraden (2.7) bzw. (2.8) ein, wobei
die eine ins Unendliche rûckt.

2. Wenn die Diskriminante B2 — éAC verschwindet, so lautet die Lôsung
der RiccATischen Gleichung fur den definiten (komplexen) Fall

(2.9)- (2Cy0 + B)x

Es handelt sich also um eine Môbiustransformation.
Auch dièse Lôsung (2.9) lâBt sich ohne Schwierigkeiten auf den semidefi-

niten und den indefiniten Fall ûbertragen.

12 CMH vol. 36
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