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Uber vektorielle Differentialgleichungen erster Ordnung
mit konstanten Koeffizienten

von Hans Eari, Ziirich

I. Die homogene lineare Differentialgleichung

§ 1. Grundlagen

In diesem ersten Paragraphen wollen wir die im folgenden beniitzten grund-
legenden Begriffe und Satze kurz angeben?).

1.1. Die Vektorfunktion. Unter einer Vektorfunktion y = y(x) verstehen
wir eine Abbildung, die jedem 2 aus dem m-dimensionalen Raum R}’ einen
Vektor y des n-dimensionalen Raumes Rj zuordnet. Der Definitionsbereich
einer Vektorfunktion kann auf ein Gebiet in R7' eingeschriankt werden.

Wir werden nur zweidimensionale Vektorrdume mit reeller Struktur beniit-
zen. Die euklidische Metrik wird definiert durch eine symmetrische, positiv
definite Bilinearform Szy (Skalarprodukt). Der Betrag | | des Vektors x

ist durch |z | = + VSzx = 0 erklirt.

1.2. Die Ablettung. Die Vektorfunktion y(x) ist im Punkt x des Defini-
tionsbereiches stetig, falls

ly(z + h) —y(x)| >0 fir |[A]|—> 0.

Die Funktion y(z) heilt im Punkt x differenzierbar, falls es eine in A ¢ R7
lineare Abbildung y'(x)h von R7 in R} gibt, so daBB die Gleichung

Yy +h) —yx) =y (@)h + [ 2] (h; 2)

gilt, wobei (h; ) einen y-Vektor bezeichnet, dessen Betrag gegen Null strebt,
wenn | k| gegen Null geht.

Die Ableitung, das heiflt der lineare Operator y'(z), ist eindeutig bestimmdt,
falls die Funktion y(z) tiberhaupt differenzierbar ist.

In bezug auf irgend welche Koordinatensysteme entspricht der Operator
y'(x) der JacoBischen Funktionalmatrix.

1) Fiir Einzelheiten und die Beweise der angefiihrten Sitze verweisen wir auf F. und R. NE-
VANLINNA [1].
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1.3. Dre zweite Ableitung. Falls der lineare Operator y'(x) einer differen-
zierbaren Vektorfunktion y(z) selbst wieder differenzierbar ist, erhilt man
als zweite Ableitung einen bilinearen Operator y”(x). Es gilt dann fiir ein
geniligend kleines % und ein beliebiges % die Beziehung

y' (@ 4+ hk —y' (2)k =y" (@)hk + | k| (h; 2)k
mit | (h;2)| - 0 fir |h| — O.

Falls der zweite Ableitungsoperator in einer Umgebung des Punktes z

existiert, so gilt die Symmetrie
y"(x)hk = y"(x)kh (Vertauschbarkeit der Differentiationen).

1.4. Die Differentialgleichung erster Ordnung. Die Differentialform einer Dif-

ferentialgleichung erster Ordnung lautet
dy = f(x,y)dz oder y'dx = f(x,y)dz,

wo x ein Vektor aus R7”, y = y(z) eine zu bestimmende Vektorfunktion
x — y e R) und f(x, y) ein durch das Punktepaar z,y eindeutig bestimmter
Operator ist, der den Raum R in den Raum Rj abbildet.

Eine solche Differentialgleichung ist unter folgenden Voraussetzungen in der
Umgebung des Punktes x, eindeutig losbar:

1°. Der Operator f(x,y) ist fir | — x| <7,, |y — % | <7, stetig dif-
ferenzierbar.

2°. Der Operator

B(z,y)hk =3(fs(z,9)hk + [y (2, 9) [ (z, )bk — fo(2, y) kb — [y (%, y) (. y) kh)
verschwindet fiir alle Wertepaare x,y des betrachteten Gebietes.

1.5. Die homogene lineare Differentialgleichung. Fiir die homogene lineare
Differentialgleichung erster Ordnung mit konstantem Operator B

dy = Bdxy
vereinfacht sich die Integrabilitatsbedingung 2° zu
Bh Bk = Bk Bh .

Die Losung der Differentialgleichung heiit dann
1
y (@) = (B + B(z—20) + 5 B(z-20) B(z~) +

1
+ 57 B(@-2) B(@-a) B(-a) +-) %o
Es ist also eine Exponentialreihe, die man wie folgt abgekiirzt schreiben kann:

y(x) = PEy, = (exp B(x — %)) %o ?) -

) Da wir das Symbol e in anderer Bedeutung verwenden werden, beniitzen wir fiir die
Exponentialfunktion die Bezeichnung exp.
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1.6. Die Matriz eines bilinearen Operators. Wenn wir in den beiden Rdumen
R und R} zwei Koordinatensysteme fixieren, so ist dem bilinearen Operator
B eine Matrix (B),) zugeordnet. Fiir zweidimensionale Vektorrsume besteht
diese Matrix (B}) aus 8 Zahlen, die wir wie folgt anordnen:

By By
B, B}
By By
By, B

§ 2. Der hilineare Operator Bzy

In diesem Paragraphen soll der bilineare Operator Bay untersucht werden
unter Annahme der Integrabilitétsbedingung

BhBk = BkBh. (2.1)

2.1. Nicht ausgeartete Fille. Der bilineare Operator B heiflt ausgeartet,
wenn ein x % 0 (bzw.y # 0) existiert,sodaB Bxzy = 0 fiir jedes y (bzw. x)
gilt. Wir nehmen vorerst an, da8 diese Ausartung nicht zutrifft.

Unter dieser Voraussetzung untersuchen wir die Nullstellen von Buzy.
Zunichst ist es auf Grund der Linearitdt von B klar, da B(0, y) = B(z, 0)
= 0 und daf, wenn z,y ein Losungspaar ist, auch B(4iz) (uy) = 0 fiir
jedesreelle 4 und ux. Diese Losungen Az, uy sollen im folgenden als wesent-
lich gleich betrachtet werden.

Wir unterscheiden nun folgende Fille:

1) B ist definit. Das soll heiflen, daB Bay % 0 fiir jedes = £ 0, y # 0.

2) B ist semidefinit. So bezeichnen wir den Fall, wo Bzy = 0 genau ein
Losungspaar # = x, % 0, y = ¥y, # 0 Dbesitzt.

3) B ist ¢ndefinit. In diesem Fall hat Bzxy = 0 genau zwei verschiedene
Losungspaare z,,y, und z,, %,.

DaB diese Fille tatsichlich vorkommen konnen, werden wir spiter sehen.
Dagegen wollen wir jetzt zeigen, daB keine andern Fille moglich sind.

Zunichst ist es ausgeschlossen, daB fiir ein 2 = z, = 0 zwei verschiedene
Y= #0,y=y, 7# 0 als Losungen vorkommen. Denn dann wiren y, und
¥, linear unabhéngig und wiirden die ganze Ebene aufspannen. Mit dem An-
satz y = yy, + Oy, erkennen wir, dal Bz, y = 0 fiir jedes y wire. Dies ist
aber unmoglich, solange wir B als nicht ausgeartet voraussetzen.

Nun nehmen wir an, da8 mindestens zwei verschiedene Losungspaare
r=27#0,y=y,%#0 und 2 =2, # 0, y = ¥, 7 0 existieren. Nach obi-
gem sind #; und z, und ebenfalls y, und y, linear unabhiingig. Wir konnen
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also fiir zwei beliebige Vektoren « und y die Koordinatendarstellung
=& + 8%, y=n'Y+ 1Y
ansetzen. Dann ist

Bzxy = X &y* Ba,y, = En? By, + ' Bryy, .
ik

Wenn wir jetzt die Integrabilitiétsbedingung (2.1) zu Hilfe nehmen, gilt
0 = Bz, Bxyy, = BxyBxy,, 0= Bx,Bxz,y, = Bz, Bx,y, .

Da Buz,y nur die nicht triviale Losung y = y, hat, so muB nach der ersten
Gleichung Bz,y, = y, sein. Und &hnlich ergibt sich aus der zweiten Gleichung
die Beziehung Buz,y, = y,. Also wird

Bxy = &9y, + &'y, .

Hieraus schlieft man, dal Bxy = 0 nur unter der Bedingung &2 = &5l =0
moglich ist. AuBler x = 0 oder y = 0 sind also die beiden Losungen

E=0,n=0(2%£0,n25#0), somit =12,y =y,
52=0’772=O(515£0,171¢0)’ Somit x:xl,y=yl

allein moglich. Damit ist gezeigt, da3 es auller den Losungspaaren z,,y, und
%y, Y, keine anderen Losungen mehr gibt.

2.2. Das Einheitselement. Stets unter Annahme der Integrabilitédtsbedin-
gung (2.1) zeigen wir, daB es fiir einen nicht ausgearteten Operator B ein
und nur ein «Einheitselement» x = e gibt, so daf}

Bey =1y
fiir jedes y gilt.

Beweis 1°. Wir fixieren einen Vektor y = gy, # 0, der nicht mit den Null-
stellen von Bzy zusammenfillt, das heiBt, es ist Bxy, 7= 0 fiir jedes x # 0,
und betrachten die lineare Abbildung = — Bzy,. Diese Abbildung ist regu-
lir. Wire sie namlich irregulir, so wiirde ein 2 = z, 7 0 existieren, fiir das
Bzyy, = 0, was bei der getroffenen Wahl von y, nicht moglich ist.

Fiir diese regulire Abbildung z — By, ist die Gleichung Bzxy, = y, ein-
deutig 16sbar; wir bezeichnen die Losung mit = = e.

2°. Fiir die so festgelegten Vektoren y, und e gilt identisch in z die Inte-
grabilitatsbedingung (2.1)

Be Bxy, = Bx Bey, = By, . (2.2)
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Da x—> Bzy, regulir ist, gibt es zu jedem y ein wohlbestimmtes «, so da3
Bzy, = y. Die Gleichung (2.2) wird dann zu

Bey =y,
und sie ist fiir alle y erfiillt.

3°. Es sei ¢ ein zweites Einheitselement. Dann ist B{e — ¢')y = 0 fiir
alle y, woraus sofort e’ = e folgt.

2.3. Symmetrisierung des Operators B. Wir versuchen nun, eine regulire
lineare Transformation Y der y-Ebene so durchzufiihren, dal der transfor-
mierte Operator B=Y-1BY symmetrisch wird.

Eine solche Transformation ist durch die Gleichung

Yy = Byz

gegeben, wobei z keine Nullstelle von Bzz ist, sonst aber beliebig fixiert
werden kann.
Wegen der Integrabilitdtsbedingung (2.1) ergibt sich

ny =Y 1'ByYx =Y 'ByBzz =Y 'BaxByz =Y 'BzYy = Exy,

also die gewiinschte Symmetrie.
Nach Ausfiithrung dieser Transformation bleibt der oben bestimmte Vektor
e Einheitselement, denn es gilt

Eey =Y 1BeYy=Y"Yy=y.

Wegen der Symmetrie ist e nun nicht nur Links- sondern auch Rechts-
einheitselement.

Wihrend die Nummern 2.2 und 2.3 fiir alle nicht ausgearteten Operatoren
B giiltig sind, gehen wir jetzt zur speziellen Behandlung der drei moglichen
Fille (definit, semidefinit, indefinit) iiber. Dabei nehmen wir an, da8 B bereits
symmetrisiert worden ist.

2.4. Der definite Fall. In diesem Fall gilt der Satz:

Die Gleichung Bxzx = a ist fiir jeden Vektor a losbar, wobei die Losung
x bis auf das Vorzeichen eindeutig bestimmt ist.

Beweis. a) Eindeutigkeit. Aus Bxx = Bx'z' = a folgt wegen der Sym-
metrie von B die Gleichung Bxxz — Ba'ax' = B(x — &) (v + 2') = 0, die
nur erfiillt sein kann, wenn 2 = ', oder wenn x = — 2’. Somit ist z bis
auf das Vorzeichen eindeutig bestimmt.

b) Existenz. Fir a =0 ist * = 0 die Losung der Gleichung Bzx = a.
Wir nehmen jetzt an, es sei a £ 0.
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Zum Beweis der Existenz einer Losung von Bz = a fiihren wir die Norm
¢(x) = | Bxx —a| = 0 ein. Wir werden zeigen, daB es einen Wert z = b
gibt, so daB ¢(b) = 0, womit dann die Behauptung bewiesen ist.

Hierzu betrachten wir die Funktion | Bzz| auf dem Kreis | x| = 1. Als
stetige Funktion erreicht sie hier ein Minimum g, das wegen der Definitheit

pR2

= 0%8;
v, ]

es ist also | Bxx |- oo fiir | | > co. Wir fixieren g so, daB ¢2f = 3|a]|,

von B sicher positiv ist. Aufdem Kreis |z| = p gilt | Bxx| = g?

o=+ ]/3 {Bal . Auf dem Kreis | 2| = ¢p wird dann nach der Dreiecksunglei-

chung
¢(z) = | Bxx —a| Z| Bxx| —|a| =Z3|a| —|a|=2]|a].

Im abgeschlossenen Bereich | z | < ¢ hat ¢(x) ein Minimum m = 0, das
in mindestens einem Punkt x = x, erreicht wird. Dieser Punkt z, liegt
sicher im Innern des Kreises | 2| < p; denn fiir |2 | =g ist ¢(x) 22| a],
und andererseits ist y(0) = |a| = m, also ¢(z) = 2m fir |z | = p.

Wir zeigen nun, daB ¢(z,) = | Brgxy — a| = 0. Zum indirekten Beweis
nehmen wir an, es sei ¢(2,) > 0. Schreiben wir dann = = z, 4+ ik, so wird

@(% + Ah) = | Bagxy — a + 2ABxyh + A2Bhh | .
Die Gleichung Bazyh = — (Bxzyx, — a) hat genau eine Losung kb = h, #% 0,
und es ist damit

@(xo + Ahy) = | (BagZy — a) (1 — 24) + A2Bhyh, | .

Fiir jedes 0 < 4 < } gilt also die Abschitzung

@(2y + Ahy) < (1 — 22)p(%,) + A2 | Bhohy | = @ (%) — 4 (29(25) — 4| Bhohy |) -
Wegen hy # 0 ist Bhyhy # 0, und der letzte Klammerausdruck ist positiv,
sofern

2¢(2,) )
| Bhohy |
2p(2)

Fiir alle Werte 4> 0, die kleiner als die kleinere der Zahlen TBhohy| u
0

A<

% ist, wird also
P(%y + Ahy) < @(%) = m .

Da =z, im Kreise |z | < liegt, so folgt hieraus, daB es in diesem Kreis
Punkte « = x, + Ah, geben wiirde, wo ¢(xr) <m, was der Definition von
m widerspricht.
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Es muf} daher ¢(z,) = m = 0, Bzyx, = a sein, w.z.b.w.

2.5. Nach dem eben bewiesenen Satz ist speziell die Gleichung Bxx = — e
bis auf das Vorzeichen eindeutig l6sbar. Wir bezeichnen die eine dieser zwei
Losungen mit x = ¢ (+ #% 0, e) und stellen die Resultate zusammen:

Bee =e¢, Bei= Bie=1, Bit= —¢ (2.4)
Fiihrt man ein Koordinatensystem mit den beiden ausgezeichneten Vektoren

e und ¢ als Basis ein, so erhilt die dem Operator B entsprechende Matrix
wegen der Integrabilitdtsbedingung (2.1) und den Gleichungen (2.4) die Form

1 0
0 1 (2.5)
0 1

—1 0

Damit 148t sich nun auch der Nachweis fiihren, dal es wirklich definite
bilineare Operatoren gibt. Wir behaupten, dafl bei beliebiger Wahl der Basis-
vektoren e und ¢ jeder durch eine Matrix der Form (2.5) festgelegte Operator
definit ist.

Zum Beweis bemerke man, dal das System

(Bay)t = &'t — &2 =0, (By)?= &2 + 270 =0

nur dann eine nicht triviale Lésung z = (£, £2) hat, wenn die Determinante
(7Y)? 4+ (n?)? verschwindet. Fiir jedes y # 0 folgt somit aus Bxy = 0 nur
die Losung z = 0, womit die Definitheit von B bewiesen ist.

DaB fiir eine Matrix (2.5) die Integrabilitdtsbedingung (2.1) erfiillt ist und
die Gleichungen (2.4) gelten, ist offensichtlich.

2.6. Der semidefinite Fall. Im semidefiniten Fall hat die Gleichung Bzy = 0
genau ein nicht triviales Losungspaar =z =z, # 0, y =y, # 0. Nach der
Symmetrisierung miissen die beiden transformierten Vektoren x;, und g,
zusammenfallen, da sonst noch eine zweite nicht triviale Nullstelle vorhanden
wire.

Wir haben also auch in diesem Fall zwei ausgezeichnete Richtungen, nim-
lich das Einheitselement ¢ und die Nullstelle z, =y, = j. Diese beiden
Vektoren e und § nehmen wir als Basis. Unter Beniitzung der Relationen

Bee =e¢, Bej= Bje=3j, Bjj=0 (2.6)

sowie der Integrabilititsbedingung (2.1) ergibt sich folgende Matrix fiir den
Operator B':
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1 0
0 1 (2.7)
0 ]
0o 0

Umgekehrt ist der durch eine Matrix der Form (2.7) festgelegte Operator
immer semidefinit.

2.7. Der indefinite Fall. Wenn wir, nach vollzogener Symmetrisierung des
Operators B, die beiden nicht trivialen Losungspaare der Gleichung Bay = 0
mit x,,%y, bzw. x,,y, bezeichnen, so kann man schlieBen, daBl einerseits z,
und y,, andererseits x, und y, zusammenfallen miissen. Sonst kénnte man
aus der Symmetrie sofort die Existenz von zwei weiteren nicht trivialen
Losungen herleiten.

Der Einheitsvektor e kann nach seiner definierenden Eigenschaft weder mit
x, noch mit dem von z; linear unabhingigen x, zusammenfallen. Es gibt
also zwei wohlbestimmte Zahlen «, 8 # 0, so daBl e = «xz, + Bz,.

Setzt man dann k& = xx, — f#,, so sind e und % linear unabhingig, und
es ist

Bkk = a2 Bx,z, + f*Bz,x, = Bee =e¢.

Wenn man e und k als Basis wihlt, so findet man wegen
Bee =e¢, Bek= Bke=k, Bkk=ce (2.8)
und der Integrabilititsbedingung (2.1) fiir den Operator B die Matrix

1 0
0 1 (2.9)
0 1
1 0

Umgekehrt definiert eine Matrix der Form (2.9) immer einen indefiniten
Operator.

2.8. Zusammenfassung. Falls der Operator B nicht ausgeartet ist, so laft
sich nach einer passenden reguliren Transformation der Variablen y ein Ko-
ordinatensystem so wihlen, da die dem Operator B entsprechende Matrix
die Form

(2.10)

RN OO M-~
O O
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erhilt, wobei u die Werte — 1, 0, 1 hat, je nachdem, ob der definite, semi-
definite oder indefinite Fall vorliegt.

Umgekehrt stellt jede Matrix der Form (2.10) einen definiten, semidefiniten
oder indefiniten bilinearen Operator dar, und zwar unabhingig von der Wahl
des Koordinatensystems.

2.9. Die ausgearteten Fille. Wir nehmen jetzt an, B sei beziiglich x aus-
geartet, es gebe also ein x = x; % 0 mit Bz,y = 0 fiir alle y.

Wenn dann fiir ein beliebig fixiertes = s~ 2, die lineare Abbildung y — Bzy
reguldr ist, sprechen wir von einfacher Ausartung. Ist diese Abbildung irregu-
lar, existiert also ein Kern y = g, # 0, so ist B auch beziiglich y ausgeartet;
wir heiBen ein solches B zweifach ausgeartet. Wenn der Kern die ganze y-Ebene
umfaft, wenn also B der Null-Operator ist, nennen wir B total ausgeartet.

Bevor wir auf Einzelheiten eingehen, beweisen wir den Satz, dal ein bi-
linearer Operator B, der beziiglich y ausgeartet ist (Bzy, = 0 fiir alle z),
unter Annahme der Integrabilitdtsbedingung (2.1) auch beziiglich = aus-
geartet ist.

Zum indirekten Beweis nehmen wir an, B sei in bezug auf z nicht aus-
geartet. Dann ist fiir irgendein y s y, die Abbildung xz-—»> Bxy regulir.
Wir bestimmen x = z, % 0 so, dal Bz,y = y,. Aus der Integrabilitits-

bedingung (2.1) folgt dann
Bz, Bxy = BxBx,y = Bxy, =0 firalle z,

also Bz,y = 0 fiir alle y. Das ist aber ein Widerspruch zu unserer Annahme.
Damit ist gezeigt, dafl ein beziiglich y ausgearteter Operator Bxzy wegen
(2.1) immer mindestens zweifach ausgeartet ist.
Sei nun B einfach ausgeartet. Fiir die regulire Transformation y - Bxy
bestehen dann nach der allgemeinen Eigenwert-Theorie folgende Moglich-

keiten:

1. Es existieren keine Eigenvektoren, das heilt, es gibt kein y £ 0, fiir
das Bzy = Ay (A reell). Wir nennen diesen Fall ausgeartet-definit.

2. Es existiert genau ein Eigenvektor y = y, : ausgeartet-semidefiniter Fall.

3. Es existieren genau zwei Eigenvektoren y =1y,, y = ys: ausgeartet-
indefiniter Fall.

Wenn die Transformation y— Bzy (B 7 0) irregulir ist, also bei zwei-
facher Ausartung von B, sind nur der ausgeartet-semidefinite und -indefinite
Fall moglich, da der Kernvektor y = y, immer ein Eigenvektor (mit dem
Eigenwert 0) ist.
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2.10. Dre zugehorigen Matrizen. Wir wiahlen die Basis der z-Ebene so, daB
der Vektor z,, fir den Baz,y identisch verschwindet, die Koordinaten
x; = (1, —1) erhilt. Die Matrix (BJ,) hat dann die Form

B, B,

B, B, (2.11)
B, B,

B2 B4

und die Integrabilitdtsbedingung ist von selbst erfiillt.

Im ausgeartet-definiten Fall (kein Eigenvektor) transformieren wir die
y-Ebene so, da die Selbstabbildung y — Bzy eine Drehung wird. Die trans-
formierte Matrix erhilt dann die Form

B, B,

- Bz Bl (2 . 12)
B, B,

— By B,

Im ausgeartet-semidefiniten Fall (ein Eigenvektor) wahlen wir die Basis
der y-Ebene so, daBl der Eigenvektor mit dem zweiten Basisvektor zusammen-
fallt. Die zugehorige Matrix lautet dann

Bl Bﬂ
0 B, (2.13)
B, B,
0 B,

wobei fir B, s~ 0 einfache und fiir B, = 0 zweifache Ausartung vorliegt.

Im ausgeartet-indefiniten Fall (zwei Eigenvektoren) legen wir die y-Basis so,
daB die beiden Eigenvektoren die Koordinaten y, = (1, 1) bzw. yy = (1, —1)
erhalten. Die zugehorige Matrix heiflt

B, B,
B, B, (2.14)
B, B,
B, B,

wobei die Ausartung fiir | B, | = | B;| einfach und fiir | B, | = | By| zwei-
fach ist.

Zusammenfassend lidBt sich sagen, daB die Matrix eines ausgearteten bi-
linearen Operators B(s% 0) immer auf die Form

11 CMH vol. 36
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B, B,

u B, B, (2.15)
B, B,

v B, B,

transformiert werden kann, wobei u die Werte — 1, 0, 1 hat, je nachdem, ob
der ausgeartet-definite, -semidefinite oder -indefinite Fall vorliegt. Die Aus-
artung ist genau dann zweifach, wenn (B;)? — u(B,)? = 0.

Umgekehrt ist leicht ersichtlich, dafl jede Matrix der Form (2.15) einen
ausgearteten bilinearen Operator darstellt, und zwar je nach dem Wert von
u einen definiten, semidefiniten oder indefiniten.

§ 3. Einfiihrung passender Ringe

Nach 1.5 laBt sich die Losung einer homogenen linearen Differentialglei-
chung dy = Bdxz y als Exponentialreihe darstellen:

y(x) = (exp B(x— ) ¥y, -

Um das Studium dieser Exponentialabbildung zu erleichtern, fiihren wir
im folgenden einen Ring ein, in welchem Baxy als Produkt B-.z-y inter-
pretiert werden kann.

3.1. Nichtausgeartetes B. Legt man in einem zweidimensionalen Vektor-
raum mit reeller Struktur fiir die Basiselemente e, und e, die Multiplikations-
formeln

€€ =€, €°6=2¢6°6=6, &&= (3.1)
zugrunde, und definiert man als Produkt von zwei Vektoren % = X'«"e, und
K
v = X fle; den Ausdruck
A

u-v = ZaXpree) , (3.2)
A
8o wird dadurch der Vektorraum zum hyperkomplexen System erweitert, denn
die Multiplikation der Basiselemente ist offensichtlich assoziativ. Die durch
(3.1) und (3.2) festgelegte Ringmultiplikation ist kommutativ und e, ist das
Einselement.
Wenn wir nun dem Operator B das Einselement e, zuordnen und dann im
Ring das Produkt B-z.y bilden, erhalten wir

Bxy = e,(&'e, 1+ £2¢) (ntey + nPeg) = (' + pé2nP)e, 4+ (8192 4+ E2nl)e, .

Genau die selbe Koordinatendarstellung bekommt man, wenn man fiir den
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Operator B die Normalmatrix (2.10)

et et O

1
0
0
7 0
einsetzt. Damit ist gezeigt, dall man in einem passend definierten Ring Bzy
als Produkt B-z-y interpretieren kann, wobei fiir B das Einselement des
Ringes einzusetzen ist.
Zur Vereinfachung identifizieren wir, wie es bei den komplexen Zahlen
iblich ist, die Vielfachen «e, mit den reellen Zahlen «. Ferner nennen wir,
in Ubereinstimmung mit den Bezeichnungen in § 2, das zweite Basiselement

¢, 9 oder k, je nachdem, ob der definite, der semidefinite oder der indefinite
Fall vorliegt.

3.2. Der Ring 'm definiten Fall. Aus den Multiplikationsvorschriften fiir
die Basiselemente

geht hervor, dafl wir hier die Vektoren mit den komplexen Zahlen identi-
fizieren konnen. Wir werden deshalb im definiten Fall die bekannten Ergeb-
nisse der komplexen Funktionentheorie erhalten.

3.3. Der Ring im semidefiniten Fall. Fiir die Basiselemente gelten die Multi-
plikationsvorschriften

ece=e, ej=j-e=9j, §:J=0.
Wir zeigen zuerst, dal der so definierte Ring Nullteiler besitzt. Aus
(o« +B7) (v + 9)) =ay + (xd + fy)) = 0

folgt ndmlich auBer den beiden trivialen Losungen « = =0 und y = =0

noch die Losung o« = ¢y = 0, f und é beliebig. Alle Ringelemente der Form

B sind also Nullteiler dieses Ringes.
Fiir diese Nullteiler gelten die folgenden leicht zu verifizierenden Sitze:

1. a-b ist genau dann Nullteiler, wenn a oder b Nullteiler ist.

2. Die Gleichung a-x = b ist genau dann eindeutig l6sbar, wenn a kein
Nullteiler ist.

3. Aus ab = ac, a kein Nullteiler, folgt b = c.

Die Ringelemente, die nicht Nullteiler sind, teilen wir in zwei elementen-
fremde Klassen ein. Ein Ringelement @ = « + fj gehort zur Klasse 1, wenn
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o« > 0, zur Klasse 2, wenn « < 0. Fiir das Produkt von zwei Ringelementen
gilt dann der

Satz 4. a-b gehort zur Klasse 1, wenn @ und b aus der gleichen Klasse
stammen, a-b gehort zur Klasse 2, wenn a und b aus verschiedenen Klassen
stammen.

Zum Beweis bilden wir (x + B87) (¥ + 8j) = «y + (x6 + By)j und stellen
fest, da «y genau dann positiv ist, wenn & und y gleiches Vorzeichen haben,
wenn also die zugehorigen Elemente zur selben Klasse gehoren.

3.4. Der Ring im indefiniten Fall. Die Multiplikationsvorschriften fiir die
Basiselemente lauten hier

ee=¢e, ek=ke=%k, kk=e.
Auch dieser Ring hat Nullteiler, denn aus
(x + BE) (p + 0k) = oy + B + (a8 -+ y)k =0

folgen auller den beiden trivialen Losungen &« = =0 und y = § = 0 noch
die zwei Losungen

x=f8, y=—06 bzw. ax=—f, y=39.

Jedes Ringelement der Form « 4 «% ist also Nullteiler dieses Ringes.

Die in 3.3 angegebenen Sitze iiber die Nullteiler (Sétze 1 bis 3) gelten auch
fiir den indefiniten Fall ohne Einschrankung.

Satz 4 dagegen mufl leicht modifiziert werden. Die Ringelemente, die nicht
Nullteiler sind, teilen wir in diesem Fall in vier elementenfremde Klassen ein.
Ein Ringelement @ = « + g% gehort zur

Klasse 1, falls o> |f]|
Klasse 2, falls g>|«|
Klasse 3, falls —a > | 8]
Klasse 4, falls — 8> |« |

Wenn man weill, zu welchen Klassen zwei Elemente a und b gehéren, so
ist dadurch die Klasse von a-b eindeutig bestimmt. Es gelten ndmlich fol-
gende Zusammenhiinge (der Index gibt die Klasse an):

Gebe=¢ («=1,2,3,4)
a,-b,=c¢, (k=2,3,4)
ag-by = ¢y, G3-by=1c¢3, az-by=c,.

Der Beweis verliduft fiir alle zehn Gleichungen prinzipiell gleich; wir nehmen
als Beispiel ay-b, = c,.
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Sei ag=0o + pk mit §>|x| und by=9 + 6k mit — 6> |y|. Wir
wollen zeigen, daBl a,-b, =y + Bé + (x6 4+ By)k zur Klasse 3 gehort, da3
also die Ungleichung

— (xy +Bd)>|ad + By

besteht. Zu diesem Zweck zerlegen wir den Ausdruck — (xy + £6) + («d + By)
in Faktoren:

—(xy +B0) £ (xd+By)=BF ) (— 3 £7).

Da beide Faktoren rechts nach Voraussetzung positiv sind, haben wir

— (op + B8 £ (@8 + By) >0 oder — (ay + f8) > |d + By |, qe.d.

3.5. Ausgeartetes B. Die Matrix eines ausgearteten Operators B konnen wir

nach 2.10 in der Form (2.15)
B, B
p B, B,
B, B
u B, B
voraussetzen.

Wenn wir dem Operator B das Ringelement B,e, 4 B,e,, dem Vektor
x = (&, &%) das Element (&' 4 £2)¢;, und dem Vektor y = (n!,7? das
Ringelement #'e, 4 n2e; zuordnen, und wenn wir die Multiplikation wieder
durch (3.1) und (3.2) definieren, so ergibt sich fiir B-z-y

(Bin* + uBym?®) (8 + £)ey + (Byn* + Byn?) (£ + £%)e, .

Das ist genau die Koordinatendarstellung von Bzy, wenn man die Matrix
(2.15) zugrunde legt.

Weil wir die selben Ringe wie fiir nicht ausgeartetes B verwenden koénnen,
beniitzen wir auch die gleichen Bezeichnungen: Fiir 4 = — 1 nennen wir
den zweiten Basisvektor ¢, fiir u = 0 heifit er j, und fiir 4 = 1 heillen wir
ibn k.

§ 4. Die Exponentialabbildung

In diesem Paragraphen untersuchen wir die Abbildung, die durch die
Losung y(x) = (exp B(z — %))y, der Differentialgleichung dy = Bdxy
vermittelt wird. Als Anfangsbedingung setzen wir zur Vereinfachung y(0) = y,
fest.

4.1. Abbildung fir nicht ausgeartetes B. Wir haben in 2.2 gezeigt, daB es fiir
jeden nicht ausgearteten Operator B ein eindeutig bestimmtes «Einheitsele-
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ment» e (Bey = y fiir alle y) gibt. Nun behaupten wir, dal jede Gerade der
Schar = = fe + b(— co < & < o0, b variabel) durch die Losung y(x) der
Differentialgleichung dy = Bdxy auf einen Halbstrahl y = exp &-y(b) ab-
gebildet wird.

Beweis. 1°. Auf der Geraden z = fe ist y = exp &-y, eine Losung der
Differentialgleichung. Denn

dy = exp §-dé-y, = exp £-d&- Bey, = B(edf) (exp &-y,) = Bdzxy .

2°. Diese Losung stimmt fir £ = 0 mit der allgemeinen Lésung y(x)
iiberein.

3°. Unter Verwendung der Funktionalgleichung f(x, + x,) = f(x,)f(x,)
erhalten wir

y(&e + b) = f(§e + b)y, = f(Ee)f(b)yo = f(b)-exp &-yy = exp &-y (D) .

4.2. Der definite Fall. Wie wir in 3.2 gesehen haben, kénnen wir in diesem
Fall die Vektoren als komplexe Zahlen interpretieren. Als Losung der Diffe-
rentialgleichung dy = dzy (esist ja B = 1) erhalten wir folglich die normale
komplexe Exponentialfunktion y = (exp z)y,, die periodisch ist und jeden
Fundamentalstreifen der z-Ebene eineindeutig auf die punktierte y-Ebene ab-
bildet.

4.3. Der semidefinite Fall. Wir legen den in 3.3 eingefiihrten Ring zugrunde
und untersuchen die Lésung y(x) = (exp Bx)y, zunichst fiir die spezielle
Anfangsbedingung y, = 1. Wegen j2 = j3 = ... = 0 erhilt man

y = exp (&' + &%j) = exp &-(1 + &%),
also
nt = exp &', n* = &%*.exp &. (4.1)

Wir sehen, daB} eine eineindeutige Abbildung der xz-Ebene auf die Halbebene
nt > 0 vorliegt. Denn 7! > 0 ist die notwendige und hinreichende Bedingung
fiir die eindeutige Auflosbarkeit des Systems (4.1) nach & und &2.

Nach 4.1 geht bei dieser Abbildung jede Gerade x = £e + b in einen
Halbstrahl y = exp &-y(b) iiber. (Vgl. Fig. 1.)

Bis jetzt haben wir y, = 1 vorausgesetzt. Es bleibt noch zu untersuchen,
in welcher Weise sich der Funktionsverlauf &ndert, wenn man die Anfangs-
bedingung y, variiert.

Wihlt man gy, in der selben Halbebene wie y, = 1, ist also 7j > 0, so
bleibt gesamthaft betrachtet die eineindeutige Abbildung der z-Ebene auf die
Halbebene 7! > 0 bestehen, wie man anhand der Sidtze 1, 2 und 4 in 3.3
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erkennt. Im einzelnen ist es so, dafl gegeniiber dem Spezialfall y, = 1 jeder
Halbstrahl im selben Sinn wie ¥, gedreht ist. Der Drehwinkel ist aber nicht
konstant, sondern geht gegen Null, wenn man sich dem Rand der Halbebene
nshert, also fiir n'— 0.

A R2 A RZ

! v

Vv

v§‘
4

Fig. 1

Wihlt man g, in der andern Halbebene (5} < 0), so erhilt man eine ein-
eindeutige Abbildung der z-Ebene auf diese Halbebene 5! < 0. Fiir y, = — ¥,
wiren wir ndmlich im fritheren Fall, und demgegeniiber wird jeder Halbstrahl
um 180° gedreht.

Ist y, Nullteiler (55 = 0), so ist nach Satz 1 in 3.3 auch y(x) = (exp )y,
Nullteiler. Die z-Ebene wird auf den durch y, festgelegten Halbstrahl abge-
bildet.

4.4. Der indefinite Fall. Unter Verwendung des in 3.4 eingefiihrten Ringes
erhalten wir fiir die spezielle Anfangsbedingung #, = 1

y(z) = exp (81 + &) = exp £(1 + &% + o (8 + o (E)% + )
= exp &'-(Cos &2 4 k Sin £2) ,

also
7yt = exp £1-Cos £2, 7% = exp £1-Sin &2. (4.2)

Fiir jedes = (&', &%) ist demnach 7! > |%?|, und umgekehrt ist 5! > |5?|
die notwendige und hinreichende Bedingung dafiir, dafl sich das System (4.2)
eindeutig nach &%, &2 auflosen laft. Wir haben somit eine eineindeutige Ab-
bildung der z-Ebene auf den Quadranten »! > | %?|.

Genau so wie im semidefiniten Fall schliet man nun fiir allgemeines y, 7% 1
folgendes:

Wenn y, Nullteiler ist, so haben wir eine Abbildung auf den durch g, fest-
gelegten Halbstrahl.
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Wenn y, in einem der vier Quadranten liegt, so haben wir eine eineindeutige
Abbildung der z-Ebene auf den durch g, bestimmten Quadranten, wobei die
Geraden x = &e + b in Halbstrahlen y = exp &-y(b) iibergehen. (Vgl. Fig. 2.)

2 2
A\ Rx A RY
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\
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|
|
v
A4
?
. | )
\~ ° 1
\" l,/
N\
t/ \\
/ LY
\'/4

Fig. 2

4.5. Die ausgearteten Fille. Nach der in 3.5 gegebenen Vorschrift muBl dem
Vektor z = (&', £2) das Ringelement (&' 4 £2)e; zugeordnet werden. Wir
ersehen daraus, daf fiir alle # mit konstanter Summe &' 4 £2, also fiir eine
ganze Gerade der z-Ebene, y(x) gleich lautet. Und damit ist klar, daB die
Losungsfunktion y(z) in keinem Punkt eine regulire Ableitung besitzt, und
daB der Wertebereich der Funktion unendlich oft iiberdeckt wird.

Um dem Umstand Rechnung zu tragen, daB fiir gewisse x das zugehorige
y(x) gleich ist, fithren wir mit Vorteil eine neue Variable ein, nimlich

=8 & (—oo< < 0).

4.6. Der ausgeartet-definite Fall. Wir konnen wieder die komplexen Zahlen
verwenden und erhalten

y(x) = (exp (B, + B;t) &)y, = (exp B, §) (exp B, &)y, -
Das ist nichts anderes als eine logarithmische Spirale. Es gilt ja
|y | =|exp Bi&|-| exp Byéi|-| yo| = (exp By ) | | -

Ob wir fiir zunehmendes & eine nach innen oder nach auBlen zu durchlau-
fende, rechts- oder linkgsdrehende Spirale erhalten, hingt von den Vorzeichen
von B, und B, ab.

Spezialfdlle. 1. Fir B, = 0 erhalten wir einen unendlichen oft zu durch-
laufenden Kreis mit dem Radius |y, |.

2. Fiir B; = 0 erhalten wir als Bild den Halbstrahl y = (exp B, &)y,.
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4.7. Der ausgeartet-semidefinite Fall. Die Losung y(x) lautet fiir diesen Fall
y(x) = (exp (B, + Byj)€)yo = (exp B, &) (1 + Byéj)y, -

Wir haben in 4.3 gezeigt, welche Auswirkungen die Anfangsbedingung y, auf
den Funktionsverlauf hat, und beschrinken uns jetzt auf die spezielle An-
fangsbedingung y, = 1.

Die beiden Komponenten von y(x) heilen dann

nt =exp B,§ und #%= B,&-exp B,¢,

und fiir die Ableitungen nach & erhélt man

1 2
dn = B,-exp B;¢ und L/ = By(B,& + 1) exp B, &.
dé dé
., dnt - , dn?
Setzt man B,-B, # 0 voraus, 80 ist F durchwegs positiv, wihrend G
an der Stelle & = — 1 verschwindet. Es existiert also unter dieser Voraus-

B
setzung immer ein Extremum. Beachtet man noch, dal %!, n?— 0 fir
&— — oo und %! — oo, 5%+ 4 oo fiir £ - oo, so hat man einen guten Uber-
blick iiber den Funktionsverlauf. (Vgl. Fig. 3.)
Ob das Extremum ein Minimum oder ein Maximum ist, und in welcher
Richtung die Kurve zu durchlaufen ist, hingt von den Vorzeichen von B,

und B, ab.

Spezialfille. 1. Fir B, = 0 (zweifache Ausartung) erhalten wir als Bild
eine zu j parallele Gerade, denn es ist 5 = 7} = 1.
2. Fir B, = 0 erhalten wir den Halbstrahl y(z) = (exp B, §) y,.

2 2
A Ry A Ry
\,
\\
\Q
N\
' Yo 7
By>0 IB,1>1B, '/
B,>0 /

.

Fig. 3 Fig. 4



172 Haxs EeL1

4.8. Der ausgeartet-indefinite Fall. Wir beschrinken uns auch in diesem
Fall auf die spezielle Anfangsbedingung y, =1, da wir in 4.4 ausgefiihrt
haben, welchen Einflu die Wahl von y, hat.

Die Losung y(x) lautet dann

y(x) = exp (B, + Byk)¢ = exp B,&- (Cos B,& + k Sin B, ¢)

und fiir die Ableitung der beiden Komponenten nach £ erhilt man

dnt i
dg = exp B, £ (B,-Cos B¢ + B,-Sin B, £)

dn?
dé

Wenn wir | B, | > | B,| voraussetzen, ist

= exp B, &:(B,-Sin By £ + B,-Cos B, &)
.
2 d§
dné dagegen hat genau eine Nullstelle. Es gibt also eine horizontale, aber

keine vertikale Tangente. Beachtet man dazu noch das asymptotische Ver-
halten der Funktion, so erhilt man ein gutes Bild des Funktionsverlaufes.
(Vgl. Fig. 4.)

Wenn wir | B, | < | B, | voraussetzen, so verhilt es sich gerade umgekehrt;
wir haben eine vertikale, aber keine horizontale Tangente. Dazu &ndert sich
auch das asymptotische Verhalten. (Vgl. Fig. 5.)

durchwegs ungleich null,

A Ry A R
\\
\. \. /
\ \ /
\. AN /
\ > \|/ ~
/ . o 7
lB1‘< ‘Bz‘ /' B1= 82 ./ AN ~Y
’ . N\
/./ / AN
Fig. 5 Fig. 6
Spezialfille. 1. Fir | B, | = | By| (zweifache Ausartung) erhalten wir als

Bild einen zu B, + B,k parallelen Halbstrahl. (Vgl. Fig. 6.)

2. Fir B, = 0 entsteht eine Abbildung auf den Ast einer gleichseitigen
Hyperbel, denn es ist (5!)? — (5?)2 = 1.

3. Fir B, =0 wird y(z) = (exp B,&)y,; wir haben also eine Abbildung
auf den durch y, festgelegten Halbstrahl.
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4.9. Bemerkung. Es besteht ein interessanter Zusammenhang zwischen den
ausgearteten und nicht ausgearteten Fillen.

Wenn man némlich bei den nicht ausgearteten Fillen den Argumentbereich
x auf eine durch 0 gehende Gerade einschrinkt, so erhilt man als Bild dieser
Geraden den Funktionsverlauf des entsprechenden ausgearteten Falles. Je
nach Neigung der Geraden entstehen die verschiedenen Spezialfille.

II. Die Riccatische Differentialgleichung

Wir behandeln in diesem Abschnitt kurz die drei Hauptfille der RiccATi-
schen Differentialgleichung, wobei wieder die in I. 3 eingefiihrten Ringe Ver-
wendung finden.

§ 1. Die Normalform

1.1. Die Gleichung. Die allgemeine Riccatische Differentialgleichung hat
die Form

y'der = Adx + Bdzy + Cdxyy dr e Ry, ye R .

A ist ein linearer, B ein bilinearer und C ein trilinearer Operator. Wir setzen
diese Operatoren, die alle von x abhéingen konnten, als konstant voraus.

Im weitern wollen wir noch voraussetzen, dal C in bezug auf die beiden
letzten Argumente symmetrisch ist, daB also Chy,y, = Chy,y,.

1.2. Die Integrabilititsbedingung. Nach der allgemeinen Theorie iiber die
Differentialgleichungen erster Ordnung (siehe I. 1.4.) lautet die Integrabili-
tatsbedingung

(Bh + 2Chy) (Ak + Bky + Ckyy) = (Bk + 2Cky) (Ah + Bhy + Chyy) .

Weil diese Gleichung identisch in y erfiillt sein muB}, kann man sie in die
vier Gleichungen

BhAk = BkAh, (1.1)

BhBky + 2ChyAk = BkBhy + 2CkyAh, (1.2)
BhCkyy + 2ChyBky = BkChyy + 2CkyBhy , (1.3)
ChyCkyy = CkyChyy (1.4)

auflosen. Da wir die Operatoren 4, B und C als voneinander unabhéngig
annehmen, zerfillt die Gleichung (1.2) weiter in

BhBky = Bk Bhy (1.2a)

uad ChyAk = CkyAh . (1.2b)
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1.3. Folgerungen aus der Integrabilititsbedingung. Wir erkennen (1.2a) als
die in I. 2 behandelte Integrabilitétsbedingung fiir die homogene lineare Dif-
ferentialgleichung. Aus diesem Grund beniitzen wir die dort hergeleiteten Re-
sultate und verwenden fiir den als nicht ausgeartet vorausgesetzten Operator
B die Normalmatrix (2.15)

1 0
0 1 | (u=—1,0,1) (1.5)
0 1

7 0

sowie den dazu passenden Ring mit den Multiplikationsvorschriften (siehe I.3)
€°€ =€, €€ =2~¢8°€ =2~¢, €6 =Ue.
In diesem Ring vereinfacht sich die Gleichung (1.1) zu
h-Ak=Fk-Ah,
was man fiir alle A und %, die keine Nullteiler sind, weiter umformen kann zu

Ak Ak
E ~ h
Daraus folgt, daB man im Ring Ah als Produkt A-k darstellen kann.

Schreiben wir das Ringelement 4 in der Form A,e, + A,e,, so erhilt die
Matrix (4)) die Form

( jl ::2) (= —1,0,1) (1.6)
By 1

Wenn die Gleichung (1.2b) fiir jeden Operator A der Form (1.6) erfiillt ist,
so ist auch ChyBky = CkyBhy. Die Gleichung (1.3) vereinfacht sich da-
mit zu BhCkyy = BkChyy und im Ring zu

h-Ckyy = k-Chyy .

Analog wie oben fiir A schlieBt man, dafl sich Chyy als Produkt (Cyy)-h
darstellen 1a8t.

Verwenden wir jetzt nochmals die Gleichung (1.2b) und setzen darin
A =1, so folgert man auf die selbe Art wie schon zweimal, daB im Ring
Cyk weiter zerfillt in (Cy)-k.

Weil wir Chy,y, als symmetrisch in bezug auf y, und y, vorausgesetzt
haben, ist gezeigt, daB sich Chy,y, in unserem Ring als Produkt C-k-y,-y,
darstellt. Setzen wir das Ringelement C in der Form C,e, 4+ Cse, an, so
erhilt die zugehorige Matrix die Form

= konst. gy A.
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C, C, uC, C,

(Cpi‘v) = #Cy C, (Cpév) = rCy pCy (k= —1,0,1)
10y Cy nCy 1Cy

pCy 1Cy u*C, uCy (1.7)

Durch Einsetzen in der Integrabilitdtsbedingung iiberzeugt man sich, daB
die Form (1.6) und (1.7) fiir die Operatoren 4 und C nicht nur notwendig,
sondern auch hinreichend ist, sofern man den Operator B in der Form (1.5)
voraussetzt.

Im folgenden verwenden wir die drei Operatoren B, A und C immer in der
Normalform (1.5), (1.6) und (1.7) und rechnen ausschlieflich mit den zuge-
hoérigen Ringelementen B =e¢,, A = A e, + A,e, und C = C,e, + Cie,.

§ 2. Die Losung bei nicht verschwindender Diskriminante

2.1. Definiter Fall. Da wir es hier mit der bekannten komplexen Riccati-
schen Differentialgleichung

y = A + By + Cy? (2.1)
zu tun haben, fassen wir uns kurz.
Mit der Substitutionsgleichung
ul

Cy=—— (2.2)

fithrt man (2.1) in eine homogene lineare Differentialgleichung zweiter Ord-
nung iiber, die folgendermafen lautet:

' — Bu' + ACu=0. (2.3)

Da wir B? — 44C # 0 vorausgesetzt haben, heifit die Losung dieser Glei-
chung

2 __ — VB —4
u=kl.exp(B+ V32 440 x) +Ic,-exp(B 32 4C x)

Setzt man diesen Wert fiir « in (2.2) ein, so wird

k(B + VB? —4AC ) (exp VB2 — 440 z) + ky(B — VB*—4A40)
2Ck,(exp VB* — 4AC z) + 2Ck,

y(z)=—

Hierbei lassen sich die Integrationskonstanten so bestimmen, daf die Anfangs-
bedingung y(0) = y, gilt. Die endgiiltige Losung heiit dann
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Y(x, 9) = (2.4)

_ ((B+VB:-4AC)y,+2A4) (expVB*-4ACx)- (B-VB:—44C)y,-24
(-(B-VB2-4A4C)-2Cy,) (exp VB*—4A4Cz) + B+ VB2 —44C +2Cy,

Wir erkennen, da@ sich die durch (2.4) vermittelte Abbildung aus einer Expo-

nential- und einer Mobiustransformation zusammensetzt. Mit Ausnahme der
beiden singulidren Stellen

— B 4+ VB —44C
wird jeder Punkt der y-Ebene (einschlieBlich oo) erreicht, und zwar unendlich
oft. Wir haben also eine eineindeutige Abbildung der z-Ebene auf eine unend-

lichblittrige RieManNsche Fliche mit den beiden Windungspunkten (2.5).

Wihlt man eine der beiden Stellen (2.5) als Anfangsbedingung, so degene-
riert die Abbildung, denn es ist

— B4+ VB:—44AC
o(= 2C )

— B+ VB —4AC
2C )

2.2. Der semidefinite Fall. Wir iibertragen das in 2.1 dargestellte normale
Losungsverfahren auf den semidefiniten Fall, was unter folgenden zwei Vor-
aussetzungen ohne weiteres moglich ist:

1°. O ist kein Nullteiler (damit wir durch C dividieren kénnen).
2°. Fiir die Diskriminante B2 — 4A4C = « + Bj ist « > 0 (damit sich die
Wurzel V B2 — 4 AC ziehen laBt).

Zur Interpretation der Losung (2.4) untersuchen wir zuerst die linear ge-
brochene Funktion

__ax+b
T ecx+d

Wir behaupten, dafl diese Funktion die Geraden &! = konst. in Gerade
n! = konst. iiberfiithrt. Zum Beweis bilden wir zuerst den Quotienten

o _dtot (B at) (o) _ o oty —atyt
c Y+ (")* e G
und erhalten dann

b 1 1£1 1 b 2 161 — A14,1
m=(aty) =St = (b ) - e e,

cx +d Y&+ 6 cx+d (yr&1+6Y)

Damit ist gezeigt, da #! fiir alle 2 mit gleicher erster Komponente &! gleich
ist, und daB #? fiir konstantes £! jeden endlichen Wert genau einmal annimmt.
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Wenn man &' monoton von 0 gegen - oo gehen liBt, so é&ndert sich !

1
monoton von L gegen den Grenzwert wobei fiir y1.6' < 0 die Un-

o1

stetigkeitsstelle -4 oo passiert wird.
Wir kehren jetzt zur Losung (2.4) zuriick und untersuchen die erste Kom-

ponente

_ ((1+V1-44,0)ni+2A4,)exp V1-44,C, 8- (1-V1-44,0,)-24,
~(1-V1-4A4,C,+20,m)exp V1—4A4,C; &' +1+V1-44,C,+2C,n}

Wenn wir &' das Intervall (— oo, oo) durchlaufen lassen, durchliuft

exp V1 — 44,C, £ das Intervall (0, co). Wie wir oben gesehen haben, folgt
daraus, dafl sich #! monoton zwischen den Grenzen

'}';f ’

7t (2.6)

, (11— V1 —44,C)n + 24, _ -1+ V1 —4A4,C, (2.7a)
" 1+ VI — 44,0, + 20,7} 20,

y . (+VI—44C0)nh+24, —1-— V1 —44,C, (2.7D)
To = T 1 VI _44,0, + 2C,m5 20, '

dndert. Damit wissen wir iiber den Funktionsverlauf im semidefiniten Fall
Bescheid :

Liegt die Anfangsbedingung y, zwischen den beiden Grenzgeraden (2.6),
so wird die ganze z-Ebene eineindeutig auf das offene Gebiet zwischen diesen
beiden Grenzgeraden abgebildet, und zwar so, dafl die Geraden &' = konst.
in Gerade #! = konst. iibergehen. (Vgl. Fig. 7a.)

Liegt y, auBerhalb der beiden Grenzgeraden, so wird die z-Ebene (mit
Ausnahme einer Geraden) in gleicher Weise eineindeutig auf das AuBengebiet
abgebildet. (Vgl. Fig. 7b.)

Liegt y, auf einer der beiden Grenzgeraden, so artet die Abbildung aus,
denn es ist

(e, —LE V1—4A101)= — 14+ VI—44,C,
2.3. Der indefinite Fall. Um das Losungsverfahren von 2.1 ohne Schwierig-
keiten auf den indefiniten Fall iibertragen zu konnen, setzen wir voraus
1°. C ist kein Nullteiler.
2°. Fiir die Diskriminante B2 — 44C = o + Bk ist &« > | B].
Wie im indefiniten Fall untersuchen wir zunichst die linear gebrochene
Funktion y = az + b Wir behaupten, dafl diese Funktion die Geraden

cx +d .
& 4 2 — konst. in Gerade 7' + 52 = konst. iiberfiihrt.
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Zum Beweis formen wir y wie folgt um:
az+b _ a+pk _ (x+ Ry — k) _ ay — B8+ (By —xd)k
cx +d y + ok p2 — 2 o p? — §2
Daraus bilden wir
S Y —BOEByFad  LAHGFY _akp

y:— (y+dy—9) y£30
Wenn man beachtet, dafl « als Abkiirzung fiir «'&! 4 «2£2 4 ! eingesetzt
war und ebenso auch £, y und 4, so erhélt man endgiiltig

T nt=

_ 0‘161 +0‘2£2 + ﬁl :!___ (aleﬁ +“2£1 + ﬂS) _ (0‘1 ___!:0‘2) (El :L_. 52) _I_ﬁl iﬂﬁ
ylfl + 7252 + 61 :t (.},152 + y2£1 + 62) (,yl :L_ 72) (51 :t 52) + 51 :l: 62 2

womit gezeigt ist, dafl fiir konstantes &' + £ auch #! + %® konstant ist.
Genau wie beim semidefiniten Fall schlieBt man nun, daB sich ! 4 #*

.éi__:_t__ﬂj_ und M andert, falls & 4 &2
o L 42 V=

—

monoton zwischen den Grenzen

das Intervall (0, oo) durchliuft.
Diese Resultate iibertragen wir auf die Losung (2.4). Wenn man hier
7t + n® bildet, stellt man fest, daB die Variable das Intervall (0, co) durch-
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lduft, wenn man &' 4+ £2 von — oo nach + oo gehen liBt. #' 4 #? éndert
sich somit monoton zwischen den beiden Grenzen

— 14+ V1—4(4, £+ 4,) (C, £ 0y)

(n* £ 7% = 50, = 0. (2.8a)
—1—-ViI=

Durch die beiden Geradenpaare (2.8) wird die y-Ebene in 4 Gebiete einge-
teilt. Je nach der Wahl der Anfangsbedingung y, wird die ganze z-Ebene
(eventuell mit Ausnahme von einer oder zwei Geraden) eineindeutig auf eines
dieser vier Gebiete abgebildet, wobei alle Geraden §&! 4 &2 = konst. auf
Geradenstiicke &' 4 7% = konst. abgebildet werden. (Vgl. Fig. 8.)

Die Abbildung artet aus, wenn man g, auf einer Grenzgeraden wihlt.

Fig. 8

2.4. Bemerkungen. 1. Wenn C Nullteiler ist, muBl das Losungsverfahren
nur wenig modifiziert werden. Der Funktionsverlauf ist prinzipiell gleich, es
tritt lediglich eine Verschiebung der Grenzgeraden (2.7) bzw. (2.8) ein, wobei
die eine ins Unendliche riickt.

2. Wenn die Diskriminante B2 — 4A4C verschwindet, so lautet die Losung
der Ricoarischen Gleichung fiir den definiten (komplexen) Fall

(By, + 2A4)x + 2Cy, .

Y(x, %) = — @0y + Bz + 2 (2.9)

Es handelt sich also um eine Mobiustransformation.
Auch diese Losung (2.9) 1la8t sich ohne Schwierigkeiten auf den semidefi-
niten und den indefiniten Fall iibertragen.

12 CMH vol. 86
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