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Groupes de transformations d’une sphére de cohomologie*)

JEAN PONCET, Princeton, N. J. (USA)

1. Introduection

On désignera dans la suite par (G', X) un groupe G de transformations de
I’espace X. @ sera un groupe de LIk compact, connexe,

Si z ¢ X, @, est le sous-groupe de G qui laisse x invariant. Dans cette
note, ’orbite G (x) est dite

du type H, ou G/H, si G, est dans la classe des sous-groupes conjugués
a HcG@G, .

réguliére si les orbites voisines sont du méme type que G(z), singuliére sinon.

S’il n’existe qu'un seul type H d’orbites réguliéres, on appellera 1’espace
homogeéne G/H D’orbite principale.

Dans la suite la cohomologie d’un espace sera toujours celle d’ALEXANDER-
SPANIER & supports compacts, & valeurs entiéres.

M sera une n-variété cohomologique (une n — ¢mz de [1], notée ici cm)
qui ait la cohomologie d’une sphére. M est alors compacte.

Si I’on impose aux orbites de (G, M) certaines conditions (assez restrictives
en somme) l’espace M et 'action de G sur M peuvent é&tre décrits assez
exactement. On a ainsi

Théoréme 1.1. Soient M une n — c¢m qui ait la cohomologie d’une spheére
et (@, M) un groupe de transformations qui posséde des orbites de dimension
n — 1. Alors celles-ci sont réguliéres, d’'un méme type G/H, il y a deux
orbites singuliéres et les énoncés a — d sont équivalents:

a) les orbites de dimension n — 1 ont la cohomologie d’un produit de deux
sphéres;

b) les orbites singuliéres sont des sphéres de cohomologie;

¢) M est la jonction des deux orbites singuliéres;

d) la somme des dimensions des orbites singuliéres est » — 1.

En outre, si 'orbite principale G/H est un produit de deux sphéres
8% x 8!, ou si les orbites singuliéres sont S* et 8!, M est Sk+i+l et @
opére linéairement.

Remarque. Les énoncés a — d sont aussi équivalents & celui-ci: G/H est le
produit des deux orbites singuliéres (voir la démonstration). Comme G. E. BrE-

1) Travail écrit alors que ’auteur était boursier du Fonds National Suisse.
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DON a montré [4] qu’un espace homogéne (de groupe de L1z compact) qui a la
cohomologie entiére d’une S" est une 8" ou SO(8)/I (I = groupe de lico-
saédre), on a ainsi une précision de plus sur les orbites possibles sous 'une des
conditions a — d.

On a un cas plus simple de (G, M) si H*(G/H) = H*(S™1). Les orbites
singuliéres sont des points fixes et réciproquement. G' opére linéairement si
G/H est S™1 [6].

Comme application, nous considérons un (G, £,) sur un espace euclidien
E, qui ait des orbites de dimension n — 2. En utilisant les résultats de [5]
et un théoréme de G. E. BREDON [1, chap. XV] nous montrons qu’il existe un
point fixe p et que E, — p est le produit de E; par une (n — 1) —cmM
a laquelle ont peut appliquer 1.1. D’ol résulte

Théoréme 1.2. Si (G, E,) a des orbites de dimension n — 2 qui sont des
S2 oudes 8* X 8,k +1=n — 1, @ est linéaire.

Je remercie ici MM. D. MoNTGOMERY et G. E. BREDON de m’avoir fait quel-
ques suggestions.

2. Sections de M

Soit M comme dans 1. La proposition 2.1 est une conséquence facile de la
propriété de séparation d’une 7= — c¢m par un sous-espace dont la dimension
cohomelogique (dimz de [1, chap. I], notée ici dim.) est » — 1, et des pro-
priétés du sous-espace M, ; , réunion des orbites de dimension n — 1 dont
le groupe d’isotropie a un nombre minimum 8 de composantes [1, chap. IX].

Proposition 2.1. Les orbites de dimension » — 1 sont réguliéres, d’un méme
type. Il y a deux orbites singuliéres de dimension <2 — 1. M/G est un inter-
valle fermé.

Soit d’abord M une n — ¢m connexe dont nous ne supposons pas néces-
sairement que H* (M) = H*(S").

N=M,,,c M est un ouvert dense, connexe [1, chap.IX], fibré en
orbites de méme type. Donc N’ = N/G est une 1 — ¢m [1, chap. I, th. 4.10].
N’ est localement compacte, localement connexe et séparée localement par
chaque point. On en déduit que c’est une 1-variété.

Supposons H*(M) = H*(S"). N' ne peut pas étre S§', car on aurait
M = N fibré en orbites G/H, de base S, ce qui est impossible par la suite
de cohomologie associée & une orbite G/H

0— H»(G/H)—-> H*(M — G/H)—~ H*(M)—~0
M — Q/H étant E, X G/H.
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Ainsi N’ est E; et il y a une ou deux orbites singuliéres. S’il y en a une seule,
elle sépare M localement, est donc de dimension n — 1, ce qui est encore
impossible par une méme suite de cohomologie associée a cette orbite. Done il
y en a deux et M’ = M /G est un intervalle fermé. Comme elles ne peuvent
pas séparer M localement, elles sont de dimension <n — 1. Ceci achéve de
démontrer 2.1.

Démontrons maintenant 1.1.

M|@ étant un intervalle fermé, il existe une section o: M/G— M telle que
G, = H soit constant sur son intérieur. Cela résulte de 1’existence de la tranche
(«slice» de [1]) en chaque point de M.

K et L désigneront les sous-groupes de stabilité aux extrémités a et b
de o, ¢ c o un point intermédiaire.

Soient P,Q telsque Pv@Q =M,P~Q = G(c),G(a) < P,G((d) Q.

On a la suite de MAYER-VIETORIS

— H¥(M)-> H(P) + H(Q) > H(G(c)) - H* (M) ...

ot @(u,v) = h¥(u) — hi(v), by, h, étant les inclusions de G(c) dans P et Q.
Supposant n > 2, ¢ est ainsi un isomorphisme bijectif pour 0 <7 <n — 1.
En composant %, et h, avec les rétractions de P et @ le long des sections
g(8),9 c G, sur G(a) et G(b) respectivement, on obtient un isomorphisme
bijectif y: Ht(G(a)) + H!(Q(b)) > H ! (G(c)) pour 0<i<m — 1,9p(u,v)=
= p¥(u) — p5(v), ol p, et p, sont des projections de fibration G/H - G/K
resp. G/L, de fibre K/H resp. L/H. L’isomorphisme y et la régle de
KUNNETH montrent alors que a) et b) sont équivalents et entrainent d).

Soient k, ! lesdimensionsde G (a), G (b) respectivement. Soit S = K (§ —b).
C’est une tranche par a. Comme fibre d’une fibration d’un voisinage ouvert
invariant de G(a), c’est une (n — k) — cm. Comme S —a est K/H X E,,
la suite de cohomologie associée & @ montre que H*(K/H) = H*(8"%-1),

Les fibrations p, et p; sont donc & fibres sphériques.

Montrons que d) entraine b), ¢) de 1.1.

Dans I’hypothése d), dim K(¢) =dim K/H =n — k — 1 =1=dim G/L.
Le noyau de #*: H* (G(c)) - H'(K(c)), ¢ étant l'inclusion K(c)cG(c), est
P1(H' (G(a))) [3, exposé IX], qui #’identifie & H!(G(a)) par v, d’olr un
isomorphisme *.p%: H (G (b)) > H' (K (c)).

De la commutativité de

H' (G(b)) - H' (G(c)

l l

H'(K (b)) ~ H' (K(c))
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oli les homomorphismes horizontaux sont induits par p,, les verticaux par
des inclusions, suit alors dim K (b) =, done K (b) = G(b) et l’application
K (c)— G(b) induite par p, est un revétement (de fibore K ~ L/H). Mais
celui-ci est trivial du fait de la bijection H'(G(b)) - H'(K(c). On a un méme
résultat pour ’application L (c) - G'(a) induite par p,, d’ol b).

Par un point de G'(c) ne passe qu’une section g(c). De cela et de ce que
Phoméomorphisme K (c)— G(b) est une projection suivant les sections
g(c) par a, on déduit qu’il n’y a qu’une telle section par a et un point de
G (). On a ainsi ¢) et G(c) = G(a) X G(b), Comme c) implique évidemment
d), les quatre points de 1.1 sont équivalents.

Si maintenant 1’orbite principale G/H est S*¥ x S!, @/K et G/L sont Sk
resp. S!. Cela résulte de [2] ou [4], par le fait que G/H = G/K x G/L. La
réciproque est évidente et M est Sk+!+1 comme jonction de S* et §.

Cela étant, G opere linéairement sur M .

En effet, l’'action de G sur M ne dépend que de I’action de G sur les orbites
singuliéres S* et S!. G opére transitivement sur celles-ci comme des groupes
orthogonaux @, cS8O(k + 1), G, SO(l + 1) [6]. Il s’ensuit que les actions
possibles de G sur la jonction M de S* et 8! peuvent étre réalisées par les
représentations sommes de deux groupes orthogonaux tels que @, et G,
opérant sur une sphére de K, ,,, centrée a I’origine. Ceci achéve de démontrer
1.1.

Dans le cas plus simple de (G, M) oh H*(G/H) = H*(8"1), par l'iso-
morphisme o les orbites singuliéres sont des points fixes et réciproquement.
L’action de @ sur M ne dépend que de I’action de G sur l’orbite principale
G/H et est linéaire si G/H = S*1,

3. Une application

Soit (G, E,) un groupe de transformations de I’espace euclidien X, qui
ait des orbites de dimension n — 2. Nous allons résumer ses propriétés d’apres
[5].

D’abord les orbites de dimension n — 2 sont réguliéres, d’'un méme type
G/H. Soient X leur réunion, B = E, — X la réunion des orbites singuliéres.
Celles-ci sont de dimension <n — 2. X/G = X’ est un plan, E,/G = E, un
demi-plan fermé par la droite B/G = B'.

Pour un @ opérant différentiablement, une forme un peu plus faible que le
lemme 3.1 est contenue dans [5]. Ici 3.1 est démontré comme conséquence d’un
théoréme de G. E. BREDON.
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3.1. Lemme. Soit ¢ un point de B. Posons B = B, v G(a)v B,, B, et
B, étant les deux parties de B séparées par G(a).

Supposons dim G(x) = dim G'(a) sur B; au voisinage de G(a). Alors
G(a) est réguliére relativement & B.

Faisons opérer la composante de l’identité GF de @, sur une tranche
(«slice» de [1]) S par a. Soit F(GQ}, S) I'ensemble des points fixes de S par
@}. C’est 'ensemble des z de B ~ § tels que G4c@,, c’est-a-dire dim G, =
= dim ¢, puisque G,c@G, sur S. On peut supposer que B~ S = G,(8)
ol 8 est un arc, section locale de B en a. Il s’ensuit que les composantes
connexes de F (G}, S) sont des points isolés ou des réunions finies d’arcs.
Sous ’hypothése de 3.1, dim zF (@}, S) = 1 (dans la suite, nous écrivons dim
pour dimz de[1]).

Les orbites singuliéres de (G, S) sont toutes les orbites de B ~ S. Posons
U=8—B~8. UG, = (U|G(G@,/GY) s’identifie & un ouvert de (E, — B)/G.
On a done

2 = dim U — dim @,/H = dim 8§ — dim 6*/G* ~ H = dim F(G*, 8) + 1.

La derniére identité montre que les hypothéses de [1, chap. XV, 1.4] sont
vérifiées pour (G%,S). Les orbites singulitres cB~ S de G sont alors
des points fixes au voisinage de @, d’ou il suit encore (lemme 2.3, loec, cit.)
que B~ S se réduit & un seul arc au voisinage de a. Par la définition de la
tranche G, = G, preés de a.

Ce lemme et un raisonnement de dualité de [5] que nous ne répétons pas ici
(voir les démonstrations des lemmes 10 et 11 de [5]) permettent de montrer que
B contient un point fixe p séparant deux types d’orbites. Nous désignons
encore leur réunion par B; et Bj.

Ces propriétés de (G, E,) entrainent maintenant que E, — p est le produit
de E, par une (r — 1) — ¢m qui est une sphére de cohomologie, sur laquelle
G opére.

Car soit D une section de E, telle que G, soit constant sur l'intérieur de
D et sur .r; = B, ~ D,r, = By~ D. Une telle section existe par la construc-
tion donnée dans la démonstration du lemme 10 de [5].

On peut décomposer D — p en arcs r, deux d’entre eux étant 7,7y, et
en arcs 8 qui rencontrent chaque » en un point. Les transformés g(r) sont
deux & deux sans point commun.

Soient 8;,8, deux arcs 8, K le sous-espace compact compris entre G(s,)
et Q(8), Ky =K~ r,. Un point xcK détermine univoquement r,s tels
que = =g(r)~G(8) pour un gc@G. Silon définit A(z) = G(s,) ~g(r) et
k(x) = G(8) ~ K,, lapplication x—> (h(z),k(z)) de K sur K, X G(s)
est biunivoque et continue, d’'od E, —p=1r X G(8). Les G(s) sont
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homéomorphes & G(s,) par k(z) et des (n — 1) — ¢m qui ont la cohomologie
de S§»1.

Ainsi 1.1 est applicable & G(s). Si G/H est une sphére ou un produit de
deux spheres, G(s) est une sphére et la décomposition de Z, enrayons r v p
fait voir que G opére linéairement. Ceci démontre 1.2.

Institute for Advanced Study, Princeton
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