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Groupes de transformations d9une sphère de cohomologie1)

Jean Poncet, Princeton, N. J. (USA)

1. Introduction

On désignera dans la suite par (O,X) un groupe G de transformations de

l'espace X. G sera un groupe de Lie compact, connexe.
Si x c X,Gœ est le sous-groupe de G qui laisse x invariant. Dans cette

note, l'orbite G(x) est dite
du type S, ou G/H, si Gm est dans la classe des sous-groupes conjugués

à H czG,
régulière si les orbites voisines sont du même type que G(x), singulière sinon.
S'il n'existe qu'un seul type H d'orbites régulières, on appellera l'espace

homogène G/H l'orbite principale.
Dans la suite la cohomologie d'un espace sera toujours celle d'ALEXANDEB-

Spanieb à supports compacts, à valeurs entières.
M sera une w-variété cohomologique (une n — cmz de [1], notée ici cm)

qui ait la cohomologie d'une sphère. M est alors compacte.
Si l'on impose aux orbites de (G, M) certaines conditions (assez restrictives

en somme) l'espace M et l'action de G sur M peuvent être décrits assez
exactement. On a ainsi

Théorème 1.1. Soient M une n — cm qui ait la cohomologie d'une sphère
et (G, M) un groupe de transformations qui possède des orbites de dimension
n — 1. Alors celles-ci sont régulières, d'un même type G/H, il y a deux
orbites singulières et les énoncés a — d sont équivalents :

a) les orbites de dimension n — 1 ont la cohomologie d'un produit de deux
sphères;

b) les orbites singulières sont des sphères de cohomologie;
c) M est la jonction des deux orbites singulières;
d) la somme des dimensions des orbites singulières est n — 1.
En outre, si l'orbite principale G/H est un produit de deux sphères

8k X S1, ou si les orbites singulières sont Sk et Slt M est Sk+l+1 et G

opère linéairement.

Remarque. Les énoncés a — d sont aussi équivalents à celui-ci : G/H est le
produit des deux orbites singulières (voir la démonstration). Comme G. E. Bre-

1) Travail écrit alors que Fauteur était boursier du Fonds National Suisse.
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dost a montré [4] qu'un espace homogène (de groupe de Lie compact) qui a la
cohomologie entière d'une 8r estime 8r ou 8O(3)/I (J groupe de Fico-
saèdre), on a ainsi une précision de plus sur les orbites possibles sous Tune des

conditions a — d.
On a un cas plus simple de (G, M) si H*(G/H) H*(S7*-1). Les orbites

singulières sont des points fixes et réciproquement. G opère linéairement si

GjH est S^1 [6].
Comme application, nous considérons un (G, En) sur un espace euclidien

En qui ait des orbites de dimension n — 2. En utilisant les résultats de [5]
et un théorème de G. E. Bredon [1, chap. XV] nous montrons qu'il existe un
point fixe p et que En —- p est le produit de E1 par une {n — 1) — cmM
à laquelle ont peut appliquer 1.1. D'où résulte

Théorème 1.2. Si (G, En) a des orbites de dimension n — 2 qui sont des

S*-2 ou des 8k X 8l, Je + l n — 1, G est linéaire.
Je remercie ici MM. D. Montgomery et G. E. Bkedost de m'avoir fait quelques

suggestions.

2. Sections de M

Soit M comme dans 1. La proposition 2.1 est une conséquence facile de la
propriété de séparation d'une n — cm par un sous-espace dont la dimension
cohomologique (dim^ de [1, chap. I], notée ici dim.) est n — 1, et des

propriétés du sous-espace Mn_x 8 réunion des orbites de dimension n — 1 dont
le groupe d'isotropie a un nombre minimum s de composantes [1, chap. IX].

Proposition 2.1. Les orbites de dimension n — 1 sont régulières, d'un même

type. Il y a deux orbites singulières de dimension < n — 1. MjG est un intervalle

fermé.
Soit d'abord M une n — cm connexe dont nous ne supposons pas

nécessairement que H* (M) H*(8n).
N Jfn_M a M est un ouvert dense, connexe [1, chap. IX], fibre en

orbites de même type. Donc JV7 N/G est une 1 — cm [1, chap. I, th. 4.10].
N' est localement compacte, localement connexe et séparée localement par
chaque point. On en déduit que c'est une 1-variété.

Supposons H* (M) H* (8n). Nf ne peut pas être S1, car on aurait
M N fibre en orbites G\E, de base S1, ce qui est impossible par la suite
de cohomologie associée à une orbite GjH

0_> H^iG/H) -+Hn(M - G/H)-> Hn(M) -> 0

M - G/H étant Ex x G/H.
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Ainsi N' est E1 et il y a une ou deux orbites singulières. S'il y en a une seule,
elle sépare M localement, est donc de dimension n — 1, ce qui est encore
impossible par une même suite de cohomologie associée à cette orbite. Donc il
y en a deux et M' MjG est un intervalle fermé. Comme elles ne peuvent
pas séparer M localement, elles sont de dimension < n — 1. Ceci achève de

démontrer 2.1.
Démontrons maintenant 1.1.
M/O étant un intervalle fermé, il existe une section a : MjG -> M telle que

Gx H soit constant sur son intérieur. Cela résulte de l'existence de la tranche
(«slice» de [1]) en chaque point de M.

K et L désigneront les sous-groupes de stabilité aux extrémités a et 6

de cr, c c a un point intermédiaire.
Soient P, Q tels que P w Q M, P n Q G(c), G (a) c P, G(b) c Q.
On a la suite de Mayer-Vietobis

-> H*(M) -> #«(P) + H*(Q) X H*(G(c)) -> H<*{M)

où q>(u,v) h*(u) — h%(v), hxyh^ étant les inclusions de G(c) dans P et Q.
Supposant n > 2, <p est ainsi un isomorphisme bijectif pour 0 < i < n — 1.

En composant hx et h2 avec les rétractions de P et Q le long des sections

g{à)9g c G, sur G (a) et G(b) respectivement, on obtient un isomorphisme
bijectif tp : H* (G {a)) + H* (G(b)) -> H* (G(c)) pour 0 <i <n - l,ip(u,v)

p*(u) — î?2(v)» °ù Pi e* 2*2 son^ des projections de fibration G/H-+G/K
resp. (?/ly, de fibre iT/jff resp. L/H. L'isomorphisme yj et la règle de

Kûnneth montrent alors que a) et b) sont équivalents et entraînent d).
Soient k, l les dimensions de G (a), G(b) respectivement. Soit S K(d — b).

C'est une tranche par a. Comme fibre d'une fibration d'un voisinage ouvert
invariant de G(a), c'est une (n — h) — cm. Comme 8 — a est KjH x El9
la suite de cohomologie associée à a montre que JEf* (KlH) H* (Sn~k~1).

Les fibrations ^ et p2 sont donc à fibres sphériques.
Montrons que d) entraîne b), c) de 1.1.
Dans l'hypothèse d), dim K(c) dim KjH w-fc-l Z dim G/L.

Le noyau de i* : H1 (G(c)) -> H1 (K(c)), i étant l'inclusion K{c)<zG(c), est

p*t(Hl(G(a))) [3, exposé IX], qui s'identifie à H1 (G(a)) par y, d'où un
isomorphisme i*. <p% : H1 (G (b)) ~> H1 (K(c)).

De la commutativité de
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où les homomorphismes horizontaux sont induits par p2i les verticaux par
des inclusions, suit alors àim K(b) l, donc K(b) G(b) et l'application
K(c)-*G(b) induite par p2 est un revêtement (défibre K^L/H). Mais
celui-ci est trivial du fait de la bijection H1 (O(b)) -> JET' (K(c). On a un même
résultat pour l'application L(c)-> G (a) induite par pXi d'où b).

Par un point de G(c) ne passe qu'une section g (a). De cela et de ce que
l'homéomorphisme K(c)-+G(b) est une projection suivant les sections

g (a) par a, on déduit qu'il n'y a qu'une telle section par a et un point de
#(6). On a ainsi c) et G(c) G (a) X G(b), Comme c) implique évidemment
d), les quatre points de 1.1 sont équivalents.

Si maintenant l'orbite principale G/H est 8k X 8l,GjK et G/L sont 8k

resp. 8l. Cela résulte de [2] ou [4], par le fait que G/H G\K X G/L. La
réciproque est évidente et M est 8k+l+1 comme jonction de 8k et S1.

Cela étant, G opère linéairement sur M.
En effet, l'action de G sur M ne dépend que de l'action de G sur les orbites

singulières 8k et S1. G opère transitivement sur celles-ci comme des groupes
orthogonaux ff1C/8O(i + 1), G2<z80(l + 1) [6]. Il s'ensuit que les actions
possibles de G sur la jonction M de 8k et S1 peuvent être réalisées par les

représentations sommes de deux groupes orthogonaux tels que Gx et G2

opérant sur une sphère de Ek+l+2 centrée à l'origine. Ceci achève de démontrer
1.1.

Dans le cas plus simple de {G, M) où H*(G/H) U*^"1), par l'iso-
morphisme y) les orbites singulières sont des points fixes et réciproquement.
L'action de G sur M ne dépend que de l'action de G sur l'orbite principale
GjH et est linéaire si G/H S71-1.

3. Une application

Soit (G, En) un groupe de transformations de l'espace euclidien En qui
ait des orbites de dimension n — 2. Nous allons résumer ses propriétés d'après
[5].

D'abord les orbites de dimension n — 2 sont régulières, d'un même type
GjH, Soient X leur réunion, B En — X la réunion des orbites singulières.
Celles-ci sont de dimension < n — 2. XjG X' est un plan, EJO E'n un
demi-plan fermé par la droite B/G B'.

Pour un G opérant différentiablement, une forme un peu plus faible que le
lemme 3.1 est contenue dans [5]. Ici 3.1 est démontré comme conséquence d'un
théorème de G. E. Bbbdon.
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3.1. Lemme. Soit a un point de J3. Posons B Bx ^ G(a) ^ B2, Bx et
B2 étant les deux parties de B séparées par G (a).

Supposons àimO(x) dim G (a) sur Bx au voisinage de G (a). Alors
G (a) est régulière relativement à B.

Faisons opérer la composante de l'identité G* de Ga sur une tranche
(«slice» de [1]) 8 par a. Soit F(G*9S) l'ensemble des points fixes de 8 par
(?*. C'est l'ensemble des x de B r\ 8 tels que G%aGœ9 c'est-à-dire dim Gx
— dimG^ puisque GxcGa sur S. On peut supposer que B r* S Ga(s)
où « est un arc, section locale de B en a. Il s'ensuit que les composantes
connexes de F (G*, 8) sont des points isolés ou des réunions finies d'arcs.
Sous l'hypothèse de 3.1, dim zF (G*, 8) 1 (dans la suite, nous écrivons dim
pour dim# de [1]).

Les orbites singulières de ((?*, 8) sont toutes les orbites de B ^ 8. Posons
U S-B~8. UjGa UIG*a)l{GJG*a) s'identifie à un ouvert de (En - B)/G.
On a donc

2 dim U - dim GJH dim S - dim (?*/#* * H dim ^(C?*, S) + 1

La dernière identité montre que les hypothèses de [1, chap. XV, 1.4] sont
vérifiées pour ((?*, 8). Les orbites singulières cB<^8 de G* sont alors
des points fixes au voisinage de a, d'où il suit encore (lemme 2.3, loc, cit.)
que B ^ 8 se réduit à un seul arc au voisinage de a. Par la définition de la
tranche Gx Ga près de a.

Ce lemme et un raisonnement de dualité de [5] que nous ne répétons pas ici
(voir les démonstrations des lemmes 10 et 11 de [5]) permettent de montrer que
B contient un point fixe p séparant deux types d'orbites. Nous désignons
encore leur réunion par B1 et B2.

Ces propriétés de (G9En) entraînent maintenant que En — p est le produit
de Ex par une (n — 1) — cm qui est une sphère de cohomologie, sur laquelle
G opère.

Car soit D une section de En telle que Gx soit constant sur l'intérieur de

D et sur rt Bt r» D, r2 JB2 *> D. Une telle section existe par la construction

donnée dans la démonstration du lemme 10 de [5].
On peut décomposer D — p en arcs r, deux d'entre eux étant rl9 r%i et

en arcs s qui rencontrent chaque r en un point. Les transformés g(r) sont
deux à deux sans point commun.

Soient 8lisi deux arcs s,K le sous-espace compact compris entre 0(3^)
et G(8t)> Kt K rs rt. Un point xcK détermine univoquement r,s tels

que x g(r) ^ G(s) pour un gcG. Si l'on définit h(x) Gfo) ^ g{r) et
h(x) **G(s)kK19 l'application z-> (h(x)9 k(x)) de K sur Kx x G(st)
est biunivoque et continue, d'où En — p rx X G fa). Les G(s) sont
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homéomorphes à G(%) par h(x) et des (n — 1) — cm qui ont la cohomologie
de 8n-K

Ainsi 1.1 est applicable à G (s). Si GjH est une sphère ou un produit de
deux sphères, G (a) est une sphère et la décomposition de En enrayons r^p
fait voir que G opère linéairement. Ceci démontre 1.2.

Institute for Advanced Study, Princeton
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