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On Combinatorial Submanifolds of Differentiable Manifolds1)

by Morris W. Hirsch, California (USA)

§ 1. Introduction

The purpose of this work is to prove the following résulta relating combinatorial

and differentiable manifolds.

(A) A combinatorial submanifold V of a differentiable manifold M of the
same dimension possesses a compatible differentiable structure.

(B) Every compact and contractible combinatorial manifold V possesses a
compatible differentiable structure?)

(A differentiable structure on a combinatorial manifold M iscalled compatible
if M has a rectilinear subdivision, each simplex of which is differentiably
imbedded.)

A. M. Gleason has announced (unpublished) that a contractible unbounded
combinatorial manifold has a compatible differentiable structure. Theorem (B)
follows easily from this and Theorem (A). The proof of (B) given hère is derived
from John Stallings' proof [11] of the generalized Poikoaré conjecture.

(C) The séquence

d pn j Qn k yjn d
^ jnn-l ^ ^ n\

is well defined and exact.
This resuit was announced in [3]. Hère Fn is the group of differentiable

structures on Sn compatible with the usual combinatorial structure; &* is
the group of differentiable homotopy w-spheres modulo «/-équivalence, and
An the combinatorial analogue of £2™. Using powerful intrinsic methods,
Stephen Smale has shown [9,10] that for n > 8 or n 5, the map j : F"-* &*
is an isomorphism, and using (B) (but not (C)) that An 0, for n > 8 or

In [8] Smale proves that F8 0, (this was proved independently by
J. Mukkres, and J. H. C. Whitehead.) The fact that every combinatorial
3-manifold possess a unique (up to a diffeomorphism) compatible differentiable
structure [6] implies that k : 08-> A8 is an isomorphism. Thus only the

*) Presented at the International Colloquium on Differential Geometry and Topology, Zurich»
June 1960.

1 Added in proof; The hypothesis of compactness is unnecessary.
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subsequences 0 -> F1 -> O1 -> A1 -> F6-> 0 and 0 -> A5-> F*-+ 0*-> A*-> 0
remain. In proving (C), Smale's results are not used.

§ 2. Proof oî (A)

In order to prove (A) it suffices to establish the stronger resuit 2.5 below.

If K is a subcomplex of complex N, the nth simplicial neighborhood of K
is the union of the closed simplexes of the n'th barycentric subdivision of N
that meet K.

Lemma 2.1. Let K be the boundary of a œmbinatorial manifold M. The
second simplicial neighborhood A of K is combinatorially équivalent to K X I,
where I is the unit interval.

Proof. This is a well known resuit. It follows e. g. from theorems 22 and 23

of [14], which state that any two "regular neighborhoods" of M (in the sensé
of [14]) in the same manifold are combinatorially équivalent and that A is
a regular neighborhood of K in M. If K is identified with K x 0, then
M' M ^ K X I isa manifold, and in M' both A and K X I are regular
neighborhoods of K.

Now let F be a bounded combinatorial w-manifold imbedded as a
subcomplex of an unbounded combinatorial ^-manifold M. Assume M has a
metric d(x9y).

Lemma 2.2. Let U be a neighborhood of V in M, and e a positive continu-
ous function on M. There is a semi-linear homeomorphism h: M->M with
the folhwing properties:

a) A (F) is the second simplicial neighborhood of F in a subdivision of M;
b)h(V)c U;
c)h(x) x if x eM —U;
d)d(x, h(x)) < e(x) for ail xeM.

Proo/.By 2.1, the boundary of K of F has a neighborhood combinatorially
équivalent to K X I in F, and another in cl (M — F). The union Bo of
thèse two neighborhoods is again équivalent to K X I. Moreover, we can
take Bo to be the second simplicial neighborhood of K in a subdivision of
M ; if this subdivision is sufficiently fine, the second simplicial neighborhood
B of Bo will be in U'. It will be clear that if the subdivision is sufficiently
fine, d) will be satisfied. There is a combinatorial équivalence u: B->K X I
such that u(B0) K x [%, %] and u(K) K x y2. We may assume that
h(BQ r\ F) K x [0, %]• lîet /:/->/ be a semi-linear homeomorphism
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such that f(x) x for x in a neighborhood of 0 and 1, and /(%) 3/4.
Define g:KxI-+KxI by g(x, t) (z,f(t)). Now defineA: M->M

(a; if a;
by h(x)

Then h is the desired homeomorphism.
Now let M be a differentiable manifold. A combinatorial manifold A whieh

is a subcomplex of a smooth triangulation of M is caUed a combinatorial sub-
manifold of M. A vector field 0 on A in if is transverse if it is transverse to A
in every coordinate System, in the sensé of [13]. The foliowing lemma is well
known.

Lemma 2.3. Let A be the boundary of the second simplicial neighhorhood B
of a subcomplex K of M. Then there is a transverse field on A.

Proof. Eaeh simplex q of the first simplicial neighborhood B' of K is
the join ot*t of unique simplices a a K and r c M — K. Each closed
simplex oc of A lies in such a join ct*t, disjoint form a and r, and each
# € oc lies on a unique line p * g with p e cr, # € t It is easily seen that the unit
tangent 0(x) to p*q, directed from p to q, is transverse to oc at x, and
that 0 is continuous. Thus 0 is a transverse field on A.

Lemma 2.4. Le£ Jf be an unbounded differentiable n-manifold, and V c M
a combinatorial submanifold, also of dimension n. Let U be a neighborhood of
the boundary A of V,d ametricon M, and e a positive continuous function
on M. There is a homeomorphism h: M->M such that

a) h is a diffeomorphism on each closed simplex of a subdivision of M ;

b) h (A) has a transverse field;
c) h(x) x if x eM — U;
d)d(x, h(x)) < e(x) for ail xeM.

Proof. Apply 2.2 and 2.3.
Let F be a combinatorial submanifold of a differentiable unbounded

ft-manifold M. Assume either
1. F has dimension n; or
2. F has dimension n — 1, is unbounded, and admits a transverse field.

Let U be a neighborhood of bdV and c a positive continuous function
on M.

Theorem 2.5. There is a homeomorphism h: M-+ M such that:
a) h F) is a differentiable submanifold of M, combinatorially équivalent to F ;
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b) M haa a smooth triangulation in which F is a svbcomplex, every closed

simplex of which i8 mapped diffeomorphically by h;
c) and d) as in 2.4.

Proof. Case 1) follows from 2.1 and case 2); Thus we assume 2).

By standard approximation methods, it may be assume that there is a
differentiable non-zero vector field 0 on a neighborhood W of F contained
in U, such that 0\V is transverse field. A generalization of the CAntsrs-
Whitehead theory of transverse fields [1,13] shows that there is a submanifold
C of dimension n — 1 differentiably imbedded in an arbitrary neighborhood
of F, such that 0\C is transverse. (The Catrns-Whitehead theory applies
to a 2-dimensional submanifold of EuoLiDean (q + p)"sPace endowed with
a transverse 2?-plane field. The présent case follows, e. g., by imbedding M
in R*1*16, and assigning to each point x cF the k + 1 plane generated by
0(x) and the &-plane normal to M at x. Alternatively, the methods of[13]
simplify considerably in the spécial case where the submanifold has codimension
1, if transverse Unes are replaced by the intégral curves of a transverse vector
field.3) We can assume that each intégral curve of 0 meets F in a unique point
and C in a unique point. This establishes a map f:V-+C which is a diffeo-
morphism on each closed simplex of F. Thus C is combinatorially
équivalent to F. Let A be the région bounded by F and G which is fibered by
the intégral curves of 0. Define G : F X /-> A by O(x, o) x, G(x, 1)

f(x) and G(x91) is the point dividing the length of the intégral curve
joining x and f(x) in the ratio t \ (1 — t), for 0 < t < 1. Then if A is
a closed simplex of V,G\ A x I is a diffeomorphism. Hence G: K x /-> M
is a non-degenerate O°° subcomplex of M in the sensé of [15]. By [15, p. 822,
addendum] this triangulation of A can be extended to a smooth triangulation
of M, afler possible subdivision. An easy application of 2.1 (cf. proof of 2.2)
establishes the desired extension h:M->M of /:F->(7. This complètes
the proof.

Remark. It can be shown that if a neighborhood in F of a closed subset

X c F is a differentiable submanifold of M, h can be chosen so that for some
neighborhood F of X in M, h(x) x if x eY.

The following theorem was announced by S.S.Cairns [16].

Theorem 2.6 (Cairns). If M is a combinatorial manifold and if for some p,
M X Rp has a compatible differentiable structure, then so has M.

Proof. By induction on p. The case p 0 is trivial. Let Fp c Rv be a
closed half-spp»ce. First assume M is unbounded. If p > 0 and if M X Rp

») Cf, [18].
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has a compatible differentiable structure, then so has M x Fp, by (A). So
therefore does its boundary M x Rv~x, completing the induction. The case
where M is bounded follows easily now from (A).

§ 3, Proof of (B)

Let F be an w-dimensional compact combinatorial manifold which is
contractible. Let F be the double of F, obtained by identifying two disjoint
copies of F along their boundary. Then F is a closed combinatorial w-mani-
fold of the same homotopy type as 8n, and F is a submanifold. J. Stallings
proves in [11] that if x is any point of V, then F — x is combinatorially
équivalent to Ettclidean w-space, provided n > 7, and states that E. C.
Zeeman has extended the resuit to the case n ^ 5. (If n < 4, theorem (B)
is a conséquence of well known results of Cairns [1,2].) Thus we can assume
that F is a submanifold of the differentiable manifold Rn. (Alternatively,
F — x is an unbounded contractible manifold, and one can apply Gleason's
theorem that F — x has a compatible differentiable structure). Theorem (B)
now follows from (A). Actually, this proves the following stronger resuit.

Theorem 3.1. A compact, contractible, combinatorial n-manifold is
combinatorially équivalent to a differentiable submanifold of Rn.

Gleason's theorem is proved by showing that an unbounded combinatorial
contractible ^-manifold can be immersed in Rn. This follows from the mère
existence of a compatible differentiable structure by observing that such a
structure is necessarily parallelizable, and applying a theorem of [4].4)

A plausible conjecture along thèse Unes is that any combinatorial manifold
ail of whose cohomology groups vanish has a compatible differentiable structure
J. Munkbes [7] has proved this except for compatibility.

§ 4. Proof of (C)

We must show that the séquence

is well defined and exact.
The group &1 is defined as follows. An élément of &" is an équivalence

class [M] of oriented, closed differentiable manifolds M which hâve the homo-

4) Gleason's theorem follows from 2.6 and [17], in which it is proved that if Mn is a
contractible combinatorial unbounded manifold, then Mn X Rp is combinatorially équivalent to
R forsomep#
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topy type of the w-sphere 8n, under the relation of J-equivalence. Two
oriented differentiable manifolds M0,M1 are J-equivalent if there is an
oriented differentiable manifold N whose boundary is (diffeomorphic to) the
disjoint union of M1 and — Mo (where — Mo means Mo with the opposite
orientation), and such that both Mo and M1 are déformation retracts of
N. Addition in &" is defined by [A] + [B] [A # B] where A # B is
the connectée sum of A and B. This is defined by removing the interior of
an w-ball from each of A and B and joining the two boundary (n — 1)-
spheres by an orientation reversing difïeomorphism which is extendable to
the whole %-ball, and then smoothing the resulting corner. It can be shown
that the diffeomorphism class of A # B is independent of the choices made,
and the J-equivalence class [A ^ B] is independent of the représentatives
of [A] and [B] that are-chosen. See [5] for détails. Define — [A] [ — A],
and 071 becomes an abelian group, with [8n] as identity élément.

Using combinatorial instead of differentiable manifolds, «/-équivalence and
connected sum are analogously defined, and An is the group of J-equivalence
classes <ilf> of oriented combinatorial closed w-manifolds M which are
homotopy sphères.

The éléments of Fn are (diffeomorphism classes of) oriented differentiable
manifolds which are combinatorially équivalent to the boundary of an (n + 1)-
simplex. Addition is defined using #, and the inverse of M€JPn is —M.
Using thèse définitions, Fn is an abelian group, with 8n forO, although this
is not obvious. It is a conséquence of the following resuit.

Theorem 4.1. (Mxjnke-es-Thom). There is at most one compatible differentiable
structure on a contractible combinatorial n-manifold, upto a diffeomorphism.

Proof. See [6,12]
The only difficulty about proving that Fn is a group is showing

M # (- M) Sn.

We can obtain M 4t= (— M) by removing the interior E of an w-ball from
M, and taking the boundary F of (M — E) X / and smoothing the corner.
But (M — E) X / is then a differentiable manifold combinatorially équivalent
to An X /, where An is an w-simplex, and by 4.1 its boundary F .M#(— M)
is diffeomorphic to 8n, which is the zéro élément of Fn.

The map h : &1 -» An is defined as follows. If M is a differentiable manifold,
let hM be the corresponding combinatorial manifold, i. e., kM is a simplicial
complex L such that there is a homeomorphism t: L-> M which is a smooth
triangulation of M. Such an L exists and is unique up to combinatorial
équivalence [15].
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Nowdefine k: 0n->An by k[M] <&if> It is obvious that k préserves
sums and e/-equivalence, so k is a well defined homomorphism.

The map j : rn-+ @" is defined by jM [M].
To define d:An-+rn~1, let M represent an élément of An, and let E

be the interior of an w-simplex of if. Then M — E is contractible, and by
(B) possesses a compatible differentiable structure, which is unique by 4.1,
up to diffeomorphism. The combinatorial structure of M — E is independent
of E, and dM is defined to be the boundary of M — E. We shall see shortly
that if A and B are J-equivalent, then dA dB.

Lemma 4.2. a) d(M # N) dM + dN
b) d(- M) -dM
Proof. Let C and D be closed w-simplices in M and N respectively. In

forming M #JV, remove the interiors of w-simplices disjoint from C and D.
Now M-int C and ^-int D hâve unique compatible difïerentiable structures
by (B) and 4.1, and then (M # N) - (int C v int D) Jf-int C) # (N-int D)
has a compatible difïerentiable structure. Now join C to D in M # N by a
simple differentiable arc, meeting C and D only at its end points. A tubular
neighborhood Q of this are can be chosen so that C ^ D ^Q is a combinatorial

n-cell in M # N. Then if-int (C^D^Q) has d(M # N) for its
boundary (after smoothing). On the other hand, this boundary is diffeomorphic
to d(ilf-int C) # dfJV-int D) d(M) # d(if), which proves a). The proof
of b) is obvious.

Lemma 4.3. Let M be a closed oriented combinatorial homotopy n-sphere. If
M has a compatible differentiable structure, dM 0.

Proof. If E is the interior of an w-simplex A of M, and B the interior of
an ra-ball differentiably imbedded in E, then M — E and M — B are
combinatorially équivalent. Assuming M has a compatible differentiable
structure, take A to be a simplex of a smooth triangulation of M. Then
M — B is a differentiable submanifold of M and hence d(M — B) dB

/S^-1 0e/rn-1. By 4.1, compatible differentiable structures on M — E
and M — B are diffeomorphic; hence d(M — E) d(M) 0.

Corollary 4.4. // M bounds a contractible manifoid, d(M) 0.
Proof. By(A), Jf has a compatible differentiable structure and 4.3 applies.

Theorem 4.5. d : A?-+rn-x defined by d <M> cOf ïs a well defined
homomorphism.

Proof. We must show first that if <if> <N}, then dM dN. If if
is J-equivalent to JV, then M # (—N) is J-equivalent to dAn+1. Since



110 MORBIS W. HlBSOH

dAn+1 bounds An+1, M # (— N) bounds a contractible manifold. By 4.4
d(M #(-JVr))=O, and by 4.2, d(M # (- N)) d(M) - d(N). Thus
d(M) — d(N) 0, ao d : An~* F71-1 is well defined, and 4.4 proves d to be

homomorphism.
Now we prove that the séquence (1) is exact. We leave the proof that

jd kj dh 0 to the reader as an exercise; the last equality, for example,
followsfrom 4.3.

Let M be an élément of Fn suchthat j(M) O. Thismeans M bounds
a contractible differentiable manifold F. Since dV M is combinatorially
équivalent to dAn+1, V ^ An+1 is a combinatorial homotopy sphère and hence

represents an élément X of /lw+1. Itisobviousthat d(A) 3 (F-int zlw+1) Jtf.
This establishes the exactness of the séquence jd.

Let <Jf> €^ln be such that d<Jf> O. This means for some w-simplex A

in M, M-int A has a compatible differentiable structure making 3(Jf-int A

diffeomorphic to S71"1. Choosing such a diffeomorphism, attach the w-ball
D* to M-int zl to obtain a differentiable manifold N which is combinatorially
équivalent to M. Thus k[M] <^> and d& is exact.

Einally let Jf represent an élément of 0™ annihilated by k. This means
M is J-equivalent to dAn+ï in the combinatorial sensé. Let F be a combinatorial

(n + l)-manifold realizing this J-equivalence. Let T be a «tube»

joining M to dAn+1 in F, i. e., T is a équivalent to I X An with
O X An c Jf and lx^c dAn+1, and no other points of T in 3 F. (Such
a y can easily be constructed by first putting a compatible differentiable
structure on the contractible manifold F ^ An+1.) Then F-int T is contractible
if T is "unknotted", which is always true if n + 1 > 3 and which is the case

for n + 1 3 provided T is chosen properly. (In fact, 02 O, so this
case is unnecessary.) Thus F-int T has a compatible differentiable structure,
by(B).By2.5, we can assume that Jf-int (O X An) is a differentiable submani-
fold A of the boundary of F-int T. The closure of the complément of A is

combinatorially équivalent to dAn+1> and hence is diffeomorphic to D»,
while A is combinatorially équivalent, and hence diffeomorphic to M — E,
where E is the interior of an n-ba!l, E differentiably imbedded in M. Thus
there is a diffeomorphism f:d(M — E)->8n~x such that 9(F-int T) is

diffeomorphic to {M — E) ^fD*. Let P be the manifold Is^jD". Then
P is an élément of J1*, and 3(F-int T) is the same as M # (— P). Since

F-int T is contractible, [M — P] 09 and so lM] [P] jP. This
establishes the exactness of the séquence (1).

The University of Ccdifornia
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