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Factorization of 3-Manifolds

by D. B. A. Epstein, Princeton, N. J. (USA)

If M 8 X T, where M, 8 and T are topological spaces, then, for each

n > 1

nn(M) *> nn(8) + nn{T)

The following conjecture, made by the author, would be a converse to the
above theorem :

Conjecture. If M is a compact 3-manifold with no 2-sphere boundary compo-
nents, and if nx(M) & G x D, where G is infinité and D =fi 1, then

M S1 X T, where T is a 2-manifold.
(We note that the 2-sphere boundary components are really irrelevant, since

they may be removed or introduced by filling in or cutting out 3-balls. This
opération does not change the fundamental group.)

In this paper, the conjecture is investigated and the following is proved:

Theorem. // M is a compact 3-manifold and nx(M) G X D, where G

is infinité and D ^ 1, then either C or D is infinité cyclic.
Using unpublished work of J. R. Stallings, and this theorem, it is possible

to prove the conjecture, modulo composition with a homotopy 3-sphere, except
for the case where M is closed and non-orientable. In the case where M is
closed and non-orientable, it is possible to prove the conjecture up to homotopy
type.

J. R. Staulings has made the following contributions to this paper. His
proof (presented hère) of Lemma (4.4) is a considérable improvement on the
author's proof; and he gave the first proof of Lemma (6b. 3) for the case where
M is closed. The author would like to express his gratitude for this assistance.

The paper rests heavily on the results of Specker [7] and Hope [3] and on the

theory of the homology of groups.

§ 1. Ends

If K is a locally finite simplicial complex, let C* (K) and 0* (K) be the

groups of ordinary and finite cochains (simple intégral coefficients will be used

throughout this paper). We hâve an exact séquence

0 -> C* (K) -> C*{K) -> G* (K) -> 0
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which defines the term on the right. We deduce the exact séquence

0 -+H°f(K) -*H»{K) ->H°e(K) ->H)(K) ->H^K) (1.1).

From résulta of Specker ([7], Satz III), we easily see that H°e(K) is free
abelian. Its ranlc is equal to the number of ends of K([7], Satz IV).

Let G be any finitely generated group and let L be a finite connected
simplicial complex, with the property that G is a quotient group of nx(L).
Let K be the regular covering space of L which has G as group of covering
translations. Then the number of ends of K is independent of the choice of K
and L and dépends only on G. (For proofs see [3]). This number is defined to
be the number of ends of G.

According to [3], we hâve the foliowing resuit:

(1.2). A necessary and sufficient condition for G to hâve two ends is that it
should hâve an infinité cyclic subgroup of finite index.

§ 2. Well-Known Remarks

We make the foliowing conventions throughout the paper :

Ail manifolds are connected and may hâve boundary, unless otherwise
stated.

In any direct or free product of two groups, the factors are identified with
he appropriate subgroups, in the natural way.

Z is the cyclic infinité group.
Zr is the cyclic group of order r.

Lemma (2.1). Let M be a 3-manifold and let n^M) be infinité. A necessary
and sufficient condition for M to be aspherical is that n2(M) 0.

This is proved by applying the Httrewicz Isomorphism Theorem to the
universal cover of M.

Lemma (2.2). // P is a compact 3-manifold and n^P) 1, then P is a
homotopy 3-sphere with a number of 3-balls removed. If Bd P consists of only
one component S, then 8 is contractible in M.

P is orientable, since it has no double coverings. So ail the components of
Bd P are 2-spheres ([6] p. 223, Satz IV). Filling in ail thèse 2-spheres with
3-balls, we obtain a closed 3-manifold with trivial fundamental group. Such

a manifold is a homotopy 3-sphere. If Bd P contains only one component S,
then S bounds P. So S is homologically trivial. By the Hurewicz
Isomorphism, 8 is contractible. This proves Lemma (2.2).
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Lemma (2.3). Let M be an orientable compact 3-manifold with no 2-sphere
boundary components. Let n2(M) ^ 0. Then n^M) & Z or A*B #(A ^£1,

B^l).
Since tc2(M) ^0, the Sphère Theorem [9] gives us a non-contractible

2-sphere 8 in M. If 8 séparâtes M into two components P and Q, with
fundamental groups A and B respectively, then nl(M) &A*B by van
Kampen's Theorem. If A 1, then, by Lemma (2.2), P has only 2-sphere
boundaries. Since M has no 2-sphere boundaries, we must hâve BdP 8.
By Lemma (2.2), S is contractible in P. But 8 is not contractible in M,
which is a contradiction. So A ^ 1 and similarly B ^ 1. If 8 does not
separate Jf, then nx(M) & Z*nt(M — 8). This proves Lemma (2.3).

Combining Lemmas (2.1) and (2.3), we obtain:

Lemma (2.4). // M is not aspherical and is an orientable compact 3-manifold
with no 2-sphere boundary components, and if nx (M) is infinité, then

Z or ^*J5# (A ^ 1, B^= 1)

Lemma (2.5). // T is a component of Bdilf, where M is a compact
3-manifold, and if n^T) -> nx(M) is not a monomorphism, then

Z or A*B# (A ^ 1, B ^ 1)

By the Loop Theorem [8], there is a disk E in M such that Bd E c T
and Bd M ^ E Bd E, and Bd E is essential in î7. If E séparâtes M
into two components P and Q with fundamental groups A and B respectively,

then by van Kampen's Theorem, n^M) & A*B. If .4 1, then,
by Lemma (2.2), BdP consists of 2-spheres. One of thèse 2-spheres consists
of the disk E and a disk which is part of T. Therefore Bd E is contractible
in T, which is a contradiction. We conclude that A ^ 1, and similarly
B ^z 1. If E does not separate M, then n^M) ** Z*nx(M — E). This

proves Lemma (2.5).

Lemma (2.6). // M is a closed orientable 3-manifold, and 7tt(M) is torsion
free, but not free, then H^n^M)) ^ 0. (We recall that simple intégral coefficients

are used throughout).
For any closed orientable 3-manifold, M Mx # # Mh, where

each M{ is a closed orientable 3-manifold satisfying one of the following three
conditions for each i, 1 ^ i < k :

i) ^(Jfx) is finite.

ii) Mt is aspherical.

iii) Jf, =/S1 X /S2.
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(This theorem is due to Melnor. See [4] and [5] p. 439, (21) and (22)). Therefore
tz^M) œ n^M-ù* *7r1(Jffc), by van Kampen's Theorem.

In the case under considération hère, we see that if nx (Mt) is finite then it
is trivial, since tc^M) is torsion free. So we can assume that ^(MJ is not
finite for any i. Since nx(M) is not free, M{ must be aspherical for at
leastone i. Then H^n^Mi)) & HB{M4) &Z. Now

*> HfaiMJ) + + ^)So Lemma (2.6) follows.

Lemma (2.7.) Let M be a compact 3-manifold wiih ail éléments of 7tx(M) of
finite order. Then nx{M) is finite.

Suppose t^ (M) is infinité. We may assume M is orientable by taking a
double cover, if M is non-orientable. We may also assume M has no boundary
2-spheres by filling in such boundaries with 3-balls. If M is not aspherical,
then by Lemma (2.4), nx(M) ^Z or A*B, and so^r1(Jf) has an élément
of infinité order. It M is aspherical, then nt(M) must be torsion free since

if is the fundamental group of a finite dimensional aspherical space. Lemma
(2.7)follows.

Lemma (2.8). // T is an orientable 2-manifold and n^T) contains a free
abelian subgroup of rank two, then T is a torus. (By a torus, we mean a closed
orientable surface of genus one).

Let S -+T be the covering of T such that n^S) ^ Z X Z. 8 is obviously
not a 2-sphere, and so S is aspherical. So H2(8) m H2(Z x Z) & Z. Therefore
8 is a closed 2-manifold. In fact $ is a torus. Therefore %($) 0. Since the
covering map 8 -» T is onto and a local homeomorphism, T is closed. The
covering must be finite sheeted since 8 is compact. Let there be r sheets.
Then Q %(S) rx(T). So %(T) 0. Therefore T is a torus and Lemma
(2.8)follows.

Lemma (2.9). // T is a torus, and nx{T) has genercUors u and v, then u
can be represented by a simple closed curve.

Let a and 6 be the usual generators of ^(î7), whose représentatives are
two simple closed curves intersecting at one point only. Then u apbq.

If p 0 then q ± 1, and Lemma (2.8) is true. Similarly if q 0. So

we assume p ^ 0 and g^O. Then (p, q) 1 since u, v and a, 6 are
connected by a unimodular transformation.

Let P ->T be the universal covering of T. P is the Euclidean plane.
The covering translations corresponding to a and b are translations of one
unit parallel to the «-axis and the y-axis respectively. Let us construct a
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représentative of u in T by drawing a straight Une l from (0,0) to (p,q)
in P and projecting down to T. The image of l under any covering
translation only meets l at an end-point. So the représentative of u in T is a
simple closed curve. This proves Lemma (2.9).

§ 3. The Orientable Case

In this section, we assume that M is a compact, orientable 3-manifold and
n^M) C X D, where G is infinité and D ^ 1. We also assume M has

no boundary 2-spheres.

Lemma (3,1). M is aspherical.

If M is not aspherical, then, by Lemma (2.4), nx(M) & Z or
A*B # (A =£ 1, B ^ 1). But neither of thèse groups can be a non-trivial
direct product (Folgerung 4, [1]). Lemma (3.1) follows.

Lemma (3.2). G and D are torsion free and so D is infinité.
Since M is a finite dimensional aspherical space, its fundamental group

C x D must be torsion free. Lemma (3.2) follows.

Lemma (3.3). // 0 C X D is finitely generated, then so are C and D.
This is proved by projecting the generators of 0 into the factors C and

D in turn.

§ 4. The Closed Orientable Case

In this section, we assume M is a closed orientable 3-manifold and

^(M) G X D, where G is infinité and D ^ 1. From Lemma (3.2), we
see that D is also infinité. So we are free to interchange the names C and D
of the two direct factors. The aim of this section is to prove:

Theorem (4.1). C or D is infinité cyclic. (By interchanging C and D, if
necessary, we shall make sure that C is infinité cyclic).

From Lemma (3.1), we see that any covering space of M is aspherical.
Let Me and Md be the regular covering spaces of M with fundamental

groups G and D respectively. Then M is homotopy équivalent to Me X Mj}y
since they are aspherical spaces with the same fundamental groups.

Lemma (4.2). On interchanging C and D, if necessary, Ht(Mc) & Z
and H^Mb) ^ Z.



96 D. B. A. Epstbin

By Lemma (3.2), Me and Md are infinité sheeted coverings of M, and
are therefore non-compact 3-manifolds. So H3(Mc) 0 and HZ(MD) 0.

By the Kûnneth formula

Z ** HZ(M) * H^Mc) ® ^(Jfp) + JBTt(Jfc) ® HX(MD) +

By Lemma (3.3), (7 and D are finitely generated. Therefore

C7[<7, C] and ^(ifa) ^ D/[D, D]

are finitely generated abelian groups. Therefore Tor (JÏ1(Mc), Ht Md)) is
finite, and, as a subgroup of Z, is zéro. Therefore

Z * ^(Jfc) ® J5T,(Jfj)) + ^(^c) ® Ht(MD)

We can assume, by interchanging C and D if necessary that

Z ** H^Mc) ® H%{MD)

Then H2(Md) # 0 and Hx{Mc) cannot be finite. So, the finitely generated
abelian group H^Mç) &Z + H, for some abelian group H. Therefore

Z w Hx{Mc) ® H2(MD) k(Z + H)® H2(Md) <* H2(MD) + H

Since H2(MD) =£ 0, H2(MD) ** Z. Therefore

Z ^ H^Mc) ® jBr2(JfD)

This proves Lemma (4.2).

Lemma (4.3). (7 Aas too ends.

Md is a regular covering space of M with C as à group of covering
translations. So the number of ends of C is equal to the number of ends of Md
(see § 1). Since MD is infinité, H°f(MD) 0. Also H){MD) ** H2(MD) & Z,
by Poincaré Duality and Lemma (4.2). The séquence (1.1) therefore becomes

By [7], last line of Satz V,

Coker (H°ê(MD) -
is either zéro or free abelian of infinité rank. In this case, we must hâve zéro,
and so the map is an epimorphism. From the exact séquence, we deduce that

& Z + Z Therefore Md has two ends, and Lemma (4.3) is proved.
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Lemma (4.4). C & Z.
By (1.2) and Lemma (4.3), C has an infinité cyclic subgroup G offinite

index. We hâve an epimorphism

C ->Cj[G,C] &Z
by Lemma (4.2). C is torsion free by Lemma (3.2).

Any map Z -> Z is either a monomorphism or trivial. The composition

Z **G -^C ->C/[C,C] &Z
cannot be trivial. For if it were, then, since G is of finite index in C, the
image of C in Cj[C, C] would be finite. So the composition must be a
monomorphism.

Consider the map G -> C/[C, C]. Each coset of G in C is mapped mono-
morphically. Since G has finite index in 0, the kernel of this map must be
finite. Since C is torsion free, the kernel must be trivial. Therefore the map
C ->C/[C,G] is an isomorphism. This proves Lemma (4.4) and complètes
the proof of Theorem (4.1).

§ 5. The Orientable Non-Closed Case

In this section we assume M is an orientable compact 3-manifold with
boundary and nx{M) C X D where G is infinité and D ^ 1. The aim of
this section is to prove :

Theorem (5.1). C or D is infinité cyclic.

We fill in each boundary 2-sphere of M with a 3-ball. This does not change
the fundamental group. If the resulting manifold is closed, we can apply
Theorem (4.1). So we assume throughout this section that M has no 2-sphere
boundaries.

Lemma (5.2). // G is any subgroup of C or of D, then H4(G) 0

for i >2.
For suppose G c C and H^G) ^0, for some i > 2. Let d eD be a non-

trivial élément. By Lemma (3.2), G and d generate a subgroup H of
Tt^M) isomorphic to G X Z. By the Kûnneth formula, Hi+1(H) # 0. Let
N be the covering space of M, with fundamental group H. M is aspherical
by Lemma (3.1). Therefore N is aspherical. Therefore Hi+1(N) ^Hw{H)^0.
But this is a contradiction since N is a non-closed 3-manifold. Lemma (5.2)
follows.
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Lemma (5.3). // T is a comportent of BdM, then nx(T) ->tcx(M) is a
monomorphism.

For if not, nx(M) ^Z or A*B # (A ^1,B ^1). But neither of thèse

groups can be a non-trivial direct product (Folgerung 4, [1]). Lemma (5.3)
follows.

We now take a fixed maximal tree in a triangulation of M and a fixed
vertex x0 as base-point in M. Let y be a loop in M based on a vertex y.
Then, drawing a path in the tree from x0 to y, we see that y represents a
unique élément of nx(M, x0). With this understood, we again drop the x0 and
write simply tzx(M). The représentatives of éléments of nx(M) are loops
based on any vertex of M.

By Lemma (5.3), if T is a component of Bd M, then n^T) ->nx{M) is
a monomorphism. For each 7, weidentify 7tx(T) mith a subgroup of jix(M).

Lemma (6.4). If T is a component of Bd M, then 1 ^ n^T) ^ C ^
and l Jz ^(T) r, D ^ 7tx{T).

Since T is not a 2-sphere, H^n^T)) ** H2(T) a* Z. The map n^T) -> G

induced by the projection G X D -> C has kernel nx{T) ^ D. By Lemma
(5.2), nx{T) cannot be isomorphic to a subgroup of C. Therefore the map
^(TJ-^C is not a monomorphism and so 1 ^ nx{T) r\ D. Similarly
1 ^ nx(T) rs C. By Lemma (5.2), tz^T) cannot be a subgroup of C. Therefore

nx{T) rsG ^^(T). Similarly nx{T) r, D ^nx(T). This proves Lemma
(5.4).

Lemma (5.5). If T is a component of Bd M, then T is a torus.

By Lemma (5.4), there are non-trivial éléments c eC ^ nx(T) and
d €jD^ tix(T). The éléments c and d generate a free abelian subgroup of
^(T) of rank two, by Lemma (3.2). By Lemma (2.8), T is a torus. This

proves Lemma (5.5).

Lemma (5.6). For each component T of Bd Jf, we can choose generators

Ct and g of ^(T), suchihat Ct eC.

The map nx(T) ~>D, induced by the projection G X D -> D, has kernel
nx(T) r\ C. So, by Lemma (5.4), the map nx(T) -> D is neither trivial nor a

monomorphism. D is torsion free, by Lemma (3.2) and nx(T) is free abelian
of rank two by Lemma (5.5). So the map has an infinité cyclic group as image.
Let dx €jD be a generator of this image. Then any élément of nx(T) can be
written in the form cd\ where ceC.

Let generators of ^(T) be u cxd\ and v c2df. If p or q is zéro,
Lemma (5.6) is true. Soweassumeboth p and q arenon-zero. Then (p,?)=l,
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since dx is in the image of n^T) -»D. Therefore uqv~p clc^* cO. Since
(p,q) 1 this élément can be taken as one of two generators of n^T).
(Différent pairs of generators of n^T) are related to each other by unimodular
transformations). This proves Lemma (5.6).

Lemma (5.7), There is a simple closed curve yT on each component T of
Bd M, which represents a non-trivial élément in C.

This follows immediately from Lemmas (2.9) and (5.6).
Each yT has a neighbourhood on T, homeomorphic to ya» X I, where

/ [— 1, 1] and yT is identified with yr X 0. Let E be the closed unit
disk in the Euclidean plane, and Bd E S1. Now S1 X I C Bd (E X I).
Selecting one particular T, we glue E + I onto M in the obvious way, by
identifying yT X I with S1 x I. An easy calculation with the Exiler
characteristic shows that we hâve converted the torus boundary component T
into a 2-sphere. We fill in the 2-sphere with a 3-ball. This last step does not
change the fundamental group. The effect of the opération we hâve performed
is therefore to reduce the number of components of Bd M by one and to add
an extra relation to C.

We repeat this opération until ail the components of BdM hâve been
eliminated. If there are n components of Bd M to begin with, the total
effect of thèse opérations is to give us a closed orientable 3-manifold M1 and
toadd n extra relations to C, giving us a group C1. Then Tt^M1) & C1 x D.

Lemma (5.8). // Theorem (5.1) is false, then C1 1.

If C1 ^ 1, Theorem (4.1) tells us that C1 or D is cyclic infinité. Since we
are assuming Theorem (5.1) is false, D is not cyclic infinité. Therefore C1 is

cyclic infinité. By Lemma (3.1), M1 is aspherical. Also H^D) 0 for
i > 2, by Lemma (5.2). Therefore, by the Kûnneth formula

Z m HZ{M}) w H^C1 xD) 0.
This is a contradiction, which proves Lemma (5.8).

Lemma (6.9). // Theorem (5.1) is false, then C and D are free.

M1 is a closed orientable 3-manifold and, by Lemma (5.8), ^(M1) ^ D.
By Lemma (3.2), D is torsion free. By Lemma (5.2), HZ(D) 0. Therefore,

by Lemma (2.6), D is free. Interchanging the names C and Z>, we
see that C is free also. Lemma (5.9) follows.

Lemma (5.10). %(M) 0.

If we fill in each boundary torus of M with a solid torus, we do not change

7 CMH vol. 36
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the Euler characteristic. But the Euler characteristic of a closed 3-manifold
is zéro, by Poincaré Duality. Lemma (5.10) follows.

Lemma (5.11). // Theorem (5.1) is false, then we obtain a contradiction.

By Lemmas (5.9) and (3.3), C and D are free of finite ranks m and n
respectively. Since we are assuming Theorem (5.1) is false, m ^2 and
n ^ 2. H0(M) is free abelian of rank one, and H^M) is free abelian of rank
(m -\- n). Hz(M) & H2{C X D) since M is aspherical by Lemma (3.1). By
the KtJNisrETH formula, H2(M) has rank mn. H^M) 0 for i ^ 3, since
M is not closed. Therefore

%{M) 1 — m — n + mn (n — l)(m — 1) > 0

But this contradicts Lemma (5.10). Lemma (5.11) follows.
Theorem (5.1) follows from Lemma (5.11).

§ 6. The Non-Orientable Case

In this section we assume M is a non-orientable compact 3-manifold, and
that nx{M) C X D, where C is infinité and D ^ 1. The aim of this
section is to prove :

Theorem (6.1). C or D is cyclic infinité.
Theorem (6.1) will be proved separately for the two cases, M aspherical

and M not aspherical.

Let p: M -> M be the orientable double covering of M. Then p^n^M))
has index two in jt^M). Let C± p^^iM)) ^ C and D1 p^n^M)) ^ D.
Then Cx and Dx hâve index at most two in C and D respectively. Cx is

infinité, since G is infinité. Let M be the (orientable) covering space of M
with fundamental group Cx X Dx. The covering M -> M is at most four

sheeted* so M is compact.

§ 6 a. The Non-Orientable Aspherical Case

Hère we assume in addition that M is aspherical.

Lemma (6a.l). C and D are torsion free, and so D is infinité and Dx ^ 1.

This follows as in Lemma (3.2).
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Lemma (6a.2). G or D is cyclic infinité.
We note that M is a compact orientable 3-manifold and n^M) ^ Gx X D1

where, by Lemma (6a. 1), Ct is infinité and Dx ^ 1. So we can apply Theo-
rems (4.1) and (5.1) to deduce that Ct or Dx is cyclic infinité. Without loss
of generality, we assume Cx is cyclic infinité.

Either Cx C, in which case we are done, or Gx has index two in C.
In the latter case, G has a présentation

where oc générâtes Cli(i<tC1 and s ± 1. Then (}2 f}-1^"^ otn° fi2'.
Since C is torsion free, e 1. Therefore (7 is abelian. If n 2m, then
(/J-1^™)2 1 and so f} (xm. This is impossible since /S/Cj. Therefore
w=2m+ 1 and C is generated by p^ot™. This proves Lemma (6a.2).

§ 6 b. The Non-Aspherical Case

Hère we assume, in addition to the assumptions at the beginning of § 6, that
M is not aspherical. We can also assume that M has no 2-sphere boundaries,
since we can fill them in with 3-balls. This opération does not change the funda-
mental group. If M becomes aspherical, we can apply Lemma (6a.2) to
obtain Theorem (6.1).

Lemma (6b.l). // D1=l, then n^M) has a subgroup isomorphic to

ZxZ2.
D fej Z2 since Dx is of index two in D. Cx ^ n^M) is infinité. By Lemma

(2.7) there is an élément c of infinité order in Cx. D and c generate a
subgroup of n^M) isomorphic to Z X Z2. Lemma (6b. 1) follows.

Lemma (6b.2). // Dx ^ 1, then n^M) contains a subgroup isomorphic to
Z x Z2.

Cj X A where C1 is infinité and Dxi±l. So Cx and Dx are
torsion free, from Lemma (3.2). Let M hâve no projective plane boundaries;
then M has no 2-sphere boundaries. By Lemma (3.1), M is aspherical and
therefore M is aspherical. But we are assuming M is not aspherical. Therefore

M has at least one projective plane boundary. Therefore nx(M) G X D
contains an élément of order two. Therefore either C or D contains an
élément of order two. Since Cx and Dx are torsion free, Lemma (6b.2) follows.

Lemma (6b.3). nx(M) & Z x Z2.

From Lemmas (6b. 1) and (6b.2) we see that ^(M) contains a subgroup
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isomorphic to 2xZ2. By Theorem (9.5) of [2],

C X D ** ^(M) p* (Z x
for some group 0. ByFolgerung4of[l], 6? 1. Therefore ^(.M) p& Z X Z2.

Lemmas (6a.2) and (6b.3) imply Theorem (6.1).
Theorems (4.1), (5.1) and (6.1) imply the theorem stated at the beginning

of the paper.
Fine Hall, Princeton University.
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