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Factorization of 3-Manifolds

by D. B. A. EpsTEIN, Princeton, N. J. (USA)

If M =8 X T, where M, S and T are topological spaces, then, for each
n=1
n, (M) ~ 7,(8) + 7, (T) .

The following conjecture, made by the author, would be a converse to the
above theorem:

Conjecture. If M <s a compact 3-manifold with no 2-sphere boundary compo-
nents, and if m(M) ~C X D, where C 18 infinite and D %1, then
M= 8 XxT, where T is a 2-manifold.

(We note that the 2-sphere boundary components are really irrelevant, since
they may be removed or introduced by filling in or cutting out 3-balls. This
operation does not change the fundamental group.)

In this paper, the conjecture is investigated and the following is proved:

Theorem. If M is a compact 3-manifold and =, (M) =C X D, where C
18 tnfinite and D £ 1, then either C or D 18 infinite cyclic.

Using unpublished work of J. R. StaLrLINGS, and this theorem, it is possible
to prove the conjecture, modulo composition with a homotopy 3-sphere, except
for the case where M is closed and non-orientable. In the case where M is
closed and non-orientable, it is possible to prove the conjecture up to homotopy
type.

J. R. StaLLiNngs has made the following contributions to this paper. His
proof (presented here) of Lemma (4.4) is a considerable improvement on the
author’s proof; and he gave the first proof of Lemma (6b.3) for the case where
M is closed. The author would like to express his gratitude for this assistance.

The paper rests heavily on the results of SPECKER [7] and HopF[3] and on the
theory of the homology of groups.

§ 1. Ends

If K is a locally finite simplicial complex, let C*(K) and C’;" (K) be the
groups of ordinary and finite cochains (simple integral coefficients will be used
throughout this paper). We have an exact sequence

0 — CF (K) > C*(K) - CJ (K) -0
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which defines the term on the right. We deduce the exact sequence
0 — H}(K) — H°(K) - HYK) - H}(K) - HYK) . (1.1).

From results of SPECKER ([7], Satz III), we easily see that HY(K) is free
abelian. Its rank 18 equal to the number of ends of K ([7], Satz IV).

Let G be any finitely generated group and let L be a finite connected
simplicial complex, with the property that G is a quotient group of =,(L).
Let K be the regular covering space of L which has G as group of covering
translations. Then the number of ends of K is independent of the choice of K
and L and depends only on G. (For proofs see [3]). This number is defined to
be the number of ends of Q.

According to [3], we have the following result:

(1.2). A mecessary and sufficient condition for G to have two ends s that it
should have an infinite cyclic subgroup of finite index.

§ 2. Well-Known Remarks

We make the following conventions throughout the paper:

All manifolds are connected and may have boundary, unless otherwise
stated.

In any direct or free product of two groups, the factors are identified with
he appropriate subgroups, in the natural way.

Z is the cyclic infinite group.

Z, is the cyclic group of order r.

Lemma (2.1). Let M be a 3-manifold and let =, (M) be infinite. A necessary
and sufficient condition for M to be aspherical is that n,(M) = 0.

This is proved by applying the HurEwIcz Isomorphism Theorem to the
universal cover of M.

Lemma (2.2). If P is a compact 3-manifold and 7,(P) =1, then P 18 a
homotopy 3-sphere with a number of 3-balls removed. If Bd P consists of only
one component S, then S is contractible in M.

P is orientable, since it has no double coverings. So all the components of
Bd P are 2-spheres ([6] p. 223, Satz IV). Filling in all these 2-spheres with
3-balls, we obtain a closed 3-manifold with trivial fundamental group. Such
a manifold is a homotopy 3-sphere. If Bd P contains only one component S,
then 8 bounds P. So S is homologically trivial. By the Hurewicz Iso-
morphism, 8 is contractible. This proves Lemma (2.2).
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Lemma (2.3). Let M be an orientable compact 3-manifold with no 2-sphere
boundary components. Let mo(M) # 0. Then n (M) ~Z or AxB 3 (4 #£1,
B #1).

Since m,(M) # 0, the Sphere Theorem [9] gives us a non-contractible
2-sphere § in M. If S separates M into two components P and Q, with
fundamental groups 4 and B respectively, then =;(M) ~ AxB by VAN
KampEN’s Theorem. If 4 = 1, then, by Lemma (2.2), P has only 2-sphere
boundaries. Since M has no 2-sphere boundaries, we must have BA P = §.
By Lemma (2.2), S is contractible in P. But S is not contractible in M,
which is a contradiction. So 4 %1 and similarly B £ 1. If 8 does not
separate M, then =, (M) ~ Z*n,(M — 8). This proves Lemma (2.3).

Combining Lemmas (2.1) and (2.3), we obtain:

Lemma (2.4). If M is not aspherical and is an orientable compact 3-manifold
with no 2-sphere boundary components, and if m, (M) s infinite, then

m(M)~Z or A*BH (4 #1,B +#1).

Lemma (2.5). If T is a component of Bd M, where M is a compact
3-manifold, and if 7, (T) — 7, (M) 18 not @ monomorphism, then

m(M)~Z or A*BF#H (A #1,B#1).

By the Loop Theorem [8], there is a disk £ in M such that Bd & ¢ T
and Bd M~ E = BdE, and Bd & is essential in 7. If £ separates M
into two components P and @ with fundamental groups 4 and B respec-
tively, then by van KampEN’s Theorem, =, (M) ~ AxB. If 4 =1, then,
by Lemma (2.2), Bd P consists of 2-spheres. One of these 2-spheres consists
of the disk E and a disk which is part of 7'. Therefore Bd ¥ is contractible
in 7T, which is a contradiction. We conclude that 4 # 1, and similarly
B #1. If E does not separate M, then =n,(M) ~ Zxm,(M — E). This
proves Lemma (2.5).

Lemma (2.6). If M s a closed orientable 3-manifold, and m, (M) 18 torsion
free, but not free, then H,y(m,(M)) 5% 0. (We recall that simple integral coeffi-
cients are used throughout).

For any closed orientable 3-manifold, M = M, # ..... # M,, where
each M, is a closed orientable 3-manifold satisfying one of the following three
conditions for each ¢, 1 <:i < k:

1) m, (M,) is finite.
il) M, is aspherical.
i) M, = 8 x S2.
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(This theorem is due to MILNOR. See [4] and [5] p. 439, (21) and (22)). Therefore
(M) ~m (M)x ..... xm(M,), by vaAN KamPEN’s Theorem.

In the case under consideration here, we see that if z,(M,) is finite then it
is trivial, since s, (M) is torsion free. So we can assume that =, (M,) is not
finite for any ¢. Since x,(M) is not free, M, must be aspherical for at
least one ¢. Then Hy(m,(M,)) ~ Hy(M,) ~ Z. Now

Hy(my (M) ~ Hy(m, (My)) + ... + Hy(m (M) -
So Lemma (2. 6) follows.

Lemma (2.7.) Let M be a compact 3-manifold with all elements of 7, (M) of
finite order. Then m,(M) is finite.

Suppose x, (M) is infinite. We may assume M is orientable by taking a
double cover, if M is non-orientable. We may also assume M has no boundary
2-spheres by filling in such boundaries with 3-balls. If M is not aspherical,
then by Lemma (2.4), &,(M) ~Z or AxB, and so (M) has an element
of infinite order. It M is aspherical, then (M) must be torsion free since
if is the fundamental group of a finite dimensional aspherical space. Lemma
(2.7) follows.

Lemma (2.8). If T +s an orientable 2-manifold and =,(T) contains a free
abelian subgroup of rank two, then T is a torus. (By a torus, we mean a closed
orientable surface of genus one).

Let S — T be the covering of 7' such that =,(S) ~Z X Z. 8 is obviously
not a 2-sphere, and so S is aspherical. So H,(8) ~ Hy(Z X Z) ~ Z. Therefore
8 is a closed 2-manifold. In fact 8 is a torus. Therefore x(8) = 0. Since the
covering map 8 — 7' is onto and a local homeomorphism, 7' is closed. The
covering must be finite sheeted since S is compact. Let there be r sheets.
Then 0= y4(8) =rx(T). So x(T') = 0. Therefore T is a torus and Lemma
(2.8) follows.

Lemma (2.9). If T s a torus, and =,(T) has generators u and v, then u
can be represented by a simple closed curve.

Let a and b be the usual generators of x,(7'), whose representatives are
two simple closed curves intersecting at one point only. Then wu = a?b?.
If p=0 then ¢ = 4 1, and Lemma (2.8) is true. Similarly if ¢ = 0. So
we assume p #0 and ¢ # 0. Then (p,q) =1 since %,v and a,b are
connected by a unimodular transformation.

Let P — T be the universal covering of 7'. P is the Euclidean plane.
The covering translations corresponding to ¢ and b are translations of one
unit parallel to the z-axis and the y-axis respectively. Let us construct a
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representative of 4 in 7T by drawing a straight line ! from (0,0) to (p, q)
in P and projecting down to 7T'. The image of ! under any covering trans-
lation only meets ! at an end-point. So the representative of  in T is a
simple closed curve. This proves Lemma (2.9).

§ 3. The Orientable Case

In this section, we assume that M is a compact, orientable 3-manifold and
7 (M) =C X D, where C is infinite and D # 1. We also assume M has
no boundary 2-spheres.

Lemma (3.1). M 2s aspherical.

If M is not aspherical, then, by Lemma (2.4), =, (M)~ Z or
AxB 3 (A4 #£ 1, B £ 1). But neither of these groups can be a non-trivial
direct product (Folgerung 4, [1]). Lemma (3.1) follows.

Lemma (3.2). C and D are torsion free and so D s infinite.

Since M is a finite dimensional aspherical space, its fundamental group
C X D must be torsion free. Lemma (3.2) follows.

Lemma (3.3). If G = C X D 1is finitely generated, then so are C and D.

This is proved by projecting the generators of G into the factors C and
D in turn.

§ 4. The Closed Orientable Case

In this section, we assume M is a closed orientable 3-manifold and
7, (M) = C X D, where C is infinite and D s 1. From Lemma (3.2), we
see that D is also infinite. So we are free to interchange the names C and D
of the two direct factors. The aim of this section is to prove:

Theorem (4.1). C or D 18 ¢nfinite cyclic. (By interchanging C and D, if
necessary, we shall make sure that C is infinite cyclic).

From Lemma (3.1), we see that any covering space of M is aspherical.
Let My and Mp be the regular covering spaces of M with fundamental
groups C and D respectively. Then M is homotopy equivalent to M¢ X Mp,
since they are aspherical spaces with the same fundamental groups.

Lemma (4.2). On interchanging C and D, if mecessary, H,(Mc) ~ Z
and Hz(M D) ~ Z.
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By Lemma (3.2), M¢ and Mp are infinite sheeted coverings of M, and
are therefore non-compact 3-manifolds. So H;(M¢) = 0 and H,(Mp) = 0.
By the KUNNETH formula

Z ~ Hy(M) ~ H,(M¢c) ® Hy(Mp) + H,(Mc) @ H,(Mp) +
+ Tor (H,(Mc¢), H(MDp)) .

By Lemma (3.3), C and D are finitely generated. Therefore
H,(M¢) ~C[[C, C] and H,(Mp) ~ D|[D, D]

are finitely generated abelian groups. Therefore Tor (H,(M¢), H,(Mp)) is
finite, and, as a subgroup of Z, is zero. Therefore

Z ~ H,(Mc) @ Hy(Mp) + Hy(M¢) @ H,(Mbp) .

We can assume, by interchanging C and D if necessary that

Then Hy(Mp) # 0 and H,(M¢) cannot be finite. So, the finitely generated
abelian group H,(M¢) ~Z + H, for some abelian group H. Therefore

Z ~ H (Mc)® Hy(Mp) ~ (Z + H)® Hy(Mp) ~ Hy(Mp) + H R Hy(Mp) .
Since H,(Mp) # 0, Hy,(Mp) ~ Z. Therefore
Z ~H,(Mc)® Hy(Mp) ~H, (M) ®Z ~ H,(M¢) .

This proves Lemma (4.2).

Lemma (4.3). C has two ends.

Mp is a regular covering space of M with C as a group of covering trans-
lations. So the number of ends of C is equal to the number of ends of Mp
(see § 1). Since Mp is infinite, H})(Mp) = 0. Also H;(Mp) ~ Hy(Mp) ~ Z,
by Poincarf Duality and Lemma (4.2). The sequence (1.1) therefore becomes

0 —>Z—>HYMp) —~Z.
By [7], last line of Satz V,
Coker (Hg (Mp) — .H? (Mp))

is either zero or free abelian of infinite rank. In this case, we must have zero,
and so the map is an epimorphism. From the exact sequence, we deduce that
HY(Mp) ~ Z + Z . Therefore Mp has two ends, and Lemma (4.3) is proved.
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Lemma (4.4). C ~ Z.

By (1.2) and Lemma (4.3), C has an infinite cyclic subgroup G of finite
index. We have an epimorphism

¢ —-0J[C,C]~ Z

by Lemma (4.2). C is torsion free by Lemma (3.2).
Any map Z — Z is either a monomorphism or trivial. The composition

Z~G->0C->ClC,Cl~Z

cannot be trivial. For if it were, then, since @G is of finite index in C, the
image of C in C/[C, C] would be finite. So the composition must be a mono-
morphism.

Consider the map C — C/[[C, C]. Each coset of G in C is mapped mono-
morphically. Since ¢ has finite index in C, the kernel of this map must be
finite. Since C is torsion free, the kernel must be trivial. Therefore the map
C —CJ[C, C] is an isomorphism. This proves Lemma (4.4) and completes
the proof of Theorem (4.1).

§ 5. The Orientable Non-Closed Case

In this section we assume M is an orientable compact 3-manifold with
boundary and n, (M) = C x D where C is infinite and D % 1. The aim of
this section is to prove:

Theorem (5.1). C or D is infinite cyclic.

We fill in each boundary 2-sphere of M with a 3-ball. This does not change
the fundamental group. If the resulting manifold is closed, we can apply
Theorem (4.1). So we assume throughout this section that M has no 2-sphere
boundaries.

Lemma (5.2). If G s any subgroup of C or of D, then H,(G) =0
for ¢ > 2.

For suppose G ¢ C and H;(G) # 0, forsome 1 > 2. Let d D be a non-
trivial element. By Lemma (3.2), G and d generate a subgroup H of
7, (M) isomorphic to @ X Z. By the KUNNETH formula, H,,,(H) # 0. Let
N be the covering space of M, with fundamental group H. M is aspherical
by Lemma, (3. 1). Therefore N is aspherical. Therefore H, ,(N) ~ H, ,(H)#O0.
But this is a contradiction since N is a non-closed 3-manifold. Lemma (5.2)
follows.



98 D. B. A. EpsTEIN

Lemma (5.3). If T is a component of Bd M, then n,(T)— m, (M) 13 a
monomorphism.

For if not, #,(M) ~Z or AxB 3t (A # 1, B # 1). But neither of these
groups can be a non-trivial direct product (Folgerung 4, [1]). Lemma (5.3)
follows.

We now take a fixed maximal tree in a triangulation of M and a fixed
vertex x, as base-pointin M. Let » be a loopin M based on a vertex y.
Then, drawing a path in the tree from 2, to y, we see that y represents a
unique element of =, (M, x,). With this understood, we again drop the z, and
write simply =, (M). The representatives of elements of =;(M) are loops
based on any vertex of M.

By Lemma (5.3), if 7' is a component of Bd M, then =, (T) — &, (M) is
a monomorphism. For each 7', we identify =,(T) with a subgroup of =, (M).

Lemma (5.4). If T is a component of BA M, then 1 7 7, (T) ~ C # 7, (T)
and 1 # 7, (T)~ D 5 =, (T).

Since 7' is not a 2-sphere, Hy(n,(T)) ~ Hy(T) ~ Z. The map =, (T) - C
induced by the projection C X D —C has kernel #,(7)~ D. By Lemma
(56.2), =, (T) cannot be isomorphic to a subgroup of C. Therefore the map
7 (T) - C 1is not a monomorphism and so 1 # &, (7)~ D. Similarly
1 # m,(T)~ C. By Lemma (5.2), 7=;,(7T") cannot be a subgroup of C. There-
fore m,(T)~ C # 7, (T'). Similarly 7,(T)~ D # 7,(T). This proves Lemma
(5.4).

Lemma (5.5). If T is a component of Bd M, then T is a torus.

By Lemma (5.4), there are non-trivial elements ¢ ¢C~ # (7) and
d eD~ m(T). The elements ¢ and d generate a free abelian subgroup of
7, (T) of rank two, by Lemma (3.2). By Lemma (2.8), 7' is a torus. This
proves Lemma (5.5).

Lemma (5.6). For each component T of Bd M, we can choose generators
cr and g of m (T), such that cr C.

The map =, (T) - D, induced by the projection C X D — D, has kernel
7 (T)~ C. So, by Lemma (5.4), the map =,(7') — D is neither trivial nor a
monomorphism. D is torsion free, by Lemma (3.2) and =, (7) is free abelian
of rank two by Lemma (5.5). So the map has an infinite cyclic group as image.
Let d, eD be a generator of this image. Then any element of =, (7") can be
written in the form cd} where ¢ €C.

Let generators of =, (T) be u = c,d] and v=c,d{. If p or ¢ is zero,
Lemma (5. 6) is true. So we assume both p and g arenon-zero. Then (p,q)=1,
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since d, is in the image of 7, (T) — D. Therefore u?v—? = cfc;? «C. Since
(p,q) = 1 this element can be taken as one of two generators of m, (7).
(Different pairs of generators of s, (T') are related to each other by unimodular
transformations). This proves Lemma (5. 6).

Lemma (5.7). There is a simple closed curve yr on each component T of
Bd M, which represents a non-trivial element in C.

This follows immediately from Lemmas (2.9) and (5.6).

Each yr has a neighbourhood on 7', homeomorphic to yr X I, where
I=[—1,1] and pr is identified with yr X 0. Let E be the closed unit
disk in the Euclidean plane, and Bd £ = S'. Now 8! x I ¢ Bd (F x I).
Selecting one particular 7', we glue E 4 I onto M in the obvious way, by
identifying yr X I with §' X I. An easy calculation with the EuLEr
characteristic shows that we have converted the torus boundary component 7'
into a 2-sphere. We fill in the 2-sphere with a 3-ball. This last step does not
change the fundamental group. The effect of the operation we have performed
is therefore to reduce the number of components of Bd M by one and to add
an extra relation to C.

We repeat this operation until all the components of Bd M have been
eliminated. If there are » components of Bd M to begin with, the total
effect of these operations is to give us a closed orientable 3-manifold M* and
toadd n extra relations to C, giving usagroup C'. Then n, (M') ~ C* X D.

Lemma (5.8). If Theorem (5.1) is false, then C* = 1.

If C" £ 1, Theorem (4.1) tells us that C* or D is cyclic infinite. Since we
are assuming Theorem (5.1) is false, D is not cyclic infinite. Therefore C* is
cyclic infinite. By Lemma (3.1), M!' is aspherical. Also H,(D) =0 for
© > 2, by Lemma (5.2). Therefore, by the KtNNETH formula

Z ~ Hy(M') ~ H,(C* x D)= 0.

This is a contradiction, which proves Lemma (5. 8).

Lemma (5.9). If Theorem (5.1) is false, then C and D are free.

M is a closed orientable 3-manifold and, by Lemma (5.8), =,(M*) ~ D.
By Lemma (3.2), D is torsion free. By Lemma (5.2), Hy(D) = 0. There-
fore, by Lemma (2.6), D is free. Interchanging the names C and D, we
see that C is free also. Lemma (5.9) follows.

Lemma (5.10). x(M) = 0.
If we fill in each boundary torus of M with a solid torus, we do not change

7 CMH vol. 86



100 D. B. A. EpSTEIN

the EULER characteristic. But the EULER characteristic of a closed 3-manifold
is zero, by PoiNcARE Duality. Lemma (5. 10) follows.

Lemma (5.11). If Theorem (5.1) 18 false, then we obtain a contradiction.

By Lemmas (5.9) and (3.3), C and D are free of finite ranks m and =
respectively. Since we are assuming Theorem (5.1) is false, m > 2 and
n = 2. Hy(M) is free abelian of rank one, and H, (M) is free abelian of rank
(m + n). Hy(M) ~ Hy(C X D) since M is aspherical by Lemma (3.1). By
the KUNNETH formula, H,(M) has rank mn. H,(M) = 0 for ¢ > 3, since
M is not closed. Therefore

tM)=1—m—n+mn=(@n—1)m—1)>0.

But this contradicts Lemma (5.10). Lemma (5.11) follows.
Theorem (5.1) follows from Lemma (5.11).

§ 6. The Non-Orientable Case

In this section we assume M is a non-orientable compact 3-manifold, and
that =, (M) = C X D, where C is infinite and D s 1. The aim of this
section is to prove:

Theorem (6.1). C or D is cyclic infinite.

Theorem (6.1) will be proved separately for the two cases, M aspherical
and M not aspherical.

Let p: M > M be the orientable double covermg of M. Then p*(:zl )

has index two in =, (M). Let C, = p*(nl(M )~ C and D, = p*(nl(M ) ~ D.
Then C, and D, have index at most two in C and D respectively. C, is

infinite, since C is infinite. Let M be the (orientable) covering space of M
with fundamental group C; X D,. The covering M — M is at most four
sheeted, so M is compact.

§ 6a. The Non-Orientable Aspherical Case

Here we assume in addition that M is aspherical.

Lemma (6a.1). C and D are torsion free,and so D is infinite and Dy # 1.
This follows as in Lemma (3. 2).
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Lemma (6a.2). C or D is cyclic infinite.

We note that M is a compact orientable 3-manifold and 7, (M) a C, X D,
where, by Lemma (6a.1), C, is infinite and D, % 1. So we can apply Theo-
rems (4.1) and (5.1) to deduce that C, or D, is cyclic infinite. Without loss
of generality, we assume C, is cyclic infinite.

Either €, = C, in which case we are done, or O, has index two in C.
In the latter case, C has a presentation

{o, B/p 0 = o®, p* = a”}

where « generates C,, ¢ C; and ¢ = 4 1. Then % = f~1a"f = a™ = S2°.
Since C is torsion free, ¢ = 1. Therefore C is abelian. If n = 2m, then
(B'a™2 =1 and so B =am. This is impossible since B/C,. Therefore
n=2m + 1 and C is generated by f—1a™. This proves Lemma (6a.2).

§ 6b. The Non-Aspherical Case

Here we assume, in addition to the assumptions at the beginning of § 6, that
M is not aspherical. We can also assume that M has no 2-sphere boundaries,
since we can fill them in with 3-balls. This operation does not change the funda-
mental group. If M becomes aspherical, we can apply Lemma (6a.2) to
obtain Theorem (6.1).

Lemma (6b.1). If D, =1, then =, (M) has a subgroup isomorphic to
Z X Z,.

D ~ Z, since D, is of index two in D. O, ~ m,(M) is infinite. By Lemma,
(2.7) there is an element ¢ of infinite order in C,. D and c¢ generate a
subgroup of z, (M) isomorphic to Z X Z,. Lemma (6b.1) follows.

Lemma (6b.2). If D, s 1, then = (M) contains a subgroup isomorphic to
Z X Z,.

7, (ﬂ ) &~ C; X D, where C, is infinite and D, 1. So C, and D, are
torsion free, from Lemma (3.2). Let M have no prOJectlve plane boundaries;
then M has no 2- -sphere boundaries. By Lemma (3.1), M is aspherical and
therefore M is aspherical. But we are assuming M is not aspherical. There-
fore M has at least one projective plane boundary. Therefore z, (M) = C X D
contains an element of order two. Therefore either C or D contains an ele-
ment of order two. Since C; and D, are torsion free, Lemma (6b.2) follows.

Lemma (6b.3). m, (M) ~ Z X Z,.
From Lemmas (6b.1) and (6b.2) we see that z, (M) contains a subgroup
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isomorphic to Z X Z,. By Theorem (9.5) of [2],
CXDnrmM)~(Z X Z)xG,

for some group G. By Folgerung 4 of[1], @ = 1. Therefore =, (M) ~ Z X Z,.
Lemmas (6a.2) and (6b.3) imply Theorem (6.1).
Theorems (4.1), (5.1) and (6.1) imply the theorem stated at the beginning

of the paper.
Fine Hall, Princeton University.
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