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Plongements différentiables de variétés dans variétés®)

par ANDRE HAEFLIGER Princeton, N.J. (USA) Institute for Advanced Study

Introduection

Le but de ce travail est de démontrer une partie des résultats annoncés
dans [2].

Les variétés et les applications de variétés dans variétés considérées ici
seront toujours indéfiniment différentiables, sauf mention explicite du con-
traire. Un difféomorphisme est un homéomorphisme différentiable dont 1’in-
verse est aussi différentiable. Un plongement d’une variété compacte V dans
une variété M est une application biunivoque de V dans M dont le rang
est partout égal a la dimension de V.

Deux plongements f, et f, de V dans M sont isolopes (ou difféotopes)
¢'ll existe une application F: V X I—- M, ou I est l'intervalle [0, 1], telle
que, pour tout ¢el fixé, I'application x— F(x,t) est un plongement de
V dans M, égal & f, pour ¢t =0 et & f, pour ¢= 1. L’application F
est appelée une isofopie (ou difféotopie) reliant f, a f;.

Cette définition est équivalente & la suivante (V étant toujours supposé
compact): il existe une application H: M X I—- M telle que, pour tout
tel fixé, Vapplication z— H(x,t) est un difféomorphisme de M sur M,
égal & 'identité pour ¢ = 0 et tel que f,(x) = H (fo(x), 1).

L’équivalence de ces deux définitions a été remarquée par THOM dans [6].

Théorédme d’existence. Soit V wune varidté compacte connexe sans bord de
dimension n et soit M wune variété de dimension m. Soit | une application
continue de V dans M telle que m;,(f) =0 pour + <k -+ 1 (i.e. I’homo-
morphisme w,(V)— n,(M) induit par [ est un isomorphisme pour ©+ < k et
est surjectif pour 1+ =k + 1). Alors

a) f est homotope & un plongement 88 m =>2n —k et n>2k + 2 (ou,
ce qui revient au méme, m = 2n — k et 2m = 3(n + 1)),

b) deux plongements de V dans M homotopes & f sont isotopes 8i
m>2n—Fketn>2k+2(u m>2n—Fk e 2m>3(n 4 1)).

En particulier, si V est k-connexe et M (k -+ 1)-connexe, le théoréme
s’applique pour toute application f. Le fait que les hypothéses de connec-
tivité sur V et M peuvent étre remplacées par les hypothéses sur =z,(f)
(voir 0.4) m’a été suggéré par J. MILNOR.

1) This work was partially supported by NSF Grant G-10.700.
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Ce théoréme est une généralisation des résultats classiques de WHITNEY
(cf. [8], [12]) et d’un théoréme de Wu [15].

Dans I’énoncé suivant, deux plongements topologiques f, et f, de V dans
M sont dits isotopes, s’il existe une application continue F:V X I - M
telle que, pour chaque ¢ fixé, x— F(x,%) est un plongement topologique,
égal & f, pour t =0 et & f; pour = 1.

Théoréme d’approximation. Soient V wune variéié compacte de dimension n
et M wune variété de dimension m.

a) Tout plongement topologique de V dans M peut étre approché arbitraire-
ment prés par un plongement différentiable st 2m > 3(n + 1).

b) Deux plongements différentiables de V dans M qui sont isotopes en
tant que plongements topologiques, sont aussi difféotopes, st 2m > 3(n 4 1),
I’isotopie différentiable pouvant approcher 1’isotopie topologique.

Ce théoréme est démontré ici seulement si ¥V n’a pas de bord, bien qu'’il
soit encore valable sans cette hypothése. En revanche, le théoréme d’exis-
tence n’est pas vrai en général si ¥V a un bord non vide (par exemple les
hypothéses de connectivité sur V pourraient étre remplacées par des hypo-
theéses de connectivité de ¥ modulo sa frontiére).

Nous n’utilisons aucun résultat récent, mais exclusivement les techniques
développées par WHITNEY (et mises sous forme générale par THom) dans
I’étude des singularités des applications différentiables.

La premiére partie (§ 1 & § 3) est consacrée a 1’étude des applications géné-
riques de ¥V dans M, ou 2m > 3n; la seconde (§ 4 & § 6) contient la dé-
monstration des théorémes annoncés.

Dans le § 1, nous rappelons quelques théorémes généraux qui sont & la base
de I’étude des singularités des applications différentiables. Au § 2, nous dé-
finissons avec précision la notion d’application générique de V dans M
(2m > 3n) et nous montrons l'existence de telles applications. Enfin le § 3,
qui est une extension simple de résultats classiques de WHITNEY, étudie plus
précisément le comportement d’une application générique le long de la sous-
variété des points singuliers. Les seuls faits nécessaires pour comprendre la
suite sont 2.5, 2.7 et 3.2 & 3.4.

La démonstration du théoréme d’existence a) occupe le § 4. La méthode est
en gros la suivante. On remplace I'application donnée de V dans M par
une application homotope f générique, c’est-a-dire une application dont
Paspect géométrique est le plus simple possible. Les points doubles de f for-
ment une sous-variété 4 dans M dont le bord est I'image par f des points
ou le rang de f est inférieur & n». On déforme alors pas a pas ’application f
pour éliminer progressivement les points doubles le long de 4. Pour décrire
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chaque déformation, nous construisons un modéle explicite d’une déformation
d’une application de R* dans R™ et nous identifions ce modéle avec la
situation donnée en utilisant les hypothéses de connectivité et les inégalités
sur les dimensions.

La démonstration du théoréme d’existence pour les isotopies suit le méme
schéma, et nous indiquons au § 5 quelles sont les précisions nouvelles & appor-
ter. Enfin le § 6 contient la démonstration des théorémes d’approximation.

La méthode utilisée dans ce travail est trés directe et géométrique. Elle a
donc le désavantage d’étre difficile & rédiger; mais nous espérons cependant
qu’elle permet de rendre clair & I'intuition spatiale les propriétés démontrées,
pour autant que le lecteur ait la patience d’étudier trés attentivement les
modeles de déformations (4.4 et 4.10) et de faire des croquis pour les petites
dimensions.

Plusieurs autres résultats, concernant notamment les variétés & bord et les
premiéres obstructions, pourraient étre obtenus par des méthodes semblables.
Nous préférons revenir sur ces questions dans une publication ultérieure (qui
donnera en particulier la démonstration du théoréme 3 de [2] et sa générali-
sation au cas ou R™ est remplacé par une variété M) en utilisant des résultats
plus récents tels que la classification des immersions d’aprés SmaLe-HIrscr
et la théorie des obstructions de SHAPIRO-WU.

Terminologie et notations

0.1. Rappelons encore une fois que toutes les variétés considérées ici seront
supposées implicitement indéfiniment différentiables et paracompactes, et
que par application d’'une variété dans une autre, nous entendons toujours
une application indéfiniment différentiable. Par exemple une fonction numé-
rique sur une variété V est une application indéfiniment différentiable de V
dans la droite numérique RB. Une sous-variété W de V signifie aussi une
sous-variété indéfiniment différentiable, c’est-a-dire un sous-espace de V
défini localement par les zéros communs d’un nombre fini de fonctions indé-
pendantes; la codimension de W dans V est égale a la différence de la dimen-
sion de ¥V et de la dimension de W.

Si f est une application de X dans Y, la restriction de f a un sous-
ensemble Z de X est notée f| Z. De méme si K est un fibré de base B
et de projection p, et si A4 est un sous-espace de B, la restriction p-1(4)
de 4 A est notée E|A. La fibre de E au-dessus d’'un point = de B
est désignée par Z,.

0.2. Le fibré des vecteurs tangents a une variété V est noté 7'(V); V,
est l'espace tangent & ¥ en un point xze V. Toute application f d'une

4 CMH vol. 36
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variété ¥V dans une variété M induit une représentation df: T(V)— T (M)
appelée la différentielle de f; elle applique un vecteur de V¥V, sur un vecteur
de V,,. En particulier, si f est une fonction numérique sur V et » un
vecteur de V,, df(v) est un vecteur de R déterminé par son origine f(x) et
par sa longueur notée {df, v>.

Un point singulier (ou critique) d’une application f de V dans M est un
point zeV ou le rang de f (c’est-a-dire le rang de ’application linéaire
df | V,) est inférieur au minimum de la dimension de ¥V et de celle de M.
Un point double de f est un point y de M tel que f~'(y) se compose de
deux points distincts.

Dans I’espace numérique R™ de coordonnées z,,...,%,, on désigne par
d/0x; le champ de vecteurs qui associe & tout point le vecteur dont toutes les
composantes sont nulles, sauf la iéme égale a 1.

0.3. De la théorie des jets infinitésimaux de C. EHREsMANN [1], nous
n’utiliserons que les définitions les plus élémentaires, et seulement pour dé-
montrer l’existence des applications génériques (2.5). Rappelons que deux
applications f et f de ¥V dans M définies au voisinage d’un point = de
V ont le méme jet d’ordre r en x si, exprimées dans les mémes coordonnées
locales, les dérivées partielles d’ordre < r de f en =z sont égales aux déri-
vées partielles correspondantes de ' en x. Le point x est la source du jet
d’ordre r de f en z et y = f(x) est son but.

L’ensemble des jets d’ordre » de V dans M forme une variété (différen-
tiable) notée J7(V,M). La projection associant & chaque jet sa source
définit sur J7(V, M) une structure fibrée de base V. Toute application f
de V dans M définit une section fr de ce fibré, celle qui associe & tout
zeV le jet dordre r de f en x. Par exemple, si r =0, JY(V, M) =
VXM e fo:2z—>(x,f(x)) sera souvent identifié & f. Si r=1,
JY(V, M) est espace fibré sur V dont la fibre au-dessus de « est 1’espace
des applications linéaires de ¥V, dans une fibre arbitraire de M. La donnée
de la différentielle df de f en un point est équivalente a celle du jet d’ordre 1
de f en ce point.

Un jet singulier est le jet d’une application en un point singulier.

0.4. Définition du groupe m,(f). Rappelons que si f est une application
continue d’un espace X dans un espace Y, le «mapping cylinder» de f est
Pespace Y, obtenu en identifiant dans l’espace somme (X X I)vY les
points (z,1)e X X I et f(x)eY. L’espace X s’identifie au sous-espace
X X {0} de Y,. La projection appliquant un point (z,%) e X X I sur f(x)
et un point y ¢Y sur y définit une projection j de Y, sur Y qui est une
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homotopie équivalence. L’injection ¢ de X dans Y, ale méme type d’homo-
topie que f.

Par définition, =,(f) = =,(Y;, X); ce groupe ne dépend que du type d’ho-
motopie de f. La suite exacte d’homotopie de Y, relative 4 X donne la
suite exacte: — m,(X) 5 n,(Y)—m,(f) > 7, (X) 3 7,_,(Y). La condition
m;(f) = 0 est donc équivalente & f*:z,(X)—> m;(Y) est surjectif et f*:
7; 1 (X)—> 7,1 (Y) est injectif.

1. Théorémes d’extension et de transversalité

Nous rappelons dans ce paragraphe quelques théorémes généraux sur les
applications différentiables qui sont fondamentaux en «topologie différen-
tielle».

Théorémes d’extension. Dans les 4 numéros qui suivent, E désigne un fibré
différentiable localement trivial: 1’espace total E, la fibre F, la base B
sont des variétés différentiables paracompactes, la projection p: E— B est
différentiable et de rang égal 4 la dimension de B. Enfin 4 est un sous-
espace fermé de B.

1.1. Proposition. Toute section | de E définie sur A est la restriction &
A d’une section différentiable de E définie sur un voisinage de A si et seule-
ment st c’est vrai localement, c’est-a-dire si, pour tout x e A, il existe une sec-
tion différentiable f, définte sur un voisinage ouvert U, de x telle que f, = f
sur Uy~ A.

Une telle section f de E définie sur A sera dite différentiable sur A.

1.2. Démonstration. Soit {U,} un recouvrement dénombrable d’un voi-
sinage de 4 par des ouverts relativement compacts U, tel qu’il existe,
pour chaque %, une section f, de £ définie sur U, avec f=f, sur
A~ U,. Ce recouvrement sera choisi assez fin de sorte que, pour tout =, il
existe un isomorphisme z— (p(z), ¢,(2)) de p~(U,) sur U, X F et que
4./, (U, ~ A) soit contenu dans le domaine O, ¢ ¥ d’un systéme de co-
ordonnées y,:0,—> R? (¢ = dim F). Soit {4,} un recouvrement de A par
des compacts 4, ¢ U,,.

Supposons qu’une section ¢”-1 soit déja construite sur un ouvert Un-!
contenant un voisinage compact W71 de A" 1=uy,_,4; et telle que
¢" 1= f sur A*-1. Soit » une fonction numérique positive sur B, égale &
1 sur Wr-1 et & zéro en dehors de U™~1. En termes des coordonnées fibrées
au-dessus de U,, considérons la section ¢, de E définie au-dessus d’un

voisinage assez petit W, de A, par

(P,,(w) = (:L‘, 7’;1[0‘(“’)'%9"?’"‘1(‘”) + (1 - 06(:13)) 'Ynann(x)]);
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dans cette expression, le point désigne la multiplication par un scalaire d’un
point de R? considéré comme un vecteur; le premier terme de la somme est
égal & zéro si x¢ Un-1. Cette section locale est égale & f sur 4, et & ¢n?!
sur W,~ Wn-1. Posons donc ¢" égale & ¢n~1 sur W»! et & ¢, sur W,,
et W»= W,~ Wr-1. En répétant cette construction successivement pour
chaque entier n, on obtient I’extension désirée.

1.3. Plus généralement, soit K7 le fibré sur B des jets d’ordre 7(r > 0)
des sections locales de E. Par définition, deux sections f, et f, de E définies
au-dessus de voisinages de A ont le méme jet d’ordre r le long de A si les
sections f{ et f; de Er, associant a chaque point d’un voisinage de A4 le
jet d’'ordre r de f, et f, en ce point, coincident sur A. Ceci veut dire par
exemple que, si r =0, alors f, =f, sur 4, quesi r =1, alors df, = df,
sur 4,...

La démonstration précédente montre aussi plus généralement la

Proposition. Une section fr de E™ au-dessus de A est le jet d’ordre r le
long de A d’une section f de E définie dans un voisinage de A si et seule-
ment 81, pour chaque point x de A, il existe une section f, de E définie dans
un vovsinage U, de x telle que f, =" lelongde U,~ A.

1.4. Théoréme. Si g est une section continue de E dont la resiriction a A
est différentiable (cf. 1.1), il existe une section différentiable f de E, égale &
g sur A, et arbitrairement proche de ¢.

Pour la démonstration, cf. [4], 6.7 (compte tenu de 1.1).

Théorémes de tramsversalité. Dans le reste de ce paragraphe, J7(V, M)
désigne la variété des jets d’ordre r des applications locales d’une variété V
dans une variété M (cf. 0.3).

1.5. Soit L(V,M,r) 'ensemble des applications de ¥V dans M muni
de la topologie suivante. Munissons J7(V, M) d’une métrique riemannienne
compléte, la distance de deux points z, 2’ étant notée d(z,z'). Une base de
la structure uniforme qui définit la topologie de L(V, M, r) est formée des
ensembles de couples (f, g) tels que d(f"(z), g"(x)) < ¢(x) pour tout ze V,
ol ¢(x) est une fonction > 0 continue de x. Cette définition est indépen-
dante de la métrique choisie. L(V,M,r) muni de cette topologie est un
espace de BAIRE. On dira que g est une r-approximation arbitraire de f si g
est arbitrairement proche de f dans L(V, M, ).

Une application f de V dans une variété M est transverse & une sous-
variété N de M enunpoint x eV si,ou bien f(z)¢ N, oubien y = f(x)eN
et df(V,) + N, = M,. Nous dirons simplement que f est transverse & N
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si f est transverse a N en tout point de ¥; alors f~1(N) est une sous-
variété de V dont la codimension est égale & celle de N. Selon cette défini-
tion, si codim N >dim V, dire que f est transverse & N c’est dire que
f(V) ne rencontre pas N.

1.6. Théoréme de transversalité (THoM). Soit N wune sous-varidté fermée de
J(V, M) et soit f une application de V dans M. On peut toujours trouver
une s-approximation arbitraire (s entiter > 0) g de [ telle que g" soit trans-
verse @ N. De plus, st fr est déja transverse & N en tout point d’un fermé F
dans V, on peut supposer g = f au voisinage de f.

D’apres la définition de la transversalité et la topologie de L(V, M, s), il
est évident que les applications transverses a N forment un ouvert de
L(V,M,s) pour s> r. Le théoreme de transversalité affirme que cet ouvert
est partout dense. Pour la démonstration, qui s’appuie essentiellement sur
le théoréme de SArD, voir [5] et [7].

1.7. Exemples. 1. Si A est une sous-variété de M, toute application
f:V—M peut étre approchée par une application transverse & A. Cela
résulte de 1.6 en prenant r =0 et N=V X AV x M.

2. M est la droite numérique R, r =1 et N est la sous-variété formée
des jets d’ordre 1 des fonctions f sur ¥ en un point ou df = 0. Une fonc-
tion f: V— R telle que f! soit transverse & N n’est autre qu'une fonction
numérique non dégénérée, c’est-a-dire qu’en un point ot df = 0, la matrice
des dérivées partielles secondes est non singuliéres. D’aprés le théoréme ci-
dessus, les fonctions non dégénérées sur V sont partout denses (théoréme de
MogrsE [3)).

1.8. Remarque. Le théoréme de transversalité est encore vrai si N n’est
pas fermée et si f* ne rencontre pas la frontiére de N.

Dans les applications, N est souvent une variété avec singularités, repré-
sentée comme une collection de sous-variétés (cf. [14]). Si N est représentée
comme ’union d’une sous-variété sans singularité N, (en général non fermée)
et d’une variété fermée N,, avec singularités, de codimension > n = dim V
et qui contient la frontiére de N,, alors 1.6 appliqué aux différents membres
de la décomposition de N, montre que ’on peut d’abord approcher f par
une application g telle que g" ne rencontre pas N,. Comme ’ensemble de
telles applications est un ouvert dans L(V, M,s), s>r, 1.6 donne une
application g telle que g" ne rencontre pas N, et soit transverse a N,.

1.9. Extension du théoréme de transversalité. Soient V,, M,, ¢ =1, 2, des
varidtés. Soit N wune sous-variéié fermée de J7(V,, M) X J*(V,y, M,). Pour
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tout couple d’applications f,: V,— M,, il existe des s-approximations arbitrai-
res g; de f; telles que (97, g5) 8oit transverse @ N. De plus si F,; sont des
fermés de V, tels que (fi,f;) soit transverse @ N sur (F, X V,) v (V, X F,),
on peut supposer f, =g, sur F,.

On a un énoncé tout & fait analogue pour un nombre fini de facteurs. La
démonstration se déduit immédiatement de celle de 1.6 donnée dans [5] ou [7].

Remarquons encore que, si V; et ¥V, sont compactes, alors I’ensemble des
couples (f;, fs) tels que (ff,f;) soit transverse & N est un ouvert de
L(Vy, M,,8) X L(Vy, M,,s) pour s >r.

1.10. Théoréme de transversalité «au but». Soit N wune sous-variété fermée
de J'(V,M) X J"(V,M). Pour toute applicationf: V—> M, on peut trouver
une s-approximation arbitraire g telle que (g, g7) soit transverse & N en tout
point du complémentaire C d’un voisinage ouvert donné de la diagonale de
V X V. De plus si F est un fermé tel que (f7, fr) soit transverse a N sur
[(F X V)v(V X F)]~C, on peut supposer g = f sur F.

On a un énoncé analogue pour un nombre fini p de facteurs, C étant
alors le complémentaire d’un voisinage du sous-espace du produit V? formé
des suites de p points de ¥V non tous distincts. Un tel énoncé contient comme
cas particulier tous les précédents (par exemple 1.6 correspondrait au cas
p = 1).

La démonstration découle directement de 1.9. En effet, soit {U] X U%},er
un recouvrement dénombrable de C, tel que, pour tout s e, Ui~ U; = o
et U soit un compact de V. L’ensemble des couples (f,, f.): Us X U5 —
—M X M tels que (fi,f;) soit transverse a N est un ouvert partout dense
de L(Uf, M,s8) x L(U3, M,s), s>r, d’aprés 1.9. Or 'application faisant
correspondre & f: V— M le couple (f | Uy, f| U3) est une application ouverte
et surjective (cf.1.4) de L(V,M,s) sur L(U{, M,s) X L(Us, M,s). Le
théoréme résulte alors de ce que L(V, M, s) est un espace de BAIRE.

Remarquons encore que si V est compact, I’ensemble des f tels que
(fr, fr) soit transverse & N sur C est un ouvert partout dense de L(V, M, s)
pour 8> 7.

1.11. Exemple. Prenons M = R et supposons que f soit une fonction
numérique non dégénérée (cf. 1.7) sur V. Comme les points singuliers de f
sont isolés, il existe un voisinage U de la diagonale de V X V tel que si
(,2')eU et x #a', alors = et 2’ ne sont pas tous les deux singuliers.
Appliquons 1.10 en prenant pour N la sous-variété de J1(V, R) x J1(V, R)
formée des couples de jets singuliers ayant le méme but, et pour C le com-
plémentaire de U. Comme codim N = n + 1 nous obtenons ainsi une fonc-
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tion numérique non dégénérée dont les valeurs critiques sont distinctes. Une
telle fonction sera dite générique.

2. Définition et existence des applications et homotopies génériques

Dans tout ce paragraphe, ¥V est une variété de dimension n et M une
variété de dimension m > n.

Description des points singuliers de type (S!)

2.1. Considérons une application f de V dans M et soit z un point
de V oulerang de f est exactement n — 1. Introduisons au voisinage de

x et y = f(x) des coordonnées locales (,,...,x,) et (#,...,y,) telles
que le noyau L, de df au point z soit engendré par le vecteur de compo-
santes (1,0,...,0). Autrement dit, le vecteur df/dx, = (9y,/0%,,...,

0Y.,/0%;), ou les dérivées partielles sont prises au point z, est le vecteur nul
de M,. Il en résulte que les dérivées (0%y,/0x,0x;, ..., 0%y, /0x,0x;), prises
en z, sont les composantes d’un vecteur o%f/ox,dx;, de M,.

Le point « de V est un point singulier de type (8') de f (cf.[5], [11],
[14]) st

1. lerangde f en x estégala n — 1,

2. dans les coordonnées locales précédentes, les 2n — 1 vecteurs

offox;, 1<i<n et 0*ffox0x;, 1 <j<n

engendrent 1’espace tangent & M en y,

3. les n vecteurs 92f/0x?, 9f/0x,, ..., 0f/0x, au point y sont indépendants
(toutes les dérivées partielles sont prises au point z).

2.2. Les conditions 2) et 3) sont indépendantes des systémes de coordon-
nées locales choisis. En effet, soit &, le vecteur de ¥V, de composantes J,;
(symbole de KrONECEER). On vérifie immédiatement (cf. [11], p. 162) que
Papplication bilinéaire de L, X V, dans M, appliquant (&, &) sur le
vecteur 92f/dx, dx; définit par passage aux quotients une application linéaire

0gf: Ly ® V,— M, [df(V,)
indépendante des systémes de coordonnées.
Les conditions 2) et 3) équivalent resp. a
2)" 92f est derang m —n + 1,
3)" 92f ne s’annule pas sur L, ® L,.
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2.3. Voici 'interprétation géométrique de ces conditions. La condition 2)
signifie que les m — n + 1 conditions qui expriment que le rang de f est
inférieur & n sont indépendantes au point x. Donc au voisinage de x, le
sous-ensemble S8 de V formé des points ou le rang de f est n — 1 est une
sous-variété de dimension 2n — m — 1. Le noyau de 92f est L, ® §,, ou
S, est ’espace tangent & S en x.

La condition 3) exprime que L, n’est pas contenu dans S,. Donc la res-
triction de f a S est de rang 2n — m — 1 au voisinage de .

2.4. De plus en un point double y = f(2') = f(z"), ou z' et z” sont des
points distincts proches de x, alors les images par df de V,., et V.,
engendrent M,. Ainsi les points doubles de la restriction de f & un petit
voisinage U de x forment une sous-variété A4 de M de dimension 2n — m
dont le bord dans f(U) est f(S~ U). Le sous-ensemble D = f-1(4) au
voisinage de x est une sous-variété de V de dimension 2% — m sans bord
qui contient S et qui est tangente au champ des noyaux de df le long de §.

On peut vérifier ces propriétés en choisissant des coordonnées locales telles
que f s’exprime sous la forme

h=x3, Y =2, powr 1<i<<n, Y, =mn pour l<j<m—mn-+1

a des termes de degré > 2 prés. Nous n’insistons pas sur les démonstrations
car WHITNEY a démontré (cf. [11]) que f pouvait s’exprimer effectivement
sous cette forme (et non plus seulement jusqu’a 1’ordre 2), fait que nous utili-
serons plus tard (cf. § 3). Ceci admis, les propriétés 2.4 se vérifient immédiate-
ment. La sous-variété S est définie par 2, =0 pour 1 <1< m —n + 1,
la sous-variété 4 par ¥, > 0,y,=0et y,,;, ;=0 pour 1<i<m —n+ 1.
Enfin D est défini par z;, =0,1<i<<m —n + 1.

2.b. Théoréme. Supposons 2m > 3n et V compacte. Les applications f:
V— M telles que

1) les points singuliers de [ sont tous de type (S?),

2) 81 f(x') = f(2") et ' £ x", alors =’ n'est pas un point singulier,

3) en un point double y = f(z') = f(x"), on ' #* x", les vmages par df
des plans tangents a V en x' et z” engendrent le plan tangent a M en y,

4) f n’a pas de point triple,
forment un ouvert partout dense de L(V, M, 2).

Une telle application sera dite générique.

De plus toute application g: V— M dont la restriction a& un voisinage
d'un fermé F de V est générique peut étre approchée par une application
générique f égale & g sur F.
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Lorsque m > 2n + 1, une application générique est un plongement ([8]).
Si m = 2n, une application générique est une immersion avec des points
doubles isolés ol les deux nappes de f(V) se coupent en position générale
(cf. [12]).

En général, lorsque 2m > 3n, les points singuliers d’une application géné-
rique f forment d’aprés 1) une sous-variété S dans V de dimension
2n —m — 1 (cf. 2.3). Vu 3) et 4), les paires de points de V appliqués par
f sur un méme point de M forment une sous-variété D dans V de dimen-
sion 2n —m et qui contient S comme sous-variété (cf.2.4). Enfin les
points doubles de f forment en vertu de 2) une sous-variété 4 = f(D) dans
M de dimension 2n — m et dont le bord est la sous-variété des valeurs
critiques S’ = f(8S) (cf. 2.4).

2.6. Démonstration. FElle consiste & appliquer successivement les théo-
remes de transversalité. Commencgons par 1). Dire que les points singuliers de
S sont tous de type (S!), c’est dire que

a) f' ne rencontre pas la sous-variété (avec singularités) de J(V, M) de
codimension 2(m — n + 2) formée des jets d’applications en un point ou
leur rang est <n — 1 (condition 1) de 2.1),

b) f' est transverse sur la sous-variété de J*(V, M) formée des jets sin-
guliers (condition 2) de 2.1),

c) f2 ne rencontre pas la sous-variété de J2(V, M), de codimension
2(m — n + 1), formée des jets d’applications g en un point x ou le rang
de g est <n et ou le noyau de dg est contenu dans I’espace tangent aux
points singuliers (condition 3) de 2.1).

Donc si n>2(m —n + 2) et > 2(m —n 4 1), c’est-a-dire si
2m > 3n — 2, le théoréme de transversalité 1.6 implique que les applications
| vérifiant a), b) et c), c’est-a-dire 1), forment un ouvert partout dense de
L(v,M,?2).

Soit N la sous-variété de J(V, M) X JY(V, M) des couples formés de
deux jets d’ordre 1 ayant le méme but, I’'un d’eux étant singulier. La codimen-
sionde N est m+(m—n-+1)=2m—n-+1. Si f vérifie 1), la res-
triction de (f!, f!) & un voisinage de la diagonale dans V X V privé de la
diagonale, ne rencontre pas N, d’aprés 2.4. Ceci étant vrai pour toute appli-
cation g assez proche de f dans L(V,M,2), 1.10 montre que Pon peut
approcher f par une application g telle que (g%, g') soit transverse a N
sur V¥V x V oprivé de la diagonale. Donc si 2n<2m —n+1, ie.
2m > 3n — 1, les applications f vérifiant 1) et 2) forment un ouvert par-

tout dense de L(V, M, 2).
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Soit N' la sous-variété de (V X M)? image réciproque de la diagonale de
M X M par la projection naturelle de (V X M)? sur M2. La condition 3)
signifie que (f, f!) est transverse & N’ sur V X V — V; elle est vérifiée
au voisinage de la diagonale par toute application f vérifiant 1) (cf. 2.4).
D’aprés 1.10, les applications vérifiant 1) et 3) forment un ouvert partout
dense de L(V,M,2), si 2m > 3n — 2.

Enfin soit N” la sous-variété de (V x M)* image réciproque de la dia-
gonale de M3 par la projection naturelle. Dire que f n’a pas de point triple,
c’est dire que (f,f,f) ne rencontre pas N” en dehors du sous-espace R
de V x V X V formé des suites de 3 points non tous distincts. Ce sera le
cas au voisinage de R pour toute application vérifiant 1) et 2). Donc si
2m > 3n, d’apreés 1.10, les applications vérifiant 1), 2) et 4) forment un
ouvert partout dense de L(V, M, 2).

On obtient le théoréme en combinant toutes ces conditions.

2.7. Homotopies génériques

Théoréme. Soient f, et f, des applications génériques (2.5)de V dans M,
o 2m>3n -+ 1, et soit g:V X I - M wune homotopie reliant f, a f,. Il
est toujours possible d’approcher g par une homotopie f reliant f, & f, et
telle que

1. Dapplication h:V X I—-M X I définie par h(x,t) = (f(x,t),t) est
générique (2.5),

2) la restriction de la projection naturelle t': M X I — 1 a la variété A des
points doubles de h est une fonction numérique non dégénérée (1.7) et ses points
singuliers me sont pas sur l'image S’ par h des points singuliers de h.

Un telle homotopie sera dite générique.

En fait on pourrait exiger plus d’une homotopie générique, par exemple
que t' restreint & S’ est une fonction numérique générique (cf. 1.11); mais
nous n’aurons pas & utiliser cette propriété dans la suite.

2.8. Pour démontrer 2.7, on se place dans le sous-espace de L(V x I, M, 3)
formé des applications f telles que f(z, 0) = fo(x) et f(x,1) = fi(x). La
démonstration de 1) est tout a fait analogue a celle de 2.5, I'inégalité
2m > 3n + 1 étant équivalente & 2(m + 1) > 3(n + 1). Par exemple la
condition qu’en un point double de % les plans tangents a 'image sont en
position générale (condition 3) de 2.5) signifie que f est transverse & la sous-
variété de (V x I X M)* formée des points (z,¢,y,2',y',t), ou z, z' eV,
t,t' el et y,y eM, tels que t =1t et y =y9'. On remarquera aussi que
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si fo: V— M est générique, alors sa suspension (z,8) = (fo(x),t) est aussi
générique; on pourra donc supposer que, au voisinage des extrémités de in-
tervalle I, ’homotopie f est indépendante de ¢.

Pour que ¢’ | A soit non singuliére au voisinage de §', il faut et il suffit
que f3 évite dans J3(V X I, M) une sous-variété de codimension n + 1, ce
qui est toujours possible. Enfin les points singuliers de # seront non dégéné-
réssi (f1, f!) est transverse & une sous-variété de J1(V x I, M) xJY(V x I, M)
sur (V X I) X (V x I) privé de sa diagonale. Par application des théorémes
de transversalité, on obtient donc I’homotopie générique désirée.

2.9. Cas particulier. Soit V une variété de dimension n munie d’une
fonction numérique ¢ dont les points singuliers forment une sous-variété W
de dimension inférieure & n. Soit M une variété de dimension m > 2%, et
soit ¢’ la projection naturelle de M X R sur R. Il existe alors un plonge-
ment [ de V dans M X R tel que t =1t'f. Si de plus g est un plongement
donné d’un voisinage d’un fermé F de V dans M X R tel que t =1t'g, on
peut supposer que f =g sur F.

En effet, pour qu'une application f= (k,f) de V dans M x R (ot
h:V— M) soit partout de rang =, il faut et il suffit que le jet d’ordre 1 de
h évite une sous-variété (avec singularités) dans J1(V, M) de codimension
m —n -+ 2>n. Ensuite pour que f= (h,?) soit biunivoque, il faut et il
suffit que le graphe de (h,A): V X V—>M x M évite une sous-variété N
dans VX V X M x M de codimension m + 1> 2n; N est formé des
points (x,2',y,y’) tels que y=1y' et t(x)=1(z'); N est représenté
comme une collection de sous-variétés N = N, v N; v N,, ou N, contient
les points qui vérifient de plus: z,2' e W, N, ceux qui vérifient: 2 ou
' e W, et Ny:x, 2’ ¢ W; ona codim Ny, = m + 2 codim W et codim N; =
=m + codim W 4 1.

L’affirmation précédente se démontre donc par applications de 1.6 et de
1.10.

3. Forme canonique des singularités de type (S?)

3.1. WHirNEY [11] a démontré qu’au voisinage de tout point singulier x
de type (8!) d’une application de B» dans R™,m > n, il était possible de
trouver des coordonnées locales (%;,..., Zpm_ni1s %1y -+ Ugp_m—) 8U VOI-
sinage de « et (X;,..., Xom—snt1> Uts-+-s Usnm—y) au voisinage de f(x)
de sorte que f s’exprime sous la forme

fo{Xl:x? X, =u

l<i<m—n+1,U,=u4,1<j<2n—m—1.
Xm-n+i=x1xz‘
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(La démonstration de [11] qui traite le cas m = 2n — 1 s’étend immédiate-
ment & ce cas plus général, cf. 3.8.)

Le but de ce paragraphe est de prouver la proposition suivante qui est une
forme globale du résultat précédent de WHITNEY. Le complément sera utilisé
dans I’étude des isotopies.

3.2. Proposition. Soient V,, M, des variétés, 1 =1,2, dim M, = m,
dm V;,=mn et m =>n. Sotent f,: V,—~ M, des applications dont les points
singuliers S; ¢ V, sont tous de type (S') et telles que f,|S; soit biunivoque.

On suppose qu’il existe un difféomorphisme h de 8, sur S, qui se prolonge
suivant un isomorphisme b de T(VY)|S, sur T(Vy)|S, de sorte que les
champs de noyaux L, de df, le long de S, se correspondent par h.

Il existe alors des difféomorphismes H (resp. H') d’un woisinage de S,
(resp. S; = £,(8,)) sur un voisinage de S, (resp. Sy = f,(Ss)) tels que

1) hH = H'fy

2) dH = h lelong de S;.

3.3. Soit A, ¢ M, la variété des points doubles de f,. Si l’on se donne de
plus un difféomorphisme h' de A, sur A, au voisinage de S; compatible
avec h | Ly, on peut supposer que H' = h' sur A,.

3.4. Complément. De plus sotent t et t' des fonctions numériques définies
au voisinage de S; et S; respectivement. Supposons que t; = t;f,, t;| A, non
singuliére, dt, = dt,h et t; = t,h' sur A,. On peut alors choisir H et H'
vérifiant de plus

3)  =t6,H et t; = t, H' .

3.5. Remarque. La donnée h' de H’' sur 4, et la condition 1) de 3.2
déterminent H localement sur D, = f;1(4,) & deux possibilités prés; or L,
est tangent & D; le long de §;. La condition de 3.3 que A’ est compatible

avec h | L, signifie que localement A = dH sur L, au signe pres.

3.6. Avant de passer a la démonstration, nous énongons un lemme qui
explicite la structure tangente le long de la sous-variété S des points singu-
liers de type (8') d’une application f: V— M; L est le champ des noyaux
de df le long de S, A est la variété des points doubles de f et 8’ = f(S).

Lemme. Il existe un homomorphisme naturel 93f de LQ T(V)|S sur le
fibré quotient T (M) | S'jdf (T(V)|S); il applique le fibré linéaire trivial
L ® L sur le fibré normal a S’ dans A; son moyau est L Q T(S).
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d5f est défini en chaque point 2 de S par 02f (cf. 2.2) et le lemme
découle de 2.2 & 2.4.

3.7. Nous reformulons ci-dessous le théoréme de WHITNEY (3.1) sous une
forme utile pour la démonstration de 3.2. L’application f, est celle qui est
donnée dans 3.1. Ses points singuliers sont ceux du plan S défini par x =0

(Oi1 X = (xlf cees xm-—-n—!—l)); 8 = /O(S)

Lemme local. Soit f une application de R*(x,u) dans R™(X, U) définie
au voisinage de S et telle que

1) df et df, sont égaux le long de 8,

2) 03f = dif, (cf. 2.2 et 3.6).

Soient W et W’ des ouverts de S tels que 'adhérence W de W soit
contenue dans W' et soit K un fermé de S au voisinage duquel f = f,.

Il existe alors des difféomorphismes H et H’' de voisinages de S et &’
resp. tels que

a) fH = H'f, au voisinage de ﬁ’-,

b) dH est I'identité de long de S,

¢) H et H' sont I'identité dans un voisinage de K et du complémentaire
de W' dans S, et de leurs images par f, resp.,

d) le long de 8, d(H'f,) =d(fH) et 32(H'f,) = d3(fH). Si de plus la
variété A des points doubles de f coincide avec celle de f,, alors

e) H' = identité sur A4.

3.8. Démonstration de 3.7. Supposons [ donnée par les équations
X;=X,(x,u), U; = U,(x,w). Posons u; = Uj(z,u); les fonctions (z, u')
forment au voisinage de S un systéme de coordonnées car ou;/du, = 8, le
long de S d’aprés 1), et f prend la forme X,;= X;(z,u'), U; = u;. On
développe ensuite les fonctions X; en séries de TAYLOR jusqu’au troisiéme
ordre par rapport aux variables z ([9]) et I'on effectue chacune des transfor-
mations de coordonnées indiquées par WHITNEY dans [11], § 5, ceci le long
de S, les variables % intervenant comme des parameétres. Chacun des dif-
féomorphismes définis par ces transformations de coordonnées respectent les
propriétés b), d), e) et se réduisent 4 'identité au voisinage de K et fo(K).
On obtient donc finalement des difféomorphismes H et H’' vérifiant a),
b), d) et e) le long de S.

Pour obtenir I’identité en dehors de W' et f,(W’), construisons une fonc-
tion « sur R» ne dépendant que des variables u, égale & 1 sur W et &0
sur le complémentaire de W' dans §; soit &’ la méme fonction exprimée &
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Vaide des variables U. Soient J et J’' les difféfomorphismes identités de
R™ et R™. Alors les applications

oH 4+ (1 —x)J et o'H + (1 —0o)J,

ou la multiplication par « ou «' signifie que chaque coordonnée est multi-
pliée par &« ou o', restreintes a des voisinages assez petits de S et S’ resp.,
sont des difféomorphismes qui vérifient toutes les propriétés désirées.

3.9. Démonstration de 3.2. D’apres 3.6, il existe un isomorphisme @ bien
déterminé de T'(M,) | 8y/dfy (T(Vy)|8y) sur T(My) | Sp/dfs (T(Vs) [ Sy) tel
que, pour tout » e L, et tout &eT(V,) au-dessus du méme point = de 8§,
on a 6§2f2(i;,v®h:§) == aglfl(v@) £). Soit donc B un isomorphisme de
T(M,) | 8, sur T(M,)|S, tel que h'df, = dfyh et qui donne & par passage
aux quotients; on peut supposer aussi que B applique l’espace tangent a
4, sur l'espace tangent a 4,. A l'aide de métriques riemanniennes ou en
appliquant 1.3, il est possible de construire des difféomorphismes H, et H,
de voisinages tubulaires de 8, et S; resp., sur des voisinages tubulaires de
S, et S, resp. tels que dH, = h et dH, = h'. On pourra aussi supposer
que H, est une extension de I'application %' donnée sur 4, (cf. 3.3).

Soient {W,} et {W,} deux recouvrements dénombrables de S, par des
boules contenues dans des systémes de coordonnées locales, et W, w,.
Construisons par induction sur =, des difféomorphismes H, et H, de
voisinages de S, et §; sur voisinages de S, et S, de sorte que f,H, = h,f, au
voisinage du fermé K, = U,«JT’Z et que, le long de 8,, dH, = h,
d(f,H,) = d(H,f,) et a,g (feH,) = 83 (H,f,). Par construction, H, et H,
vérifient ces conditions. Supposons donc H, et H, déja construits. D’apres
3.7, il est possible d’introduire des coordonnées locales au voisinage de W, .,
et f,(W,,,) de sorte que f; s’exprime sous la forme f,. Les hypothéses de
3.7 sont vérifiées pour fo="f,, f=H,'f,H, e¢ K=K,, W,,, et W,
jouant le role de W et W’'; on peut donc construire H et H' vérifiant les
conditions de 3.7; on définit alors H,,, = H,H et H,,, = H,H' au voi-
sinage de W,., et f,(W,.,) et H, ,=H,, H, , = H, ailleurs. On remar-
quera que rien n’est changé au voisinage de K, et f,(K,). On obtient donc
a la limite les difféomorphismes cherchés H et H'.

Démonstration du complément

3.10. Nous choisirons une autre forme normale locale g, équivalente a
fo- Soient (xy,..., Zp_p, %y,. .., Us,_,,) les coordonnées de R™ et
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(X4, Xopon, Usy ooy Ugp_,,) les coordonnées de R™. Soit
X, =u — a3 X, ==z,

g l<i<m—n,U,=u;,1 <j<2n—m.
0 Xm_n+1=ulx1-——x“f Xm—n+z'=x1xi == i i SYA

Les points singuliers de g, sont les points du plan S:xz, =0 pour
1 <i<<m — n,u, = 0. Les points doubles forment le demi-plan 4: X; = 0
pour 1 <j<2m —2n, U; >0, et D=g;1(A) est défini par u, = 22,
xi —_— O, 'l: > ]. .

3.11. Lemme local. Soient ¢ et ¢ des fonctions différentiables non sin-
guliéres définies au voisinage de S dans R" et de S' = ¢,(S) dans Rm™
telles que ¢ = t'g,. On suppose que

1) ¢’ restreinte & 4 est non singuliére,

2) dt'/oX; =0 pour 1 <t <<Km —mn sur § (ou ce qui revient au méme
ot/dx, = 0 pour ¢ > 1, dt/ou, = dt'/oU, sur 8).

Soit t, la fonction sur R™ égale & ' sur A et ne dépendant que des

variables U,. Soient W et W’ des ouverts de S tels que W cW et K
un fermé de § au voisinage duquel #' = ¢,.

Il existe alors des difféomorphismes H et H' de voisinages de S et 8’
resp. sur voisinages de S et 8’ resp. tels que

a) goH = H'g, .
b) t, = t'H' au voisinage de g,(K ~ W)
¢) dH est l'identité le long de S

d) H et H' sont l'identité au voisinage de K et du complémentaire de
W' dans S et de leurs images par ¢, resp.

3.12. Démonstration de 3.11. Pour assurer la validité de d), remplagons

d’abord ¢ par une fonction " égale & ¢ au voisinage de g,(W) et & £, au
voisinage de g,(K) et du complémentaire C' de g,(W') dans 8’, et véri-
fiant 1) et 2). Il suffit pour cela de construire une fonction « dans R™ égale
a 1 au voisinage de g¢,(W) et & 0 au voisinage de C’' et de poser
t" = at’ + (1 — x)t,. Pour simplifier #’ sera noté ¢ .

Dans ce qui suit, X désigne les coordonnées (X,,...,X,,, 5,), U les
coordonnées (U,,..., U,,_,), etc.

Pour tout point P = (X, U) de R™ assez proche de §’, soient U ; =
= @,(X, U) les coordonnées U du point d’intersection avec A de la géo-
désique issue de P, contenue dans la variété de niveau Np de ¢ contenant
P, et normale 3 la sous-variété Np~ A4 (N pest muni de la métrique induite
par une métrique riemanienne sur B™). Ceci a un sens en vertu de 1) au voisi-

nage de A4.
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Par construction, on a donec @,(0, U) = U,, d’ou 9U,/oU, = §,, le long
de 4 et 9Uj/0X, =0 pour 1 <% <m —n lelong de S’ en vertu de 2).
Enfin ¢, exprimée & I'aide des nouvelles variables U’, est égale & #,. On
remarquera que l’on a aussi U ; = U, au voisinage de ¢,(K).

Dans R*, posons u; = ®,9, = ¢;(z, u). Lelongde S ona du;/du, = d;
et ou;/0z, = 0. Ainsi les transformations

' X;=¢1(X,U)“‘U1+X1
— oz, ) GlX,=X, i>1
= (P:i ’ U; - ¢5(X, U)

sont au voisinage de § et S’ des difféomorphismes et leurs inverses H = G-1
et H' = @~ vérifient b), c) et d).

Soient u; = y,(z', u') les solutions des équations u; = @,(z,w) au voi-
sinage de S. Nous devons modifier H; de sorte que a) soit vérifié. On a

X1=u1———xf X, =z,

3

H,-g,H
1 _ _
Xm-n+1 =y (z, w)x, — a7y, X'm—-n+i = N;.

l<e U=wu

Comme &,(X,U)=U; pour X =0, alors ¢, (2, 2, %) =u,, t>1,
sur D:u, — a3 =0, 2z, =0, s> 1. On peut donc écrire au voisinage de S
d’aprés [9]:

Y (2, 5, u) = 4y + (u; — xf)a(xl, Z;, w) + 251%;0;(%, T, u) .

Lelong de S, a = 0 car dy,/du, = 1.
On peut également poser d’apres [10]

1/2['/}1(“"1’ L;s u) + '/)1(_’ Ly X5, u)] =
= o + (U, — "’i‘a)A("’f’ x;, u) + Zj>1 fo:‘ (xiq: z; u)

et
1/2[')01(:”1: Ly u) - wl("— Ty, Xy 'll;)] = xlB(sz,a Z;s u) .
Définissons alors au voisinage de 8’
X;=X;, j#m—n+1 U'=0U
G; X' Xm-—n-f—l""(Ul—Xl)B(Ul"XlsXt" U)—2i>1Aj(U1"X17Xi; U)Xm—-n-!-i

m—-nt+1 — 1+A(U1""X1’Xt') U)

Ona 9X,,_,,1/0Xp _ny1 =1 sur S, desorte que G, est un diffSomorphisme
dans un voisinage de S§'. De plus G,G;9,G ! = g,. Les difféomorphismes
H' = (G,G))"! et H = G-, définis dans des voisinages de S’ et 8, véri-
fient les propriétés a), b), c) et d).
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3.12. Pour démontrer 3.4, on part des difféomorphismes H et H’ véri-
fiant les conditions 1) et 2) de 3.2 et 3.3, et on les modifie pas & pas en uti-
lisant le lemme local 3.11 comme dans 3.9.

3.13. Pour terminer ce paragraphe, nous énoncgons un lemme de nature
élémentaire et dont la démonstration est laissée au lecteur.

Lemme. Soient 4 et B deux sous-variétés d’une variété ¥V se coupant
transversalement (c’est-a-dire qu’en tout point = de la sous-variété C = 4~ B
A, + B,=V,). Etant donnés des plongements ¢ et v de A et B resp.
dans une variété M tels que ¢ =y sur C et que dgp(4,) + dy(B,) =
= dy(C,) pour tout zeC, il est possible de prolonger ¢ et % suivant un
plongement d’un voisinage de C dans M.

On le démontre d’abord localement et on applique 1.1.

4. Existence de plongements

Le but de ce paragraphe est de prouver le théoréme suivant (théoréme
d’existence a) de I'introduction).

4.1. Théoréme. Soit V une variété compacte de dimension n, sans bord,
et soit M wune variéié de dimension m. On suppose 2m = 3(n + 1).

Toute application g de V dans M telle que m,(g) = 0 pour + < 2n—m-+1
(cf. 0.4) est homotope a un plongement h.

De plus, st V a un bord 0V et 8t g est déja un plongement au voisinage
de 0V tel que g(dV)~g(V — oV) =g, on peut supposer alors h=g au
voisinage de AV .

4.2. Démonstration. D’aprés 2.5, g est proche, donc homotope & une
application générique f de V dans M. La variété des points singuliers de
f sera notée S; A désignera la sous-variété dans M des points doubles de
f; son bord est S’ = f(S) (cf. 2.5); enfin D = f~1(4).

Soit y une fonction numérique générique sur 4 (cf. 1.11). On suppose de
plus que S’ est une variété de niveau de ¢ et que ¢ est minimum sur &'
(si 8’ est non vide).

Soit @, = ¢(S') et soit ¢, > ¢, tel que @ n’ait pas de valeurs critiques
sur I'intervalle [¢,, ¢,].

Proposition 1. Il existe une déformation f, de f=f,, 0 <17 <1, telle que
fi soit une application générique dont les points doubles sont les points d de
4 ou ¢(d) = ¢.

5 CMH vol. 36
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Soit ¢ un point singulier de ¢ d’indice p. Au voisinage de ¢ dans 4,
nous pouvons introduire des coordonnées locales U,,...,U,,V,,...,V,,
ol p+qg=2n—m=dimA4, de sorte que ¢ =g@(c) — U?+ V2%, ou
U?=Z2U? et V2= XV;, dans une boule B, de rayon 26, centrée en c
(cf. [3]). Posons R? = U2 + V2, et soit 6(R?) la fonction égale & 63y (R2/63)
dans B, et & 0 en dehors, ol y est la fonction définie en 4.3. Considérons
alors la fonction ¢_ = ¢ + 0 et la fonction ¢, = ¢ — 0; ces fonctions sont
égales & ¢ en dehors de B,.

Proposition 2. Soit ¢ wun point critigue de ¢ d’indice p. Supposons que
l'on ait déformé | en une application générique f, dont les points doubles sont
les points d de A ob @_(d) =c. Si 7, (f) =0, il existe une déformation
fr» 0 <t <1, qui déforme f, en une application générique f, dont les points
doubles sont les points d de A4 o ¢ (d) =>c.

Le théoréme 4.1 se déduit comme suit des propositions 1 et 2. Soit ¢ le
point critique de ¢ de valeur minimale. Construisons comme précédemment
une boule B, centrée en ¢ de sorte que ¢@(B,) ne contienne pas d’autre
valeur critique que ¢(c).

La fonction ¢_ n’a pas de point singulier dans ¢~![— oo, c]; c’est clair
en dehors de B, ou ¢ = ¢_; dans B,, un point de coordonnées (U, V)
est singulier si et seulement si dp_/oU; = — 2U,(1 — 6') =0 et 0¢/dV; =
=2V,;,(1+0')=0, ou 0’ est la dérivée de 0. Comme on suppose que
— U? + V2 4 0(R2?) <0, on doit avoir U # 0 et les deux équations pré-
cédentes ne peuvent étre vérifiées que si V=0 et (1 — 0') =0, ce qui
est impossible car 6’ << 0. D’aprés la proposition 1, on peut donc déformer
f en une application générique f_ dont les points doubles d sont définis
par ¢_(d) = c. La proposition 2 donne une application générique f, dont
les points doubles d sont définis par ¢_(d) > c. Enfin une nouvelle appli-
cation de la proposition 1 donne une application générique f, dont les points
singuliers sont les points d de 4 ol ¢(d) = ¢,, ou ¢, = sup ¢(B,).

En répétant cette opération un nombre de fois égal & celui des points criti-
ques de @, on obtient finalement une application générique sans point double,
done un plongement (cf. aussi 4.13).

Dans la démonstration des propositions 1 et 2, nous utiliserons des modéles
de déformations qui généralisent le suivant.

4.3. Exemple typique de I’élimination d’un point double d’une courbe dans
le plan. Soit  une fonction paire de la variable réelle 2z, égale & 1 pour
J]z| <1, & 0 pour | x| > 2 et croissante pour = < 0.
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Soit ¢ l’application de la droite R de coordonnée x dans le plan R?
des coordonnées (X,Y) définie par les équations

X =x(1 — 2Y) Y =Ay(z)/(1 + x?)

ol A est une constante, 0 << A <1 (il est entendu que dans la premiére
équation, Y doit étre remplacé par sa valeur donnée dans la seconde équation).
Nous allons vérifier que

a) la courbe ¢ a un seul point double 4 = (0,1/2), a tangentes distinc-
tes, si 4 > 1/2,
D = ¢-1(4) est formé des deux points x=V24 — 1 et o’ = — V24 —1,

b) si A = 1/2, et dans ce cas seulement, la courbe ¢ a un point singulier
S =(0); 8 = ¢(8) = (0, 1/2) est un point de rebroussement.
Soit ¢,, 0 < v < 1, la déformation définie par les équations

X=z(1—2Y) Y=Ay@)(1—1)/(1+ 2.

Durant la déformation, chaque point z se déplace sur la droite
X =x(1 — 2Y) passant par c(x) et (0,1/2). De plus ¢, est constante
pour | x| > 2. D’aprés ce qui précéde, le point double sera éliminé dés que
1—24
— -

Pour vérifier a), supposons que les points distincts = et 2’ ont la méme
image par ¢. Alors X = z(1 —2Y)=2'(1 — 2Y) et Y = Ay(x)/(1 + x?
=Ayp(@’)/(1+ x'?). Comme z #2', ona X =0 et Y = Ay(z)/(1 + x?)
=1/2. Or yp(zx)<1l, donc yp(x)=(1+ 2?)/24 <1, ce qui entraine
2?2 <24 — 1< 1; mais alors y(z) =1. Donec x et 2’ doivent vérifier
Péquation z*> = 24 — 1 quin’a de solutions réelles distinctes que si 4 > 1/2.
Enfin comme dX = — 2zdY, les pentes des tangentes au point double sont
distinctes.

Un point singulier 2 doit vérifier les équations 90X /dx = (1 — 2Y) —

!’
200Y 0w =0 ot 0Y/dw = (1(;_9622): 242 _ 4. Done Y =152,
et comme §' et x ont des signes opposés, 9Y /dx ne peut &tre nul que si
= 0. Comme Y = 1/2, on doit avoir 4 = 1/2.
Nous nous concentrons d’abord sur la démonstration de la proposition 2.

T <<

4.4. Modéle pour la proposition 2.

Soient (3, ..., Zy_p, Ugs.-., Uy, ¥1,...,7,) les coordonnées de R™, ou
p+q=2n"‘"m, et (XI:'°"Xm-—n:Y1""9Ym-'n’Ul""’Ufp: Vl"“’Vq)
celles de R™.
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Posons u? = Zu;, v*=2v;, r=ut+ 02, R?= U2+ V2, et
02 =2 icmn®:. Soit y la fonction définie en 4.3 et 6(r2) = 62y (r2/632),
6, < 1. Soit « une fonction paire de ¢ comprise entre 0 et 1, égale & 1 pour
¢ =0 et & 0 pour p > ¢, nombre positif.

Définissons une famille d’applications g, de R® dans R™ dépendant
différentiablement du paramétre 7z, 0 < v < 1, par la formule

X, =x,(1 — 2Y;) X, =z,
I\ V= A@,0%,0%, 1)y (x) [(1+23), YV,=mxe,

1+ 0(?) (1 — 2a7) + 20°
1+ ud+ o '

Les fonctions «, y, 0 sont introduites afin que la déformation g, se réduise
a l'identité en dehors d’un compact. Le lecteur pourra les supposer constantes
dans une premieére lecture.

Nous allons vérifier que

l<e<m—n,U;,=u;,V,=0v,

ol 4 =1/2

1) la variété 8, ¢ R* des points singuliers de g, est définie par
z;,=0 pour 1<t <m—mn, u*—02=0(1—27)
2) la variété A, ¢ R™ des points doubles de ¢, est définie par
X, =0 pour 1 i <m—n, Y, =1]2
Y,=0 pour 1<i<m—n, —U*4+ V2> — 0(RY)(1 — 27)
3) la variété D, = g;1(4,) est définie par

— Ut 4 o2+ 6(r) (1 — 27)
1+ w2+ o2

z,=0, l<i<m—n et 3=

4) la variété S, = g,(S,) = 04, est définie par
X, =0, Y,=1/2, Y,=0, j>1, + U — V2= 6(R})(1 — 21).

On remarquera que dans chaque plan paralléle au plan des coordonnées X,
et Y, (et pour lequel Y, = X, =0, ¢> 1), on a une courbe du méme type
que celle décrite en 4.3, car 0 < A4 < 1.

Les points singuliers de g, sont ceux qui vérifient les équations
0X,/0x, = 0Y,/0x, = U,/ 0z, = 0V, /dx, = 0, équivalentes & z; = 0 pour
1>1 et 0X,/0x, = 0Y,/0x, = 0. D’apres 4.3, on a z, = 0 pour
l<i<m—n et 4=1/2, dou 1).

Si les points distincts (x, u,v) et (z',u’,v’) de R* ont la méme image

’ ’

par g,, alors z,=a; pour i>1, w;=u;, v, =v;, donc =z #*z;, et
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xx, = x,x¢; pour 1 >1, donc 2, = x; = 0. Daprés 4.3, D, est défini
par z,=0 pour ¢>1 et 2} =24 — 1, d’ou 3), et A4, est défini par
X;,=0,Y,=1/2,Y,=0 pour j>1 et 4 >1/2, d’ou 2).

Montrons encore que ¢, est générique pour v # 1/2. Il est clair que g, est
toujours de rang >n — 1, et qu’en un point singulier la condition 3) de
2.1 est vérifiée, puisqu’elle I’est pour la courbe ¢ de 4.3. On voit aisément
que la condition 2) de 2.1 est satisfaite si et seulement si 9Y,/0u; = 9Y;/dv, =
= 0, ce qui équivaut aux équations u,[6'(1 —27) —1]=0 et
v.[0'(1 —27) + 1] = 0. On a une solution pour # =v = 0, mais S, ne
contient l'origine que pour 7 = 1/2. On pourrait avoir une solution si
6'(1 —27) —1 =0 et v =0, mais ce n’est pas possible, car alors 72 =
=u=0(1 —27) <6 et 0/ =0 pour 7> < 6; de méme, on ne peut
avoir 0'(1 — 27) + 1= 0 et w = 0. Donc les points singuliers de ¢, sont
tous de type (S!) pour 7 £ 1/2. Les autres conditions de 2.5 se vérifient
aisément. Pour 7 = 1/2, l’origine n’est pas un point singulier générique pour
une application, mais seulement pour une homotopie.

L’effet de la déformation g., lorsque 7 croit de 0 & 1, est d’éliminer dans
le plan X;=0,Y,=1/2,Y,=0,7> 1, les points doubles de g, contenus
dans | U? — V?| < O(R?).

Soit K, le compact de R" défini par

|2y | <2, p2<e? et 7 <26,

et soit K, le compact de R™ défini par
| X1 <2, Z,Xi<e, 0<Y, <1, 2,V <4, R<26,.

Nous désignerons par K l'intersection de K, avecle plan z;, =0, ¢>1,
et par K’ lintersection de K, avecle plan X, =0,Y,=0,¢> 1.

La déformation g, est constante en dehors de K, et g7'(K,) = K,. Au
cours de la déformation, 'image par ¢, de tout point (x,u,v) se déplace
dans le 2-plan X, ==z, et Y, =ax,2;, pour ¢ > 1, U; =wu,;, V, = v, sur
la droite X, = z,(1 — 2Y3,).

On vérifie facilement que 4,~ K’ peut se rétracter par déformation sur
un point.

D’autre part, soit X la p-sphére intersection de D, avec le plan » =0,
z; = 0,17> 1. Elle borde dans ce plan une (p 4 1)-boule B [définie par les
équations u® < 02, 27 < (— 4?4 6(u?)/(1 + »?)]. L’image de B par g,
est homéomorphe & une (p + 1)-sphére qui borde dans le plan X; =0,
Y,=0,1>1, V=0, un sous-espace B’ homéomorphe a une (p + 2)-
boule.
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I1 est aisé de vérifier que K peut se rétracter sur (D,~ K) v B et que
K’ peut se rétracter sur g,(K) v B’'.

Démonstration de la proposition 2.

4.56. Nous désignerons encore par S et 4 les variétés des points singu-
liers et des points doubles resp. de f,. On posera D = fy1(4) et S’ = f,(S).

I1 suffira de construire, pour & assez petit, des difféomorphismes H de
K, dans V et H' de K, dans M de sorte que

1) fpbH =H'g, sur K,.

2) sur A et A, les coordonnées locales U, V se correspondent par H'

3) H-fV = g,B*~ K..

Ceci fait, la déformation f, sera définie comme l’identité en dehors de
H(K, etpar f,=H'g . H! sur H(K,).

Les trois numéros suivants sont consacrés a la construction de H et H'.

Le champ de vecteurs d/dx; de R™ sera désigné par e;, les champs de
vecteurs 9/0X,; et 9/9Y; par e; et e; respectivement.

4.6. Nous construisons d’abord des plongements H: K->V et H : K' > M
vérifiant 1), 2) et 3)

a) sur A, et D,. Le choix des coordonnées locales U, ¥V au voisinage de
¢ (cf. 4.2) définit un difféomorphisme H; de la boule
K'~(X;=Y, —1/2=0) sur B,

Larestrictionde f, & D — S est un revétement & deux feuilletsde 4 — §’;
ce revétement est trivial au-dessus de B,~ (4 — 8'), puisque cet espace est
contractile (cf. 4.4). Il existe donc deux possibilités de définir une application
H, de Dy~ K dans D telle que f,H, = H,g,. Choisissons 1’'une d’entre
elles; H, est nécessairement un difféomorphisme (cf. 3).

b) au voisinage de S, et S,. Soit D le sous-espace de D, formé des
points dont la x,-coordonnée est > 0. Construisons le long de H,(S,~ K)
un champ (&,,...,&,_,,») de m — n vecteurs indépendants et transverses
a D qui puisse s’étendre suivant un tel champ le long de H,(Df ~ K); c’est
possible car Dj ~ K est contractile. On définit alors un isomorphisme de
Pespace tangent & R" le long de S;~ K dans l’espace tangent a V le long
de S qui prolonge dH, |S, en appliquant e, sur & = dH,(e,), e; sur §&,,
+ > 1, et le champ », des vecteurs unitaires normaux & D, dans K sur »
aux points correspondants par H,. D’aprés 3.2 et 3.3, il existe des difféo-
morphismes H, et H, de voisinages de Sy~ K et S'~ K' dans V et M
resp. tels que foH, = H,g,, H, et H, étant des extensions de H, et Hj,
la différentielle dH, le long de S,~ K étant 'isomorphisme défini plus haut.
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c) sur K. Prolongeons le champ dH,(»,) suivant un champ de vecteurs
v le long de D~ f;1B, et transverse & D, ce qui est possible car
codim D =m — n > 2n — m = dim D. On peut alors (cf. 1.3) étendre H,
suivant une application H, d’un voisinage de D,~ K dans ¥V qui coincide
avec H,| K au voisinage de S;~ K et qui applique », sur ». Puisque dH,
est biunivoque le long de Dy~ K, H; est un plongement dans ¥V d’un
voisinage assez petit de Dy~ K dans K.

Considérons les restrictions de H; et H; & la sphére X = D, (v = 0)
et a la boule g,(2) resp. (cf. 4.4). Comme =x,(f) = 0, nous montrerons en

4.9 que ces applications peuvent étre étendues suivant des applications H
de B dans V et H de B’ dans M resp. (cf. 4.4) telles que fol_{-= iﬁgo
sur B.

Comme K peut se rétracter sur (D,~ K) v B, il est possible d’étendre H,
suivant une application H, de K dans V, la restriction de H, a B étant

homotope a H.On peut choisir H, générique (2.5); ce sera donc un plonge-
ment car 2dim K = 4n —2m 4+ 2<n=dim V. On peut supposer de
plus que H;'(D) = D,~ K, car on peut construire H, transverse a la sous-
variété D — H,(Dy~ K) (cf. 1.8), c’est-a-dire ne la rencontrant pas puisque
dimK =2n—m +1<m—n = codim D.

d) sur K'. L’application H; de g¢,(K) dans M est bien définie par la
condition f,H, = Hyg,. En vertu du fait que g, et f, sont génériques, de
3.13 et 1.2, il est possible d’étendre la définition de H; sur un voisinage de
Ao~ K dans K' de sorte que Hy soit un plongement et qu’il coincide avee
H, restreint & un voisinage de S, dans K’'. Soit », le champ des vecteurs
unitaires normaux a g,(K) — 4, dans K’'. Prolongeons le champ de vecteurs
dHg(v,) suivant un champ de vecteurs » le long de Hy(goK — 4,) transverse
& f,V. Appliquant 1.3, on peut encore étendre la définition de H, sur un
voisinage de ¢g,K dans K’ de sorte que dHg(v,) ='; ainsi H; est un
plongement dans M d’un voisinage de g, K dans K'.

Les restrictions & g,(B) de H; et H' sont homotopes (cf. c)). Comme
K’ peut se rétracer sur go(K) v B’, il est possible d’étendre H, suivant une
application H; de K' dans M que I’on peut supposer étre un plongement,
car 2dim K' = 4n — 2m 4+ 4 <m =dim V. On peut supposer enfin que
H, f,V = goR*~ K', car H,(K'), qui est une sous-variété de dimension
2n —m + 2, évite génériquement unesous-variété de codimm —n>2n—m +2.

Nous avons ainsi obtenu des plongements H = H, de K dans V et
H' = H, de K' dans M vérifiant les conditions 1), 2) et 3) de 4.5.

4.%7. Notre but est maintenant de définir dH et dH’ sur les vecteurs
tangents &4 R et R™ d’origine K et K' de sorte que
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4) df,-dH = dH'-dyg,

a) Considérons le champ dH,(e;), 1 <t < m — n, défini au voisinage de
H(Sy~ K) (cf.4.6,Db)) et qui est formé de m —n — 1 vecteurs linéaire-
ment indépendants et transverses & H(K). Comme ce champ peut se prolon-
ger & H(Dj ~ K) avec les mémes propriétés (4.6, b)) et que K et Df ~ K
peuvent se rétracter par déformation sur un point, on peut trouver le long
de H(K) un champ de m —n — 1 vecteurs indépendants &,,..., &, _,,
transverse & H(K) et qui coincide avec le champ donné dH,(e;) au voisinage
de H(S,~ K). Soit N le fibré engendré par les §&,.

Nous définissons dH par linéarité en posant dH(e;,) = &,, ¢ > 1.

b) Construisons de méme le long de H'(K) un champ transverse de
(2m — 2n — 2)-plans N’ qui contienne l'image de N par df, et qui soit
engendré au voisinage de H' (S, ~ K') par dH,(e;) et dH,(c;), 1 <i<m —mn,
(cf. 4.6, b)).

Remarquons que dg, applique le vecteur e;, ¢ > 1, pris en un point de
K de coordonnée z, sur le vecteur e; + x,¢;; le champ de vecteurs e; est
donc transverse a g¢,(R").

Construisons un champ N3 de (m — n — 1)-plans le long de f,H(K) et
au voisinage de H'(S;~ K'), contenu dans N’, et tel que

1) N? soit complémentaire & dfy(N),
2) au voisinage de H'(S; ~ K'), Ny est engendré par &, = dH,(e;), 1> 1,
3) en un point H'(d), ou d e 4,, N3 est engendré par

g = dfo-dH [ei(dy)] — dfo-dH [e,(dy)]
i z,(dy) — 21 (dy)

ou d;, et d, sont les deux points de D, appliqués sur d par g,, x;(d;) et
z,(d;) étant leur z,-coordonnée.

c) Le long de foH(K), considérons un champ N? de (m — n — 1)-plans
contenu dans N’ et complémentaire & N3. Ce champ a une trivialisation
naturelle E:, 1<i1<<m —n, asavoir la projection du cha.mp dfo(.,’-'i) par-
alltlement & NJ. On désire maintenant étendre le champ {-'2, voes &m_p dans
N’ le long de H'(K’); comme go(K) a le type d’homotopie d’une (p + 1)-
sphére, on rencontre une obstruction qui est mesurée par un élément de
Tpr1 (Vi tonea), Ol Vin"l, est la variété de STIEFEL des (m — n — 1)-
reperes de I’espace numérique de dimension 2m — 2n — 2. Or ce groupe est
trivial, car p+ 1 <<2n —m +1<m — n — 1. Cette extension est donec
possible et sera notée &;,i> 1.

d) Le champ N) peut étre étendu suivant un champ N, complémentaire
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dans N’ au champ engendré par les E;-, 1 > 1. Choisissons maintenant un
champ de (m — n — 1) vecteurs &;,¢> 1, qui engendre N, et qui coincide
le long de H'(A4,~ K') et au voisinage de H’(S,~ K') avec le champ donné
en b), 2) et 3).

Nous définissons alors dH'(e;) = &;,1 > 1.

e) Définissons enfin &; le long de f,H(K) en faisant correspondre & un
point foH(a), ou aeK, le vecteur df,[&,(a)] — x,(a)é&;(a); au voisinage
de H'(Sy~ K'), on posera aussi & = H'(e;). Ona & = & modulo N2. On
étend £; le long de H’'(K’') de sorte que cette condition reste vérifiée. On
posera finalement dH'(e;) = &;,1> 1.

Il résulte immédiatement de la construction de dH et dH' que l'égalité
4) est satisfaite.

4.8. D’apres 1.3 (ou en utilisant une métrique riemanienne), il est pos-
sible d’étendre H a K,, si ¢ est assez petit, suivant un difféomorphisme dont
la différentielle dH le long de K a la valeur prescrite précédemment, et qui
coincide avec H, au voisinage de (S, ~ K) (cf. 4.6, b).

Par la condition 1) de 4.5, H' est défini sur g¢,(K,.) et aussi au voisinage
de Sy~ K’ (cf. 4.6, b). Il est aisé de vérifier que, au voisinage de tout point
de g,(K,), cette définition de H’ peut étre étendue de sorte que dH' ait
la valeur donnée dans 4.7, car K coupe transversalement g,(K,). D’aprés
1.3, il est donc possible, pour ¢ assez petit, d’étendre H' sur K,, de sorte
que la condition 1) de 4.5 soit vérifiée. Si ¢ est assez petit, H' sera un difféo-
morphisme et la condition 3) de 4.5 sera aussi vérifiée, puisqu’elle I'est déja
sur K et K'. La démonstration de la proposition 2 sera donc achevée, une
fois démontré ce que nous avons utilisé en 4.6, c).

4.9. Considérons dans I’espace numérique RP+%(x,y,u,,...,u,) la demi-
boule BPI? définie par «2+ y% + w? < 63, y > 0. Son bord est formé de
I’hémisphére SP31: 22 4 y2 + w2 = 6%, y >0 et de la boule Br+l:

2% + u? < 6, y = 0. Soit enfin 87 le bord de Br+1,

Nous pouvons construire un homéomorphisme % de S?i' sur la boule
B ¢ K ¢ R (cf. 4.4) appliquant un point de 8?X! de coordonnées (z,y, u)
sur le point de B de coordonnées 2, = z/(1 + w?)..., » = u. Soit h, 'appli-
cation continue de BP+! dans B’ ¢ K' ¢ R™ qui envoie un point (x, 0, u)
sur le point de B’ de coordonnées X, =0, Y,=1/2, U,=2u; ou
Oow;/(x? + u?)!/? suivant que (22 + u2)2 < 6,/2 ou > 6/2. Il est possible
de construire une application continue A’ de B?I? sur B’ dont la restriction
& lintérieur de BP}! est un homéomorphisme et qui est égale & g,k sur
8?11 et & hy sur BrtL,
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Nous considérons maintenant le «mapping cylinder» M, de f,, l'injection
¢t de V dans M, et la projection naturelle j de M, sur M (cf. 0.4). L’ap-
plication ¢H;h de S? dans M, peut étre étendue suivant une application
p de Br+l dans M, telle que jy = H;h' sur B?+!, Comme y envoie S?
dans le sous-espace ¥V de M,, elle représente un élément de =, (M,, V) =
= m,,4(f) = 0. Il est donc possible d’étendre y suivant une application con-
tinue ¥ de B?i' dans M, envoyant S?}' dans V.

Alors ¥Yh~1 est une application H de B dans V prolongeant H, et
application H' de B’ dans M définie par j¥ = H'} vérifie f,H = H'g,
sur B.

Démonstration de 1a proposition 1.

Construction d’un modéle.

4.10. Définissons une famille d’applications ¢ dépendant du paramétre

7, o1 0 <1, de R "(a,...,2,_,,u) dans
R¥m-mty(X, ..., X, Y, ..., Y,._n, U) par les équations
X, =z (1 —2Y,) X, =z, l<i<m—n,U=nu

Y, = A(u, 0% )y (x) /(L + 2}, Y, = 2,
ol A = Au — axtuy]

y, 0,0 étant définis comme dans 4.4,

u, et 6 étant des nombres > 0, 0 < u,,

J une fonction d’une variable «, égale a 0 pour % < — §, strictement
croissante entre — 6 et + &, égale & 1/2 pour w =0 et a 1 pour u > 4.

On vérifie, comme dans 4.4, que

1) ¢° a un seul point singulier 8%: z;, = 0, u = Tu,,
2) la courbe A? des points doubles de ¢ est la demi-droite

X, =0, Y,=1/2, Y,=0, j>1, U3>r7u,

et que ¢° est générique pour tout 7.

L’effet de la déformation est ainsi de repousser les points doubles le long
de la demi-droite A3.

Soit K° le compact de R™ "*! défini par

7] <2, <&, —d<u<uy+d
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et soit K. le compact de R2m-2n+1 défini par

[ X, <2, 2, Xi7<e, 0Y, <1, 2,,VI<4e?, —o<u<<ny+ 4,

J

et soient K° et K'® leur intersection avec le plan z, = 0, j > 1, et le plan
X;,=0,Y;=0, > 1, respectivement.

Comme dans 4.4, la déformation est constante en dehors de K? et ’on a
9 (K.)) = K.

4.11. Plagons-nous maintenant dans les hypothéses de la proposition 1,
S et A étant la variété des points singuliers et des points doubles resp. de
fo, 8" = fo(8) et D = f5*(4).

Construisons un champ de vecteurs » le long de S transverse a D, ce
qui est possible car codim D =m — n > 2n — m — 1 = dim §; soit E, le
fibré linéaire trivial engendré par ». Soit E,,_,_; un fibré de base S engendré
par un champ de (m — n — 1)-plans le long de S complémentaire & D et
a FE,. Désignons enfin par L le fibré linéaire engendré par le champ des
noyaux de df, le long de 8.

Le fibré N=L + K, _, , + E, est isomorphe au fibré normal a S dans
V. Nous pouvons réduire le groupe structural de L au groupe orthogonal
0(1), celuide K, _,; & 0(m —n — 1) et celui de E, a l'identité en con-
sidérant que » est un champ de vecteurs unitaires. Identifions la fibre type

de N a Rmm+l l’espace numérique des coordonnées (z;,..., &, _,,u),
la fibre de L étant identifiée & 'axe des x,, celle de #,_,_, au plan des
variables «,,...,z,_, et celle de E, a l’axe des w.

Soit N’ le fibré associé a N de fibre R¥™+1(X, ..., X, .. Y, ...,
Y,—n, U), un élément du groupe structural de N représenté par les équa-
tions z; = + x4y, x; = alx;, i, j> 1, ' = w définissant la transformation
Xi=4+X,X;=0aX,,Y;= +04lX,, Y=Y, =Y, U =TU.

Soit alors g, l’application fibrée de N dans N’, se projetant sur I'identité
de § et qui, sur chaque fibre, se réduit & application g7 définie en 4.10,
u, étant @, — ¢,. Ceci a un sens, car g7 commute avec les opérations du
groupe structural. On vérifie immédiatement que g, est une application géné-
rique de N dans N', pour tout 7; les variétés S, et 4, des points singu-
liers et des points doubles de g, resp. sont la réunion de S et Ay resp. dans
chaque fibre. Désignons par U la fonction sur 4, égale a la coordonnée U
dans chaque fibre. Enfin soient K, et K, les compacts de N et N’ resp.
qui coupent chaque fibre suivant K, et K.’ resp.

4.12. Pour construire la déformation f,, il suffira comme dans 4.5 de
construire des difféomorphismes H: K,V et H': K,—~ M tels que
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1) fH = H'g, sur K,

2) sur 4 et 4, les fonctions ¢ et U + ¢, se correspondent par H’

3) H-f,V =g N~ K,.

On définira alors f, comme l'identité en dehors de H(K,) et par
f,=H'g,H sur H(K,).

La construction de H et H' est tout a fait analogue & celle décrite en
4.6 & 4.8 dans le cas de la proposition 2, et nous ne la répéterons pas. Remar-
quons simplement que I’on n’a pas d’obstructions homotopiques comme dans
4.6, ¢),d) et 4.7, c), car Dy~ K peut se rétracter par déformation sur S et
go(K) sur §'.

4.13. Remarque. Dansle cas ot V a un bord 9V et ou g est une applica-
tion de V dans M qui soit un plongement au voisinage de 9V et telle que
g(@V)~g(V — 0V) = @, on construit d’abord une application générique f
proche de g, vérifiant donc les mémes propriétés que g, et égale a g au
voisinage de dV. La sous-variété des points doubles de f ne rencontre pas
f(@¥V). On peut donc effectuer sans aucun changement les constructions pré-
cédentes en prenant garde simplement que H(K,)~oV =0 et que
H' (K))~f(dV) = @, ce qui est toujours possible, pour & assez petit, car
dm K =2n —m + 2<m — n + 1 = codim f(3V).

4.14. Remarque. Dans la proposition 2, au lieu de supposer 2m > 3(n + 1),
il suffit de supposer 2p 4+ 2<n et p+n + 2 <m.

En effet, il existe un difféomorphisme de K, dans un voisinage arbitraire
de la réunion P de Dy~ K et dela (p + 1)-boule B (cf. 4.4), ce difféomor-
phisme étant fixe sur B. De méme, il existe un difféomorphisme de K, dans
un voisinage arbitraire de la réunion P’ de A,~ K et dela (p + 2)-boule
B' (cf. 4.4), aussi fixe sur P’. Ainsi dans les inégalités de 4.6, c) et d),
2n — m = dim 4, peut étre remplacé par p.

Dans la proposition 1, il suffit de supposer 2m > 3n + 1 (pour assurer
Iexistence du champ de vecteurs », cf. 4.11), car il existe des difféomorphis-
mes de K, et K, dans des voisinages arbitraires de Dy~ K et A,~ K res-
pectivement.

b. Existence d’isotopies

6.1. Théordme. Soit V, une variété compacte sans bord de dimension n,
et M, une variéié de dimension m,. On suppose 2my > 3(n, + 1).
Soit g une applicationde V, dans M, telle que m,, ,, ,2(g) = 0. Alors
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deux plongements de V, dans M, homolopes & g sont isotopes.
(C’est le théoréeme d’existence b) de I'introduction.)

5.2. Posons V=V, XI, M=Myx I, m=my+ 1, n=my+ 1. Ainsi
Ton_mi1(9) = 0 eb 2m >3(n + 1).

Désignons par ¢ et ¢ les projections de Vyx I et Myx I sur I.

D’aprés 2.7, il existe une homotopie générique reliant les deux plongements
donnés de ¥V, dans M,; désignons par f l’applicationde V = Vyx I dans
M = M,x I associée a cette homotopie. On a ¢t =t'f, f est une application
générique de V dans M et les points singuliers de la restriction de ¢’ a la
variété A des points doubles de f ne se trouvent pas sur le bord 8’ de 4.

Nous allons maintenant reprendre la démonstration et les notations du § 4
appliqué a la situation ci-dessus. Il s’agit de déformer P'application générique
f: V> M comme au paragraphe précédent, en la laissant fixe sur oV =
= (Vo X 0) v (V, X 1), et de sorte que, pour chaque déformation f., on
ait ¢ = t'f,. Nous allons donc simplement indiquer quelles sont les précisions
a apporter pour que cette nouvelle condition soit vérifiée.

Dans 4.2, on supposera que les variétés de niveau ¢ = ¢y, ¢ = ¢, ¢_ = ¢,
¢, = ¢ ne contiennent pas de points singuliers de la restriction de ¢' & 4.
Dans les hypotheses des propositions 1 et 2, on suppose donc que f, corres-
pond & une homotopie générique, et on exige dans les conclusions que, pour
tout 7, onait t =1¢'f,.

Pour démontrer la proposition 2 avec cette condition supplémentaire, on
part du méme modéle qu’en 4.4 en introduisant de plus dans K, la fonction
t, définie par £ (X,Y,U, V)=t (U,V)+ X,, ou t'(U, V) est la restric-
tion de la fonction ¢’ & A exprimée dans les coordonnées locales (U, V)
dans la boule B,. On pose #, = y9g,.

Les difféomorphismes H et H' de 4.5 devront alors vérifier de plus la
condition

1) to=1tH et t,=1t'H'.
Comme la déformation ¢, vérifie la condition ¢, = f,g,, elle définira
comme dans 4.5 une déformation f, telle que ¢t =1t'f,.

5.3. Nous suivons maintenant 4.6 en indiquant a chaque pas ce qu’il faut
pour que 1)’ soit vérifié.

Rien n’est changé dans a). Dans b), on impose de plus au champ
(&,..., En_n,?) de vérifier <dt, &> =1, <dt, §> =0 pour &> 2,
<dt, v> = <dt,, v,> aux points correspondants par H;. On peut réaliser
la premiére condition en appliquant le lemme 5.5 qui suit. Ceci fait, comme
dt restreint & la somme du fibré tangent & D et du fibré engendré par §&,
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est partout de rang 1, la construction du champ (&,..., &,_,,7) revient a
celle d’une section d’un espace fibré de base I’espace contractile H,(D§ ~ K).
On construit ensuite H, et H, en appliquant 3.4.

Dans c), v doit vérifier <dt,» > = < dt,, v, > aux points correspondants
par H,. Pour cela on construit d’abord &, le long de D et transverse 4 D
de sorte que <dt, & > =1 (cf. 5.5); la construction de » satisfaisant & la
condition imposée et transverse & D et &, est la construction d’une section
d’un fibré affine de base D qui évite un sous-fibré affine de codimension
m—n—1>2n—m=dimD. On pourra ensuite trouver H; tel que
tH; = t, en tenant compte de 5.6. Enfin pour construire H, tel que tH, = ¢,
restreint &4 K, on utilise 2.9.

Dans d), on construit les extensions successives de H; en tenant compte
de 5.6. Le champ de vecteurs » doit vérifier de plus < dt', v > = < dty, vy >
aux points correspondants par Hg; comme ¢ restreint & f,V est une fonec-
tion non singuliére, la construction de +»' revient de nouveau & celle d’une
section d’un fibré affine de base Hg(g,K) ne rencontrant pas un sous-fibré
affine de codimm —n>2n —m 4 1 = dim K. Enfin on construit H,
par 2.9.

b.4. Dans 4.7, dH et dH' doivent vérifier de plus

4)' dty=dt-dH et dty=dt'-dH' .

Les conditions supplémentaires sont, dans a), <dt’, &> =1 (cf. 5.5),
<dt, &> =0 pour ¢>2, dans b), <di’, Ny> =0, dans ¢), <dt,
&>=1 et <dt', &> =0 pour ¢> 2. Ceci ne présente aucune difficulté
nouvelle.

Enfin dans 4.7, on tient de nouveau compte de 5. 6.

Les précisions & apporter a la démonstration de la proposition 1 sont tout
a fait semblables.

5.5. Nous démontrons maintenant ce que nous venons d’utiliser.

Lemme. Soit S wune sous-variété d’une variété V et t une fonction numéri-
que non singuliére sur V. On suppose dim 8 < codim S.

Etant donnée une fonction « sur S qui ne ’annule pas en méme temps que
la différentielle dt de t restreinte a S, il existe le long de S wun champ de
vecteurs v tel que

1) » est transverse a S,

2) <dt,v(8)> = n(s) pourtout seS.

11 est tout d’abord possible de construire un champ de vecteurs » le long
de 8 vérifiant 2), car ceci revient & construire une section d’un espace fibré
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E dont la fibre est un espace affine. Soit F le fermé de S formé des points o
dt restreint & 8 s’annule identiquement; d’aprés I’hypothése sur «, » est
certainement transverse & S aux points de F. En dehors de F, la condi-
tion 1) signifie que » n’appartient pas au sous-fibré affine £, de E formé
des vecteurs », tangents a S et tels que < d¢,»,> = «. La codimension
de E, dans E est égale a celle de § dans V. Donc si dim 8 < codim 8,
il sera toujours possible d’étendre une section de A définie sur F en une
section sur S ne rencontrant pas E,.

b.6. Remarque. Soient V et M des variétés et ¢ une application de V
dans une variété R. Désignons par p et ¢ les projections naturelles de
M X R sur M et R respectivement. Soit f une application d’un voisinage
d'un fermé F de V dans M X R telle que, sur F, d(t'f) = dt. 1l existe
alors une application f' d’un voisinage de F dans M X R telle que ¢'f = ¢
et que df = df sur F. Il suffit en effet de définir f' par f = (pf, ).

6. Théorémes d’approximation

6.1. Les variétés V et M sont supposées munies de métriques rieman-
niennes complétes; la distance de deux points z, et z, est notée d(z,, ).

Théoréme. Sott V wune variété compacte de dimension n et M wune variété
de dimension m. On suppose que 2m = 3(n + 1).

Etant donné un plongement topologique g de V dans M et un nombre positif
¢ arbitraire, il existe un plongement différentiable f de V dans M tel que
dlf(x),g(x)] < e pour tout xeV. De plus si g est un plongement différen-
teable au voisinage d’un fermé F de V, on peut supposer que =g sur F.

L’idée de la démonstration est d’approcher g par une application générique
f et d’éliminer pas a pas les points doubles de f comme au § 4. Si f est suf-
fisamment proche de g, les paires de points de V appliqués par f sur un
méme point de M sont trés proches, donc liés par une unique géodésique; il
en résulte que 1’on ne rencontre aucune obstruction homotopique dans I'iden-
tification avec le modele (4.6 a 4.7).

6.2. Il existe un nombre ¢ > 0 (resp. o’ > 0) tel que deux points de V
(resp. M) dont la distance est inférieure & o (resp. ') sont joints par un seg-
ment géodésique unique de longueur égale a la distance de ces points et dépen-
dant continuement de ces points.

Lemme. Etant donné un nombre 7> 0, il existe une application générique
[: V— M telle que
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a) d[f(z), g(x)] <n pourtowt xeV,
b) s f(x) = f(y), alors d(x,y) <p et, pour tout couple de poinis x,,y,
sur le segment géodésique joignant = a y, d[f(x,), f(y))1 < 7.

Démonstration du lemme. Comme ¢ est une application continue, il existe
un nombre «, 0 <ax <p, tel que, si d(x,y) <«, alors d[g(z), g(y)] < n/2.
D’autre part, comme g est biunivoque et V compacte, il existe un nombre
B>0 tel que si dlg(x), g(y)] <B, slors d(z,y) <.

Soit alors f une application générique (cf. 2.5) de V dans M telle que
d[f(ﬂ?), g(x)] < min (77/4a B/2). Si f(x) = f(y)’ alors

dlg (), 9(y)] < d[g(=), f(x)] + dlg(y), [y <B,
donc d(z,y) <« <p. D’autre part, si d(z,y) <«, alors
d[f(?)éf ] <d[f(z),9(x)]1+dlg(z),9(¥]+2lg (). f(¥)]I<n/4+n/2+ 4 =7,
c.q.f.d.

6.3. Démonstration du théoréme. Nous voulons montrer que si 1’on part
d’une application générique f vérifiant la condition b) du lemme, avec 5 < ¢,
chacune des déformations f, de f=f, qui interviennent dans les proposi-
tions 1 et 2 de 4.2 peut étre effectuée de sorte que d[f,(z), fo(x)] < #n et que
f, vérifie la condition b) du lemme.

Remarquons tout d’abord que dans les modéles 4.4 et 4.10, il existe une
déformation de K, qui déplace les points sur les segments o paralléles &
Paxe des =z, et qui rétracte K, sur I'union du plan 2z, = 0 et du compact
2 composé des segments de droites joignant les paires de points de Dy~ K
qui ont méme image par g,. De méme soit 2’ le compact de K’ formé des
segments de droites paralléles au plan P des variables X, Y;, et qui joignent
les points de ¢,(2) aux points de 4,. Il existe une rétraction de K, sur
Punion du plan X; =0, Y; = 1/2 et de ', les points se déplagant sur les
segments ¢’ paralléles & P et contenant un point du plan X, = 0,Y, = 1/2.

En vertu de ce qui précéde et de la condition b) sur f, il est possible d’étendre
Papplication H, de D,~ K dans ¥V, donnée en 4.6, a), suivant une applica-
tion continue H de K, dans V qui applique tout segment o sur un segment
géodésique de longueur < p. L’application de g,(K,) dans M faisant cor-
respondre & tout point z' = g,(z) le point foI-T(x) , peut étre étendue suivant
une application H' de K, dans M appliquant tout segment de droite o’
sur un segment géodésique de longueur < 7.

Ensuite, dans 4.5 et 4.7, on pourra construire H et H' trés proches de

H et H' desorte que, pour deux points quelconques = et y de tout segment
o, on ait 1) d[H(x), H(y)]<e, 2) d[foH (%), foH(y)] <7, et pour deux
points quelconques z',y' de tout segment o', 3) d[H'(x'), H' (¥')] < 7.



Plongements différentiables de variétés dans variétés 81

Or au cours de la déformation f_, les points se déplacent sur les arcs H (¢');
donc d’aprés 3), d[f,(x), fo(x)] <@ pour tout xe V. D’autre part les points
de H(K,) qui ont méme image par f, se trouvent sur un arc H (o); leur dis-
tance est inférieure & ¢ et d’apres 2), la condition b) est vérifiée.

Enfin on peut supposer qu’il y a au plus 3 déformations f, qui déplacent
un point z donné de V. En effet, soient fi,i=1,..., N, les déformations
successives que l'on doit effectuer pour éliminer les points doubles (4.2),
Hi:K!—V,H :K}—> M les identifications avec les modéles qui servent &
les définir (4.5, 4.12). En choisissant J assez petit dans le modele 4.10, on
peut supposer que tout point de A appartient au plus & 3 compacts H'¢(K.)
(cf. 4.2). D’autre part, si H'*(K.')~ H1(K.')~ A = @, on pourra supposer
H{(K)~HI(K') =@, car 2dim K =4n —2m + 2<n=dim V.

En choisissant donc une application générique f vérifiant les conditions
du lemme avec 7 < ¢/4, on obtiendra aprés ces déformations successives le
plongement désiré.

Si g est déja un plongement au voisinage de F, on partira d’une applica-
tion générique f telle que les segments géodésiques joignant les paires de
points de ¥ ayant méme image par f, ne rencontrent pas F. On pourra
donc supposer qu’aucun des compacts H?(K®) ne rencontre F'; ainsi chaque
déformation f! sera constante sur F.

Le théoréme d’approximation pour les isotopies (cf. introduction) se dé-
montre exactement de la méme maniére.

6.4. Nous énoncerons pour terminer un autre théoréme dont la démonstra-
tion sera laissée au lecteur, car elle est aussi trés semblable a la précédente.

Théoréme. Soit f un plongement d’une variété compacte V de dimension n
dans une variété M de dimension m. On suppose 2m > 3(n + 1). Il existe
un nombre ¢ dépendant de f tel que tout plongement f' de V dans M avec
dif(z), f' (x)] < e, pourtout eV, estisotoped f.
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