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Plongements différentiables de variétés dans variétés1)

par Andbé Haefliger Princeton, N.J. (USA) Institute for Advanced Study

Introduction

Le but de ce travail est de démontrer une partie des résultats annoncés
dans [2].

Les variétés et les applications de variétés dans variétés considérées ici
seront toujours indéfiniment différentiables, sauf mention explicite du
contraire. Un difféomorphisme est un homéomorphisme différentiable dont Fin-
verse est aussi différentiable. Un plongement d'une variété compacte F dans
une variété M est une application biunivoque de F dans M dont le rang
est partout égal à la dimension de F.

Deux plongements /0 et fx de F dans M sont isotopes (ou difféotopes)
s'il existe une application F : F X I-> M, où / est l'intervalle [0, 1], telle
que, pour tout tel fixé, l'application x->F(x,t) est un plongement de
F dans M, égal à /0 pour t 0 et à fx pour t 1. L'application F
est appelée une isotopie (ou difféotopie) reliant f0 à fx,

Cette définition est équivalente à la suivante (F étant toujours supposé
compact) : il existe une application H : M X J -> M telle que, pour tout
tel fixé, l'application x->H(x,t) est un difféomorphisme de M sur M,
égal à l'identité pour t 0 et tel que jx(x) H (fo(x), 1).

L'équivalence de ces deux définitions a été remarquée par Thom dans [6].

Théorème d'existence. Soit F une variété compacte connexe sans bord de

dimension n et soit M une variété de dimension m. Soit f une application
continue de F dans M telle que n^f) 0 pour i < k + 1 (i.e. Vhomo-

morphisme n{(F)->rct{M) induit par f est un isomorphisme pour i ^.k et

est surjectif pour i k + !)• Alors

a) / est homotope à un plongement si m^2n ¦— k et n > 2k + 2 (ou,
ce qui revient au même, m ^ 2n — k et 2m > S(n + 1)),

b) deux plongements de F dans M homotopes à f sont isotopes si
m > 2n — k et n^2k + 2 (ou m > 2n — k et 2m> 3(n + 1))

En particulier, si F est fc-connexe et M (k + l)-connexe, le théorème
s'applique pour toute application /. Le fait que les hypothèses de connectivité

sur F et M peuvent être remplacées par les hypothèses sur n^f)
(voir 0.4) m'a été suggéré par J. Milnor.

x) This work was partially supported by NSF Grant G-10.700.
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Ce théorème est une généralisation des résultats classiques de Whitney
(cf. [8], [12]) et d'un théorème de Wu [15].

Dans l'énoncé suivant, deux plongements topologiques /0 et fx de F dans
M sont dits isotopes, s'il existe une application continue F : F X / -> M
telle que, pour chaque t fixé, x->F(x,t) est un plongement topologique,
égal à f0 pour t 0 et à fx pour t 1.

Théorème d'approximation. Soient F une variété compacte de dimension n
et M une variété de dimension m.

a) Tout plongement topologique de V dans M peut être approché arbitrairement

près par un plongement différentiable si 2 m > 3(n + 1).

b) Deux plongements différentiables de V dans M qui sont isotopes en
tant que plongements topologiques, sont aussi difféotopes, si 2m > 3(n + 1),
Visotopie différentiable pouvant approcher Visotopie topologique.

Ce théorème est démontré ici seulement si F n'a pas de bord, bien qu'il
soit encore valable sans cette hypothèse. En revanche, le théorème d'existence

n'est pas vrai en général si F a un bord non vide (par exemple les

hypothèses de connectivité sur F pourraient être remplacées par des
hypothèses de connectivité de F modulo sa frontière).

Nous n'utilisons aucun résultat récent, mais exclusivement les techniques
développées par Whitney (et mises sous forme générale par Thom) dans
l'étude des singularités des applications différentiables.

La première partie (§ 1 à § 3) est consacrée à l'étude des applications
génériques de F dans M, où 2m > 3w; la seconde (§ 4 à § 6) contient la
démonstration des théorèmes annoncés.

Dans le § 1, nous rappelons quelques théorèmes généraux qui sont à la base
de l'étude des singularités des applications différentiables. Au § 2, nous
définissons avec précision la notion d'application générique de F dans M
(2m> 3n) et nous montrons l'existence de telles applications. Enfin le § 3,

qui est une extension simple de résultats classiques de Whitney, étudie plus
précisément le comportement d'une application générique le long de la sous-
variété des points singuliers. Les seuls faits nécessaires pour comprendre la
suite sont 2.5, 2.7 et 3.2 à 3.4.

La démonstration du théorème d'existence a) occupe le § 4. La méthode est
en gros la suivante. On remplace l'application donnée de F dans M par
une application homotope / générique, c'est-à-dire une application dont
l'aspect géométrique est le plus simple possible. Les points doubles de /
forment une sous-variété A dans M dont le bord est l'image par / des points
où le rang de / est inférieur à n. On déforme alors pas à pas l'application /
pour éliminer progressivement les points doubles le long de A. Pour décrire
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chaque déformation, nous construisons un modèle explicite d'une déformation
d'une application de Rn dans Rm et nous identifions ce modèle avec la
situation donnée en utilisant les hypothèses de connectivité et les inégalités
sur les dimensions.

La démonstration du théorème d'existence pour les isotopies suit le même
schéma, et nous indiquons au § 5 quelles sont les précisions nouvelles à apporter.

Enfin le § 6 contient la démonstration des théorèmes d'approximation.
La méthode utilisée dans ce travail est très directe et géométrique. Elle a

donc le désavantage d'être difficile à rédiger; mais nous espérons cependant
qu'elle permet de rendre clair à l'intuition spatiale les propriétés démontrées,
pour autant que le lecteur ait la patience d'étudier très attentivement les
modèles de déformations (4.4 et 4.10) et de faire des croquis pour les petites
dimensions.

Plusieurs autres résultats, concernant notamment les variétés à bord et les
premières obstructions, pourraient être obtenus par des méthodes semblables.
Nous préférons revenir sur ces questions dans une publication ultérieure (qui
donnera en particulier la démonstration du théorème 3 de [2] et sa généralisation

au cas où Rm est remplacé par une variété M en utilisant des résultats
plus récents tels que la classification des immersions d'après Smale-Hirsch
et la théorie des obstructions de Shapiro-Wf.

Terminologie et notations

0,1. Rappelons encore une fois que toutes les variétés considérées ici seront
supposées implicitement indéfiniment différentiables et paracompactes, et
que par application d'une variété dans une autre, nous entendons toujours
une application indéfiniment différentiable. Par exemple une fonction numérique,

sur une variété F est une application indéfiniment différentiable de F
dans la droite numérique R. Une sous-variété W de F signifie aussi une
sous-variété indéfiniment différentiable, c'est-à-dire un sous-espace de F
défini localement par les zéros communs d'un nombre fini de fonctions
indépendantes; la codimension de W dans F est égale à la différence de la dimension

de F et de la dimension de W.
Si / est une application de X dans Y, la restriction de / à un sous-

ensemble Z de X est notée f\Z. De même si E est un fibre de base B
et de projection p, et si A est un sous-espace de B, la restriction y1 (A)
de E à A est notée E | A. La fibre de E au-dessus d'un point x de B
est désignée par Ex.

0.2. Le fibre des vecteurs tangents à une variété F est noté T(V); Vx
est l'espace tangent à F en un point xe F. Toute application / d'une

4 CMH vol. 36
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variété F dans une variété M induit une représentation df : T(V)-+ T(M)
appelée la différentielle de /; elle applique un vecteur de Vx sur un vecteur
de F/a5. En particulier, si / est une fonction numérique sur F et v un
vecteur de Vx, df(v) est un vecteur de R déterminé par son origine f(x) et
par sa longueur notée <eZ/, #>.

Un point singulier (ou critique) d'une application / de F dans M est un
point x e V où le rang de f (c'est-à-dire le rang de l'application linéaire
df | FJ est inférieur au minimum de la dimension de F et de celle de M.
Un point double de / est un point y de M tel que f~x(y) se compose de
deux points distincts.

Dans l'espace numérique Rn de coordonnées xx,..., xn, on désigne par
djdXi le champ de vecteurs qui associe à tout point le vecteur dont toutes les

composantes sont nulles, sauf la ième égale à 1.

0.3. De la théorie des jets infinitésimaux de C. Ehresmann [1], nous
n'utiliserons que les définitions les plus élémentaires, et seulement pour
démontrer l'existence des applications génériques (2.5). Rappelons que deux
applications / et /' de F dans M définies au voisinage d'un point x de
F ont le même jet d'ordre r en x si, exprimées dans les mêmes coordonnées
locales, les dérivées partielles d'ordre < r de / en x sont égales aux dérivées

partielles correspondantes de f en x. Le point x est la source du jet
d'ordre r de / en x et y f(x) est son but.

L'ensemble des jets d'ordre r de F dans M forme une variété (différen-
tiable) notée Jr(V,M). La projection associant à chaque jet sa source
définit sur Jr(V,M) une structure fibrée de base F. Toute application /
de F dans M définit une section f de ce fibre, celle qui associe à tout
x c V le jet d'ordre r de f en x. Par exemple, si r 0, J°(V, M)
V X M et f°: x-+ (#,/(#)) sera souvent identifié à /. Si r= 1,
JX(V, M) est l'espace fibre sur F dont la fibre au-dessus de x est l'espace
des applications linéaires de Vx dans une fibre arbitraire de M. La donnée
de la différentielle df de / en un point est équivalente à celle du jet d'ordre 1

de / en ce point.
Un jet singulier est le jet d'une application en un point singulier.

0.4. Définition du groupe ^(/J. Rappelons que si / est une application
continue d'un espace X dans un espace Y, le «mapping cylinder» de / est
l'espace Yf obtenu en identifiant dans l'espace somme (X X /) ^ Y les

points (x, l)eX X / et f(x)eY. L'espace X s'identifie au sous-espace
1 X {0} de Yr La projection appliquant un point (x, t) c X X / sur f(x)
et un point y € Y sur y définit une projection j de Yf sur Y qui est une
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homotopie équivalence. L'injection i de I dans Yf a le même type d'homo-
topie que /.

Par définition, nt(f) nt(Yf, X) ; ce groupe ne dépend que du type d'ho-
motopie de /. La suite exacte d'homotopie de Yf relative à X donne la
suite exacte: -+nt(X)lX nt(Y)->nt(f)-+nt_1(X) l^a^Y). La condition
^t(f) 0 est donc équivalente à /* : uzt(X) ~> n%(Y) est surjectif et /* :

7tl__1 (X) -> 7tt_1 (Y) est injectif.

1. Théorèmes d'extension et de transversalité

Nous rappelons dans ce paragraphe quelques théorèmes généraux sur les

applications différentiables qui sont fondamentaux en «topologie différentielle».

Théorèmes d'extension. Dans les 4 numéros qui suivent, E désigne un fibre
différentiable localement trivial: l'espace total E, la fibre F, la base B
sont des variétés différentiables paracompactes, la projection p: E -> B est
différentiable et de rang égal à la dimension de B. Enfin A est un sous-
espace fermé de B.

1.1. Proposition. Toute section f de E définie sur A est la restriction à
A d'une section différentiable de E définie sur un voisinage de A si et seulement

si c'est vrai localement, c'est-à-dire si, pour tout x c A, il existe une
section différentiable fx définie sur un voisinage ouvert Ux de x telle que /x /
sur Ux^ A.

Une telle section f de E définie sur A sera dite différentiable sur A.

1.2. Démonstration. Soit {Un} un recouvrement dénombrable d'un
voisinage de A par des ouverts relativement compacts Un tel qu'il existe,
pour chaque n, une section fn de E définie sur Un avec / fn sur
A o Un. Ce recouvrement sera choisi assez fin de sorte que, pour tout n, il
existe un isomorphisme z-> (p(z),qn(z)) de p^iUJ sur Un X F et que
<lnfn(Un^ A) ^°^> contenu dans le domaine On c F d'un système de
coordonnées yn : On~> BQ {q dim F). Soit {An} un recouvrement de A par
des compacts An a Un.

Supposons qu'une section cp71"1 soit déjà construite sur un ouvert JJn"~1

contenant un voisinage compact Wn~x de A71-1 Ut<nAt et telle que
yn-i __ j gur jn-i% goit ^ une fonction numérique positive sur B, égale à
1 sur Wn~x et à zéro en dehors de Un~1. En termes des coordonnées fibrées
au-dessus de Un, considérons la section ç?w de E définie au-dessus d'un
voisinage assez petit Wn de An par

q>n(x) (x,y^t[oc(x)'ynqn(pn-1(x) + (1 - oc(x))-ynqjn(x)]) ;
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dans cette expression, le point désigne la multiplication par un scalaire d'un
point de Rq considéré comme un vecteur; le premier terme de la somme est
égal à zéro si x i U71"1. Cette section locale est égale à / sur An et à y71-1

sur Wnr\ W71"1. Posons donc qf1 égale à y71-1 sur Wn~x et à yn sur Wn,
et Wn — Wn ^ Wn~x. En répétant cette construction successivement pour
chaque entier n, on obtient l'extension désirée.

1.3. Plus généralement, soit Er le fibre sur B des jets d'ordre r(r > 0)
des sections locales de E. Par définition, deux sections fx et /2 de E définies
au-dessus de voisinages de A ont le même jet d'ordre r le long de A si les
sections f\ et f\ de Er, associant à chaque point d'un voisinage de A le

jet d'ordre r de fx et /2 en ce point, coïncident sur A. Ceci veut dire par
exemple que, si r 0, alors ft /2 sur A, que si r 1, alors dfx df2

sur A,...
La démonstration précédente montre aussi plus généralement la

Proposition. Une section fr de Er au-dessus de A est le jet d'ordre r le

long de A d'une section f de E définie dans un voisinage de A si et seulement

si, pour chaque point x de A, il existe une section fx de E définie dans

un voisinage Ux de x telle que frx fr le long de Ux^ A.

1.4. Théorème. Si g est une section continue de E dont la restriction à A
est différentiable (cf. 1.1), il existe une section, différentiable f de E, égale à

g sur A, et arbitrairement proche de g.
Pour la démonstration, cf. [4], 6.7 (compte tenu de 1.1).

Théorèmes de transversalité. Dans le reste de ce paragraphe, Jr(V,M)
désigne la variété des jets d'ordre r des applications locales d'une variété F
dans une variété M (cf. 0.3).

1.5. Soit L(V,M,r) l'ensemble des applications de F dans M muni
de la topologie suivante. Munissons Jr(V, M) d'une métrique riemannienne
complète, la distance de deux points z, z1 étant notée d(z, z'). Une base de
la structure uniforme qui définit la topologie de L(V, M,r) est formée des
ensembles de couples (f,g) tels que d(fr(x)9 gr(x)) < e(x) pour tout x c F,
où e(x) est une fonction > 0 continue de x. Cette définition est indépendante

de la métrique choisie. L(V,M,r) muni de cette topologie est un
espace de Baibe. On dira que g est une r-approximation arbitraire de f si g
est arbitrairement proche de / dans L{V,M,r).

Une application / de F dans une variété M est transverse à une sous-
variété N de M en un point x c F si, ou bien f(x) iN, ou bien y f(x) eN
et df(Vœ) + Nv My. Nous dirons simplement que / est transverse à JV^
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si / est transverse à N en tout point de F; alors f~x(N) est une sous-
variété de F dont la eodimension est égale à celle de N. Selon cette définition,

si codim AT > dim F, dire que / est transverse à N c'est dire que
/(F) ne rencontre pas N.

1.6. Théorème de transversalité (Thom). Soit N une sous-variété fermée de

Jr(V, M) et soit f une application de F dans M. On peut toujours trouver
une s-approximation arbitraire (s entier ^ 0) g de f telle que gr soit transverse

à N. De plus, si fr est déjà transverse h N en tout point d'un fermé F
dans F, on peut supposer g / au voisinage de f.

D'après la définition de la transversalité et la topologie de L(V, M, s), il
est évident que les applications transverses à N forment un ouvert de

L(V, M, s) pour s > r. Le théorème de transversalité affirme que cet ouvert
est partout dense. Pour la démonstration, qui s'appuie essentiellement sur
le théorème de Sard, voir [5] et [7].

1.7. Exemples. 1. Si A est une sous-variété de Jf, toute application
/ : F-> M peut être approchée par une application transverse à A. Cela
résulte de 1.6 en prenant r 0 et N=VxAcVxM.

2. M est la droite numérique B, r 1 et N est la sous-variété formée
des jets d'ordre 1 des fonctions / sur F en un point où df 0. Une fonction

/ : F -> R telle que Z1 soit transverse à N n'est autre qu'une fonction
numérique non dégénérée, c'est-à-dire qu'en un point où df 0, la matrice
des dérivées partielles secondes est non singulières. D'après le théorème ci-
dessus, les fonctions non dégénérées sur F sont partout denses (théorème de

Morse [3]).

1.8. Remarque. Le théorème de transversalité est encore vrai si N n'est
pas fermée et si fr ne rencontre pas la frontière de N.

Dans les applications, N est souvent une variété avec singularités,
représentée comme une collection de sous-variétés (cf. [14]). Si N est représentée
comme l'union d'une sous-variété sans singularité No (en général non fermée)
et d'une variété fermée Nl9 avec singularités, de eodimension > n dim F
et qui contient la frontière de No, alors 1.6 appliqué aux différents membres
de la décomposition de Nx montre que l'on peut d'abord approcher / par
une application g telle que gr ne rencontre pas JV^. Comme l'ensemble de
telles applications est un ouvert dans L(V', M, s), s>r, 1.6 donne une
application g telle que gr ne rencontre pas Nt et soit transverse à NQ.

1.9. Extension du théorème de transversalité. Soient V{, Mi9 i 1, 2, des

variétés. Soit N une sous-variété fermée de Jr(Vl9Mt) X Jr(V2, M2). Pour
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tout couple d'applications /t- : F* -> Mu il existe des s-approximations arbitraires

gt de fi telles que (g[,gl) soit transverse à N. De plus si F{ sont des

fermés de F* tels que (f[, /£) soit transverse à N sur (Fx x F2) ^ (Vt X F2),
on peut supposer fi gi sur Fi.

On a un énoncé tout à fait afialogue pour un nombre fini de facteurs. La
démonstration se déduit immédiatement de celle de 1.6 donnée dans [5] ou [7].

Remarquons encore que, si Yx et F2 sont compactes, alors l'ensemble des

couples (ft, /2) tels que (/[, fQ soit transverse à N est un ouvert de

L{Vl9 Ml9 s) X £(F2, M2, s) pour s > r.

1.10. Théorème de transversalité «au but». Soit N une sous-variété fermée
de Jr(V, M) X Jr(V, M). Pour toute applicationf : F-» M, on peut trouver
une s-approximation arbitraire g telle que (gr, gr) soit transverse à N en tout
point du complémentaire G d'un voisinage ouvert donné de la diagonale de

F X F. De plus si F est un fermé tel que (fr, fr) soit transverse à N sur
[(F X V) ^(V X F)] n C, on peut supposer g f sur F.

On a un énoncé analogue pour un nombre fini p de facteurs, C étant
alors le complémentaire d'un voisinage du sous-espace du produit Vp formé
des suites de p points de F non tous distincts. Un tel énoncé contient comme
cas particulier tous les précédents (par exemple 1.6 correspondrait au cas

La démonstration découle directement de 1.9. En effet, soit {U\ x U^}a€l
un recouvrement dénombrable de C, tel que, pour tout oc, e /, U% ^ TJ\ 0
et U* soit un compact de F. L'ensemble des couples (/x,/2): £7* X Z7J->
-> M X M tels que (f[, /£) soit transverse à iV^ est un ouvert partout dense
de L(U%, M9s) x L{Ul, M, s), s>r, d'après 1.9. Or l'application faisant
correspondre à f:V->M le couple (/ | U", f\ (7£) est une application ouverte
et surjective (cf. 1.4) de L(V,M,s) sur L{U^, M, s) X L(U%, M, s). Le
théorème résulte alors de ce que L(V, M, s) est un espace de Baibe.

Remarquons encore que si F est compact, l'ensemble des / tels que
(/r,/r) soit transverse à N sur 0 est un ouvert partout dense de L(V, M,s)
pour s > r.

1.11. Exemple. Prenons M R et supposons que / soit une fonction
numérique non dégénérée (cf. 1.7) sur F. Comme les points singuliers de /
sont isolés, il existe un voisinage U de la diagonale de F X F tel que si

(x, x') e U et x ^ xf, alors x et x1 ne sont pas tous les deux singuliers.
Appliquons 1.10 en prenant pour N la sous-variété de JX(V, R) X JX(V, R)
formée des couples de jets singuliers ayant le même but, et pour C le
complémentaire de U. Comme codim N n + 1 nous obtenons ainsi une fonc-
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tion numérique non dégénérée dont les valeurs critiques sont distinctes. Une
telle fonction sera dite générique.

2. Définition et existence des applications et homotopies génériques

Dans tout ce paragraphe, F est une variété de dimension n et M une
variété de dimension m ^ n.

Description des points singuliers de type (S1)

2.1. Considérons une application f de V dans M et soit x un point
de V où le rang de / est exactement n — 1. Introduisons au voisinage de

x et y f(x) des coordonnées locales (%,..., xn) et (yl9..., ym) telles

que le noyau Lx de df au point x soit engendré par le vecteur de composantes

(1, 0,..., 0). Autrement dit, le vecteur df/dx1 (dyjdx1,...,
ByJdX}), où les dérivées partielles sont prises au point x, est le vecteur nul
de My. Il en résulte que les dérivées (d2y1/dx1dxi,..., d2yjdx1dxi), prises
en x, sont les composantes d'un vecteur d2fjdx1dxi de My.

Le point x de V est un point singulier de type (81) de f (cf. [5], [11],
[14]) si

1. le rang de f en x est égal à n — 1,

2. dans les coordonnées locales précédentes, les 2n — 1 vecteurs

Ki < n et d2fldx1dxi, 1 < j < n

engendrent respace tangent à M en y,
3. les n vecteurs d2fjdx\, dfjdx2,..., df/dxn au point y sont indépendants

(toutes les dérivées partielles sont prises au point x).

2.2. Les conditions 2) et 3) sont indépendantes des systèmes de coordonnées

locales choisis. En effet, soit f, le vecteur de Vx de composantes ôH

(symbole de Kboneckeb). On vérifie immédiatement (cf. [11], p. 162) que
l'application bilinéaire de Lx X Vx dans My appliquant (&, f<) sur le
vecteur d2f/dx1 dx{ définit par passage aux quotients une application linéaire

indépendante des systèmes de coordonnées.
Les conditions 2) et 3) équivalent resp. à

2)' BU est de rang m - n + 1,

3)' 3|/ ne s'annule pas sur Lx® Lx.



56 André Haefuger

2.3. Voici l'interprétation géométrique de ces conditions. La condition 2)
signifie que les m — n + 1 conditions qui expriment que le rang de / est
inférieur à n sont indépendantes au point x. Donc au voisinage de x, le
sous-ensemble 8 de V formé des points où le rang de f est n — 1 est une
sous-variété de dimension 2n — m — 1. Le noyau de d%f est Lx<g> 8X, où
8X est l'espace tangent à S en x.

La condition 3) exprime que Lx n'est pas contenu dans 8X. Donc la
restriction de f à 8 est de rang 2n — m — 1 au voisinage de x.

2.4. De plus en un point double y f(x') f(x"), où x' et x" sont des

points distincts proches de x, alors les images par df de Vx, et Yx»,
engendrent My. Ainsi les points doubles de la restriction de / à un petit
voisinage U de x forment une sous-variété A de M de dimension 2n — m
dont le bord dans f(U) est f(S<^ U). Le sous-ensemble D f~x{A) au
voisinage de x est une sous-variété de F de dimension 2n — m sans bord
qui contient S et qui est tangente au champ des noyaux de df le long de 8.

On peut vérifier ces propriétés en choisissant des coordonnées locales telles

que / s'exprime sous la forme

Vi %i> Vi %i Pour 1 < i < n, yB+,_! xxxi pour 1 < j < m — n + 1

à des termes de degré > 2 près. Nous n'insistons pas sur les démonstrations
car Whitney a démontré (cf. [11]) que / pouvait s'exprimer effectivement
sous cette forme (et non plus seulement jusqu'à l'ordre 2), fait que nous
utiliserons plus tard (cf. § 3). Ceci admis, les propriétés 2.4 se vérifient immédiatement.

La sous-variété S est définie par xt 0 pour l ^.i ^m — n -\- 1,
la sous-variété A par yx ^ 0, yt 0 et yw+î_i 0 pour l<i ^.m — n + 1.

Enfin D est défini par xt 0, l<i<m — w+ 1.

2.5. Théorème. Supposons 2m>3n et V compacte. Les applications f:
V -> M telles que

1) les points singuliers de f sont tous de type (S1),

2) «i f(x') f(x") et xf i± x" > alors x' n'est pas un point singulier,
3) en un point double y f(xr) f(x"), où, xf ^ #", fes images par df

des plans tangents à V en x' et x" engendrent le plan tangent à M en y,
4) / n'a pas de point triple,

forment un ouvert partout dense de L(V, M, 2).

Une telle application sera dite générique.
De plus toute application g : F -> M dont la restriction à un voisinage

d'un fermé F de F est générique peut être approchée par une application
générique / égale à g sur F.
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Lorsque m > 2n + 1, une application générique est un plongement ([8]).
Si m 2n, une application générique est une immersion avec des points
doubles isolés où les deux nappes de /(F) se coupent en position générale
(cf. [12]).

En général, lorsque 2 m > 3n, les points singuliers d'une application générique

/ forment d'après 1) une sous-variété 8 dans F de dimension
2n — m —- 1 (cf. 2.3). Vu 3) et 4), les paires de points de F appliqués par
/ sur un même point de M forment une sous-variété D dans F de dimension

2n — m et qui contient S comme sous-variété (cf. 2.4). Enfin les

points doubles de / forment en vertu de 2) une sous-variété A f(D) dans
M de dimension 2n — m et dont le bord est la sous-variété des valeurs
critiques S' f(S) (cf. 2.4).

2.6. Démonstration. Elle consiste à appliquer successivement les
théorèmes de transversalité. Commençons par 1). Dire que les points singuliers de
S sont tous de type (S1), c'est dire que

a) f1 ne rencontre pas la sous-variété (avec singularités) de J1(F, M) de
codimension 2 (m — n + 2) formée des jets d'applications en un point où
leur rang est < n — 1 (condition 1) de 2.1

b) f1 est transverse sur la sous-variété de Jl(V, M) formée des jets
singuliers (condition 2) de 2.1),

c) /2 ne rencontre pas la sous-variété de J2(V,M), de codimension
2 (m — n + 1), formée des jets d'applications g en un point x où le rang
de g est < n et où le noyau de dg est contenu dans l'espace tangent aux
points singuliers (condition 3) de 2.1

Donc si n > 2 (m — n + 2) et n > 2 (m — n + 1), c'est-à-dire si

2m> Sn — 2, le théorème de transversalité 1.6 implique que les applications
/ vérifiant a), b) et c), c'est-à-dire 1), forment un ouvert partout dense de

L(V,M,2).
Soit N la sous-variété de JX(V, M) X JX(V, M) des couples formés de

deux jets d'ordre 1 ayant le même but, l'un d'eux étant singulier. La codimension

de N est m + (m — n + 1) 2m — n + 1. Si / vérifie 1), la
restriction de (f1, f1) à un voisinage de la diagonale dans V X V privé de la
diagonale, ne rencontre pas N, d'après 2.4. Ceci étant vrai pour toute
application g assez proche de / dans L(V,M,2), 1.10 montre que l'on peut
approcher / par une application g telle que (g1, g1) soit transverse à N
sur V X V privé de la diagonale. Donc si 2n < 2m — n + 1, i. e.

2m > 3n — 1, les applications / vérifiant 1) et 2) forment un ouvert
partout dense de L(V', M, 2).
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Soit Nr la sous-variété de (F X M)2 image réciproque de la diagonale de

M X M par la projection naturelle de (F X M)2 sur M2. La condition 3)

signifie que (Z1,/1) est transverse à Nr sur F X V — V; elle est vérifiée
au voisinage de la diagonale par toute application / vérifiant 1) (cf. 2.4).
D'après 1.10, les applications vérifiant 1) et 3) forment un ouvert partout
dense de L(F,Jf,2), si 2m>3w —2.

Enfin soit N" la sous-variété de (F X Mf image réciproque de la
diagonale de Mz par la projection naturelle. Dire que / n'a pas de point triple,
c'est dire que (/,/,/) ne rencontre pas N" en dehors du sous-espace R
de V X V X V formé des suites de 3 points non tous distincts. Ce sera le

cas au voisinage de R pour toute application vérifiant 1) et 2). Donc si

2m>3w, d'après 1.10, les applications vérifiant 1), 2) et 4) forment un
ouvert partout dense de L(V, M, 2).

On obtient le théorème en combinant toutes ces conditions.

2.7. Homotopies génériques

Théorème. Soient /0 et fx des applications génériques (2.5) de F dans M,
où 2m > 3n + 1, et soit g: V X I-+M une homotopie reliant f0 à fx. Il
est toujours possible d'approcher g par une homotopie f reliant f0 à fx et

telle que

1. l'application h:V X I-+M X I définie par h(x,t) (f(x,t),t) est

générique (2.5),

2) la restriction de la projection naturelle tf : M x I-> I à la variété A des

points doubles de h est une fonction numérique non dégénérée (1.7) et ses points
singuliers ne sont pas sur Vimage S1 par h des points singuliers de h.

Un telle homotopie sera dite générique.
En fait on pourrait exiger plus d'une homotopie générique, par exemple

que t' restreint à 8' est une fonction numérique générique (cf. 1.11); mais

nous n'aurons pas à utiliser cette propriété dans la suite.

2.8. Pour démontrer 2.7, on se place dans le sous-espace de L F X I, M, 3)
formé des applications / telles que f(x, 0) fo(x) et f(x, 1) fx(x). La
démonstration de 1) est tout à fait analogue à celle de 2.5, l'inégalité
2m > Zn + 1 étant équivalente à 2(m + 1) > 3(n + 1). Par exemple la
condition qu'en un point double de h les plans tangents à l'image sont en

position générale (condition 3) de 2.5) signifie que / est transverse à la sous-
variété de (F X I X M)2 formée des points (x, t, y, xf, y!, t), où x, x1 € F,
t,t' € J et y, y' * M, tels que t t1 et y y'. On remarquera aussi que
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si fo:V-+M est générique, alors sa suspension (x, t) ~> (fo(x), t) est aussi
générique; on pourra donc supposer que, au voisinage des extrémités de
l'intervalle /, Thomotopie / est indépendante de t.

Pour que t' \ A soit non singulière au voisinage de 8', il faut et il suffit
que /3 évite dans J3(V X /, M) une sous-variété de codimension n + 1, ce
qui est toujours possible. Enfin les points singuliers de f seront non dégénérés

si (Y1, Z1) est transverse à une sous-variété de JX(V X /, M) x J1 (F X /, M)
sur (F X /) X (F X /) privé de sa diagonale. Par application des théorèmes
de transversalité, on obtient donc l'homotopie générique désirée.

2.9. Cas particulier. Soit F une variété de dimension n munie d'une
fonction numérique t dont les points singuliers forment une sous-variété W
de dimension inférieure à n. Soit M une variété de dimension m> 2n, et
soit tf la projection naturelle de M x R sur R. Il existe alors un plonge-
ment f de V dans M X R tel que t — t1f. Si de pltts g est un plongement
donné d'un voisinage d'un fermé F de V dans M x R tel que t t'g, on
peut supposer que f g sur F.

En effet, pour qu'une application f (h,t) de F dans M x R (où
h : F-> M) soit partout de rang n, il faut et il suffit que le jet d'ordre 1 de
h évite une sous-variété (avec singularités) dans JX{V,M) de codimension
m — n + 2 > n. Ensuite pour que / (h,t) soit biunivoque, il faut et il
suffit que le graphe de (h, h) : F X F-> M X M évite une sous-variété N
dans V X V X M x M de codimension m + 1 > 2n; N est formé des

points (x,x',y, y') tels que y y! et t(x) t(xf); N est représenté
comme une collection de sous-variétés N No^ Nj_^ N2i où No contient
les points qui vérifient de plus: x, xr e W, Nx ceux qui vérifient: x ou
*' c W, et N2 : x, x1 i W ; on a codim No m + 2 codim W et codim iVx

m + codim W + 1.
L'affirmation précédente se démontre donc par applications de 1.6 et de

1.10.

3. Forme canonique des singularités de type (S1)

3.1. Whitney [11] a démontré qu'au voisinage de tout point singulier x
de type (S1) d'une application de Rn dans Rm,m^n, il était possible de
trouver des coordonnées locales (%,..., xm^n+lf %,..., ^n-m-i) au
voisinage de x et (*!,..., X2w_2w+1, Ulf..., *72n~-m-i) au voisinage de f{x)
de sorte que / s'exprime sous la forme

U { X\T ^ ** ^ XiKi <rn - n + 1, U, - *„ 1 < / < 2n -m - 1
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(La démonstration de [11] qui traite le cas m 2n — 1 s'étend immédiatement

à ce cas plus général, cf. 3.8.)
Le but de ce paragraphe est de prouver la proposition suivante qui est une

forme globale du résultat précédent de Whitney. Le complément sera utilisé
dans l'étude des isotopies.

3.2. Proposition. Soient Vt9 Mt des variétés, i 1,2, âimMl m,
dim V% n et m ^ n. Soient ft: Vt->Mt des applications dont les points
singuliers St c V% sont tous de type (S1) et telles que f% \ St soit biunivoque.

On suppose qu'il existe un difféomorphisme h de /Sx sur S2 qui se prolonge
suivant un isomorphisme h de T(Vx) \ Sx sur T(V2) \ S2 de sorte que les

champs de noyaux Lt de df% le long de 8t se correspondent par h.
Il existe alors des difféomorphismes H (resp. H') d'un voisinage de #x

(resp. Si ft (8^) sur un voisinage de S2 (resp. 8'2 /2 (82)) tels que

l)UH H'fx
2) dH h le long de 8X.

3.3. Soit A% c Mt la variété des points doubles de f%. Si Von se donne de

plus un difféomorphisme hr de Ax sur A2 au voisinage de S't compatible

avec h\ Ll9 on peut supposer que Hr h' sur Àx.

3.4. Complément. De plus soient t et tf des fonctions numériques définies
au voisinage de St et 8[ respectivement. Supposons que tt t[ft, t[\ At non
singulière, di^ dt2h et t[ t2hr sur Ax. On peut alors choisir H et H1

vérifiant de plus

3) h t%H et t[ t'2Hf

3.5. Remarque. La donnée h1 de H' sur Ax et la condition 1) de 3.2
déterminent H localement sur Dx /f1(zl1) à deux possibilités près; or Lx
est tangent à Dx le long de 8X. La condition de 3.3 que h' est compatible
avec h | Lx signifie que localement h dH sur Lx au signe près.

3.6. Avant de passer à la démonstration, nous énonçons un lemme qui
explicite la structure tangente le long de la sous-variété S des points singuliers

de type (S1) d'une application / : F-> M; L est le champ des noyaux
de df le long de 8, A est la variété des points doubles de / et 8r f(8).

Lemme. Il existe un homomorphisme naturel 9|/ de L <g) T(V) \ 8 sur le

fibre quotient T(M) | 8'jdf (T(V)\ 8); il applique le fibre linéaire trivial
L ® L sur le fibre normal à Sr dans A ; son noyau est L ® T(8).
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dgf est défini en chaque point x de 8 par dj/ (cf. 2.2) et le lemme
découle de 2.2 à 2.4.

3.7. Nous reformulons ci-dessous le théorème de Whitney (3.1) sous une
forme utile pour la démonstration de 3.2. L'application /0 est celle qui est
donnée dans 3.1. Ses points singuliers sont ceux du plan S défini par x 0
(où x (xlf..., xm_n+1)) ; S' fQ(S).

Lemme local. Soit / une application de Rn(x,u) dans Rm(X, U) définie
au voisinage de 8 et telle que

1) df et df0 sont égaux le long de S,

2) 5J/=5|/O (cf. 2.2 et 3.6).
_Soient W et W' des ouverts de 8 tels que l'adhérence W de W soit

contenue dans W et soit K un fermé de 8 au voisinage duquel / fQ.

Il existe alors des difféomorphismes H et H' de voisinages de S et 8r
resp. tels que

a) fH H'f0 au voisinage de W,

b) dH est l'identité de long de S,
c) H et Hr sont l'identité dans un voisinage de K et du complémentaire

de W dans S, et de leurs images par /0 resp.,

d) le long de S, d(H'f0) d(fH) et dl(H'fQ) d2s(fH). Si de plus la
variété A des points doubles de / coïncide avec celle de /0, alors

e) Hr identité sur A.

3.8. Démonstration de 3.7. Supposons / donnée par les équations
Xi X^x, u)y Uj Uj(x,u). Posons u] U^x,^; les fonctions (x, %')
forment au voisinage de 8 un système de coordonnées car dUjjduk djh le
long de 8 d'après 1), et / prend la forme X{ X'^x^u'), TJi u). On
développe ensuite les fonctions X\ en séries de Taylob jusqu'au troisième
ordre par rapport aux variables x ([9]) et l'on effectue chacune des transformations

de coordonnées indiquées par Whitney dans [11], §5, ceci le long
de S, les variables u intervenant comme des paramètres. Chacun des

difféomorphismes définis par ces transformations de coordonnées respectent les

propriétés b), d), e) et se réduisent à l'identité au voisinage de K et fo(K).
On obtient donc finalement des difféomorphismes H et Hf vérifiant a),
H d) et e) le long de 8.

Pour obtenir l'identité en dehors de W et fo(Wf), construisons une fonction

oc sur B?1 ne dépendant que des variables u, égale à 1 sur W et à 0
sur le complémentaire de W dans 8 ; soit a! la même fonction exprimée à
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l'aide des variables U. Soient J et Jf les difïéomorphismes identités de
Bn et Rm. Alors les applications

<xH + (l—<x)J et *'H'+ (1 — *f)J',
où la multiplication par a, ou #' signifie que chaque coordonnée est multipliée

par oc ou #', restreintes à des voisinages assez petits de /S et S' resp.,
sont des difïéomorphismes qui vérifient toutes les propriétés désirées.

3.9. Démonstration de 3.2. D'après 3.6, il existe un isomorphisme 0 bien
déterminé de T(MX)\ S^df^T^)] 8X) sur T(M2) \ S'2/df2(T(V2) \ S2) tel
que, pour tout v e Lx et tout f € T(VX) au-dessus du même point x de 8X

on a 9j f2(hv ® hÇ) 3j fx(v® |). Soit donc À' un isomorphisme de

T{MX) | $j sur ^(J^) | 8*2 tel que A'd/i df2h et qui donne 0 par passage

aux quotients; on peut supposer aussi que h' applique l'espace tangent à
A1 sur l'espace tangent à A2. A l'aide de métriques riemanniennes ou en
appliquant 1.3, il est possible de construire des difféomorphismes Ho et Ho
de voisinages tubulaires de Sx et S[ resp., sur des voisinages tubulaires de

82 et /Sg resp. tels que dHQ h et dH'o h'. On pourra aussi supposer
que H'o est une extension de l'application hf donnée sur Ax (cf. 3.3).

Soient {W'n} et {Wn} deux recouvrements dénombrables de 8t par des

boules contenues dans des systèmes de coordonnées locales, et Wn c W'n.

Construisons par induction sur n, des difféomorphismes Hn et Hn de

voisinages de 8X et 8[ sur voisinages de 82 et 8'2 de sorte que f2Hn h^ au

voisinage du fermé Kn [}t^nW% et que, le long de 8l9 dHn h,
d(f2Hn) d(H'nh) et 3|i(/1JÏJ a|i(ir;/1). Par construction, ,ff0 et ^
vérifient ces conditions. Supposons donc Hn et Hn déjà construits. D'après
3.7, il est possible d'introduire des coordonnées locales au voisinage de W'n+X

et fx(Wfn+1) de sorte que fx s'exprime sous la forme /0. Les hypothèses de
3.7 sont vérifiées pour /0 fly f H^hH* et K Kn, Wn+1 et W'n+X

jouant le rôle de W et W ; on peut donc construire H et iï7 vérifiant les

conditions de 3.7; on définit alors Hn+1 HnH et iï^+1 HnH' au
voisinage de Wn+1 et fi(W'n+1) et i?n+1 27W, H'n+l — H'n ailleurs. On remarquera

que rien n'est changé au voisinage de Kn et fx(Kn). On obtient donc
à la limite les difféomorphismes cherchés H et H'.

Démonstration du complément

3.10. Nous choisirons une autre forme normale locale g0 équivalente à
/0. Soient (%,..., xm_ni %,..., u2n^.m) les coordonnées de Rn et
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(Xl9..., X2m_2n, Ul9..., U2n_m) les coordonnées de Rm. Soit

Les points singuliers de g0 sont les points du plan 8 : xt 0 pour
1 < < m — n,v^ 0. Les points doubles forment le demi-plan A : Xf 0

pour 1 <: j ^ 2m — 2n, U1 ^ 0, et D grjr1^!) est défini par % #J,

a?t 0, i> 1.

3.11. Lemme local. Soient t et t' des fonctions différentiables non
singulières définies au voisinage de 8 dans Rn et de 8! <fo($) dans Rm

telles que t t'g0. On suppose que
1) £' restreinte à A est non singulière,

2) dt'/dXt 0 pour 1 ^ i ^ m — n sur $; (ou ce qui revient au même
dt/dxt 0 pour i > 1, d£/d% dt'ldU1 sur /S).

Soit £q la fonction sur Rm égale à t' sur J et ne dépendant que des

variables U3. Soient W et TF' des ouverts de 8 tels que W c W et K
un fermé de 8 au voisinage duquel t' t$.

Il existe alors des difféomorphismes i/ et H1 de voisinages de S et 5'
resp. sur voisinages de S et $' resp. tels que

a) g0H H'g0 _b) t'o J'-ff' au voisinage de go(K ^ W)

c) djff est l'identité le long de S

d) 1? et H' sont l'identité au voisinage de K et du complémentaire de
W1 dans /S et de leurs images par g0 resp.

3.12. Demonstrationde3.il. Pour assurer la validité de d), remplaçons
d'abord t1 par une fonction t" égale à t' au voisinage de go(W) et à t'Q au
voisinage de go(K) et du complémentaire G1 de go(W) dans 5", et
vérifiant 1) et 2). Il suffit pour cela de construire une fonction oc dans Rm égale
à 1 au voisinage de go(W) et à 0 au voisinage de C et de poser
t" <%£' + (1 — oc)tQ. Pour simplifier t" sera noté £'.

Dans ce qui suit, X désigne les coordonnées (Xx,..., X2m^2n), U les

coordonnées (E^,..., U2n_m), etc.
Pour tout point P (X, U) de Rm assez proche de 8r, soient V'7

03 (X, Z7) les coordonnées U du point d'intersection avec A de la géo-
désique issue de P, contenue dans la variété de niveau JVP de tr contenant
P, et normale à la sous-variété Np ^ A (Np est muni de la métrique induite
par une métrique riemanienne sur R"*). Ceci a un sens en vertu de 1) au voisinage

de A.
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Par construction, on a donc &,{0, U) U9, d'où dUJdUk <3,fc le long
de J et dU^/dXi 0 pour 1 ^.i ^.m — n le long de $' en vertu de 2).
Enfin t', exprimée à Faide des nouvelles variables V, est égale à On

remarquera que l'on a aussi V^ TJj au voisinage de go(K).
Dans Bn, posons u'j &jg0 9^(#, u). Le long de S on a dujduj, ô3k

et duijdxh 0. Ainsi les transformations

*~ •

sont au voisinage de S et $' des difféomorphismes et leurs inverses H G'1
et i?' G;-1 vérifient b), c) et d).

Soient u9 ^(a;', ?O les solutions des équations u] — cp,(x, u) au
voisinage de S. Nous devons modifier H\ de sorte que a) soit vérifié. On a

1 s ï
m_n+1 y>1(x, u)x1 ~~ xl, Xm_n+t

Comme ^(X, 17) U3 pour X 0, alors fi(x1, xt9 u) ut, i > 1,
sur D : ^ — x\ 0, xt 0, i > 1. On peut donc écrire au voisinage de 8
d'après [9]:

Le long de 8, a 0 car dtpjdv^ 1.
On peut également poser d'après [10]

l/2ltp1(x1, xt9 u) + tp^— Xi, xt, u)]

et

ifôbpi(xi> xi>u) — Wii— xi> xi-> ^)] ^
Définissons alors au voisinage de 8f

G'2\

On a 3X^_n+1/3XOT_n+1 1 sur 8f, de sorte que G'2 est un difféomorphisme
dans un voisinage de /S'. De plus G'2G'1goG'-1 g0. Les difféomorphismes
H' (O^Q^)""1 et H G~lf définis dans des voisinages de 8' et 8, vérifient

les propriétés a), b), c) et d).
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3.12. Pour démontrer 3.4, on part des difféomorphismes H et H'
vérifiant les conditions 1) et 2) de 3.2 et 3.3, et on les modifie pas à pas en
utilisant le lemme local 3.11 comme dans 3.9.

3.13. Pour terminer ce paragraphe, nous énonçons un lemme de nature
élémentaire et dont la démonstration est laissée au lecteur.

Lemme. Soient A et B deux sous-variétés d'une variété V se coupant
transversalement (c'est-à-dire qu'en tout point x de la sous-variété G A^B
Ax + Bx= Vx). Etant donnés des plongements y et y> de A et B resp.
dans une variété M tels que y y) sur G et que d(p(Ax) + dtp(Bx)

dy>(Cx) pour tout x e C, il est possible de prolonger q> et ip suivant un
plongement d'un voisinage de G dans M.

On le démontre d'abord localement et on applique 1.1.

4. Existence de plongements

Le but de ce paragraphe est de prouver le théorème suivant (théorème
d'existence a) de l'introduction).

4.1. Théorème. Soit V une variété compacte de dimension n, sans bord,
et soit M une variété de dimension m. On suppose 2m ^ Z(n -f- 1).

Toute application g de V dans M telle que n^g) 0 pour i < 2w — m+l
(cf. 0.4) est homotope à un plongement h.

De plus, si V a un bord dV et si g est déjà un plongement au voisinage
de dV tel que g(dV) ^ g(V — dV) 0, on peut supposer alors h g au
voisinage de dV.

4.2. Démonstration. D'après 2.5, g est proche, donc homotope à une
application générique f de V dans M. La variété des points singuliers de

/ sera notée S ; A désignera la sous-variété dans M des points doubles de

/; son bord est S'= f(8) (cf. 2.5); enfin D /"1(^).
Soit y> une fonction numérique générique sur A (cf. 1.11). On suppose de

plus que Sf est une variété de niveau de <p et que q> est minimum sur S'
(si Sf est non vide).

Soit ç>0 <p(8') et soit <pt > q>0 tel que <p n'ait pas de valeurs critiques
sur l'intervalle [^oj^i]-

Proposition 1. Il existe une déformation fT de / f0, 0 < r < 1, telle que
fx soit une application générique dont les points doubles sont les points d de

A où <p(d) > (px.

5 CMH vol. 36
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Soit c un point singulier de ç? d'indice p. Au voisinage de c dans A,
nous pouvons introduire des coordonnées locales Ut,..., Up, Fl5..., VQ,

où p -\- q 2n — m dim J, de sorte que q> <p(c) — U2 + F2, où
U2 ZVl et V2 SV^, dans une boule i?0 de rayon 20O centrée en c

(cf. [3]). Posons R2 £72 + F2, et soit 0(j?2) la fonction égale à 0oy(#2/0o)
dans Bo et à 0 en dehors, où y est la fonction définie en 4.3. Considérons
alors la fonction <p_ ç? + 0 et la fonction ç?+ cp — 0 ; ces fonctions sont
égales à <p en dehors de J50.

Propositionâ. Soit c un point critique de <p d'indice p. Supposons que
Von ait déformé f en une application générique f0 dont les points doubles sont
les points d de A où q>_(d) ^ c. Si np+1(f) 0, il existe une déformation
/T, 0 ^ t < 1, qui déforme f0 en une application générique f± dont les points
doubles sont les points d de A où <p+(d) ^ c.

Le théorème 4.1 se déduit comme suit des propositions 1 et 2. Soit c le

point critique de cp de valeur minimale. Construisons comme précédemment
une boule BQ centrée en c de sorte que (p(BQ) ne contienne pas d'autre
valeur critique que <p(c).

La fonction ç>_ n'a pas de point singulier dans 9?-1[— oo, c]; c'est clair
en dehors de Bo où ç? ç?_; dans jB0, un point de coordonnées (U, V)
est singulier si et seulement si d(p_jdUi — 217^1 — 6r) 0 et d<p/dVj

2F^(1 + 0') 0, où 0; est la dérivée de 0. Comme on suppose que
— U2 + F2 + 0(-B2) < 0, on doit avoir U ^ 0 et les deux équations
précédentes ne peuvent être vérifiées que si F 0 et (1 — 0') 0, ce qui
est impossible car 0; ^ 0. D'après la proposition 1, on peut donc déformer

/ en une application générique /_ dont les points doubles d sont définis

par ç?__ (d) ^ c. La proposition 2 donne une application générique /+ dont
les points doubles d sont définis par <p+ (d) > c. Enfin une nouvelle
application de la proposition 1 donne une application générique ft dont les points
singuliers sont les points d de A où <p(d) > cply où q>t sup cp(B0).

En répétant cette opération un nombre de fois égal à celui des points critiques

de <p, on obtient finalement une application générique sans point double,
donc un plongement (cf. aussi 4.13).

Dans la démonstration des propositions 1 et 2, nous utiliserons des modèles
de déformations qui généralisent le suivant.

4.3. Exemple typique de l'élimination d'un point double d'une courbe dans

le plan* Soit y une fonction paire de la variable réelle x, égale à 1 pour
j x | ^ 1, à 0 pour | x | ^ 2 et croissante pour x < 0.
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Soit c l'application de la droite R de coordonnée x dans le plan JR2

des coordonnées (X, Y) définie par les équations

X x(l - 2Y) Y Ay{x)/(1 + x2)

où A est une constante, 0 < A ^ 1 (il est entendu que dans la première
équation, Y doit être remplacé par sa valeur donnée dans la seconde équation).

Nous allons vérifier que

a) la courbe c a un seul point double A (0, 1/2), à tangentes distinctes,

si A > 1/2,

D c1(A) est formé des deux points x V2A — 1 et x1 — V2A — 1,

b) si A 1/2, et dans ce cas seulement, la courbe c a un point singulier
S (0) ; S' c(S) (0, 1 /2) est un point de rebroussement.

Soit cT, 0 ^ r ^ 1, la déformation définie par les équations

X x(l - 2Y) Y Ay(x) (1 - r) / (1 + x2)

Durant la déformation, chaque point x se déplace sur la droite
X x(l — 2Y) passant par c(x) et (0, 1/2). De plus cT est constante

pour \ x\ ^ 2. D'après ce qui précède, le point double sera éliminé dès que
1 — 2,4

T<—F" •

Pour vérifier a), supposons que les points distincts x et xr ont la même

image par c. Alors X x(l - 2Y) a/(l - 2Y) et Y 4y(a:)/(l + x2)

Ay(x')l(l + x'*). Comme s^s', on a X=0 et Y u4y(#)/(l + x2)

1/2. Or y(#)<l, donc y(x) (1 + x2)/2A < 1, ce qui entraîne
a;2<2^1 — 1^1; mais alors y(#) 1. Donc x et x1 doivent vérifier
l'équation x2 2 A — 1 qui n'a de solutions réelles distinctes que si A > 1/2.
Enfin comme dX — 2xdY, les pentes des tangentes au point double sont
distinctes.

Un point singulier x doit vérifier les équations dXjdx (1 — 2Y) —

2xdY/dx 0 et dY/dx Ay'^,tf\û *A%
° - Donc y ll2>

(1 + #
et comme y' et x ont des signes opposés, dY/dx ne peut être nul que si

x 0. Comme Y 1/2, on doit avoir JL 1/2.
Nous nous concentrons d'abord sur la démonstration de la proposition 2.

4.4. Modèle pour la proposition 2.

Soient (xt,..., xm_n, %,..., up, %,..., vff) les coordonnées de R*, où

p + q 2n - m, et (Xl9..., Xm_n, Y1?..., Yw_n, £7l5..., U9, Vl3..., F€)
celles de R™.



68 André Haefliger

Posons u2 Zu), v2 Sv\9 r2 u2 + v2, ^2 ^ ^72 + p2j et
g2 Z1<i<m-.nx\. Soit y la fonction définie en 4.3 et 0(r2) 0ly(r2l6l),
00 < 1. Soit <% une fonction paire de q comprise entre 0 et 1, égale à 1 pour
ç 0 et à 0 pour q > e, nombre positif.

Définissons une famille d'applications </T de jR" dans JK™ dépendant
différentiablement du paramètre r, 0 ^ r < 1, par la formule

1
1 + v? + v*

Les fonctions oc, y, 6 sont introduites afin que la déformation gT se réduise
à Fidentité en dehors d'un compact. Le lecteur pourra les supposer constantes
dans une première lecture.

Nous allons vérifier que

1) la variété ST c Rn des points singuliers de gT est définie par

xi 0 pour 1 < i < m — n u2 — v2 0(1 — 2r)

2) la variété AT c i?11 des points doubles de ^T est définie par

X{ 0 pour 1 < i < m — ra, Yx 1/2,

y. 0 pour 1< i < m - n, - U2 + V2 > — 0(JR2)(1 — 2t)

3) la variété Dr ^H^t) est définie par

2 — ^a +^ +0(r2)(l-2T)

4) la variété S'x ^T(/ST) dâT est définie par

X, 05 Yt - 1/2, Y, 0, /> 1, + U2 - V2 0(iî2)(l - 2t)

On remarquera que dans chaque plan parallèle au plan des coordonnées X±
et Yj, (et pour lequel Yt Zt 0, i > 1), on a une courbe du même type
que celle décrite en 4.3, car 0 < A ^ 1.

Les points singuliers de gT sont ceux qui vérifient les équations
dXildotx dYildxt dUJldx1 BVkldx1 0, équivalentes à xt 0 pour
i>l et dX1/dx1 3Y1/3% 0. D'après 4.3, on a xt 0 pour
1< i < m — % et A 1/2, d'où 1).

Si les points distincts (x, u, v) et (#', ur, v') de R* ont la même image

par gT, alors art x\ pour î > 1, u§ «J, vfc v'k, donc a^ ^ x'l9 et
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x1xt x[xt pour i > 1, donc xt — x% 0. D'après 4.3, DT est défini

par xt 0 pour i > 1 et #J 2^4 — 1, d'où 3), et AT est défini par
Xt 0, Yt 1/2, Y, 0 pour / > 1 et A ^ 1/2, d'où 2).

Montrons encore que grT e$$ générique pour r ^ 1/2. Il est clair que gT est

toujours de rang ^ n ~ 1, et qu'en un point singulier la condition 3) de

2.1 est vérifiée, puisqu'elle l'est pour la courbe c de 4.3. On voit aisément

que la condition 2) de 2.1 est satisfaite si et seulement si dYx / dui dYx j dvk

0, ce qui équivaut aux équations %[0'(1 — 2r) — 1] 0 et
vk\P'(1 — 2t) + 1] 0. On a une solution pour u v 0, mais 8r ne
contient l'origine que pour r= 1/2. On pourrait avoir une solution si

0'(1 — 2t) — 1 0 et t> 0, mais ce n'est pas possible, car alors r2

u2 0(1 — 2r) < 0o et 0; 0 pour r2 < 0§; de même, on ne peut
avoir 0'(1 — 2t) + 1 0 et u 0. Donc les points singuliers de gT sont
tous de type (S1) pour r ^ 1/2. Les autres conditions de 2.5 se vérifient
aisément. Pour t 1/2, l'origine n'est pas un point singulier générique pour
une application, mais seulement pour une homotopie.

L'effet de la déformation gT, lorsque t croit de 0 à 1, est d'éliminer dans
le plan Xt 0, Yx 1/2, Y, 0, j > 1, les points doubles de g0 contenus
dans | U2 - F21 < 0(£2).

Soit Ks le compact de Rn défini par

| xx\ <2, q2 <62 et r <20O,

et soit ifg le compact de Rm défini par

|XX| <2,27t>1Xj<*2, O^Y^l, i7t>1Y?<4£2, iî<20o.

Nous désignerons par K l'intersection de Ke avec le plan xt 0, i > 1,
et par Kl l'intersection de K\ avec le plan Xi 0, Y% 0, i > 1.

La déformation grT est constante en dehors de Ke et ^(if'j i£e. Au
cours de la déformation, l'image par gT de tout point (#, u, v) se déplace
dans le 2-plan Xt xt et Yt a^a^ pour t > 1, U} u3, Vk vk9 sur
la droite Xx ^(1 — 2Y!).

On vérifie facilement que Ao r» K' peut se rétracter par déformation sur
un point.

D'autre part, soit S la ^-sphère intersection de Do avec le plan v 0,
xt 0, i > 1. Elle borde dans ce plan une {p -f- l)-boule B [définie par les

équations u2 < 0j, a£ < (— ^2 + 0(w2)/(l + u2))]. L'image de B par go

est homéomorphe à une (p + l)-sphère qui borde dans le plan X4 0,
Y€ 0, t > 1, F 0, un sous-espace J5; homéomorphe à une (p + 2)-
boule.
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II est aisé de vérifier que K peut se rétracter sur (Do r\ K) ^ B et que
K' peut se rétracter sur go(K) ^ Br.

Démonstration de la proposition 2.

4.5. Nous désignerons encore par S et A les variétés des points singuliers

et des points doubles resp. de /0. On posera D fôx(A) et S' fo(8).
Il suffira de construire, pour e assez petit, des difféomorphismes H de

Ke dans F et H' de K\ dans M de sorte que

1) f0H H'g0 sur Ze.
2) sur A et Ao les coordonnées locales U, V se correspondent par H'
3) H'-if0V g0R»r,K'e.

Ceci fait, la déformation fT sera définie comme l'identité en dehors de

H(Ke) et par f.^H'g.H"1 sur #(*.).
Les trois numéros suivants sont consacrés à la construction de H et H'.
Le champ de vecteurs djdxt de Rn sera désigné par ei9 les champs de

vecteurs 3/dXt et 3/9Yt par e^ et e'î respectivement.
4.6. Nous construisons d'abord des plongements H : K->V et Hf : Kf ~> M

vérifiant 1), 2) et 3)

a) sur Ao et Do. Le choix des coordonnées locales U, V au voisinage de
c (cf. 4.2) définit un difféomorphisme H[ de la boule
K' rs (Xx Y1- 1/2 0) sur Bo.

La restriction de /0 à D — 8 est un revêtement à deux feuillets de A — S' ;

ce revêtement est trivial au-dessus de Bo ^ (A — 8r), puisque cet espace est
contractile (cf. 4.4). Il existe donc deux possibilités de définir une application
Ht de Dq^K dans D telle que f0Hx Hftg0. Choisissons l'une d'entre
elles; Hx est nécessairement un difféomorphisme (cf. 3).

b) au voisinage de So et 8'0. Soit D£ le sous-espace de Do formé des

points dont la ^-coordonnée est ^ 0. Construisons le long de Hx (80 ^ K)
un champ (£2,. • •, !TO_.n> v) de m —• n vecteurs indépendants et transverses
à J9 qui puisse s'étendre suivant un tel champ le long de Ht (D£ ^ K) ; c'est
possible car D$ r\ K est contractile. On définit alors un isomorphisme de

l'espace tangent à Rn le long de 80^ K dans l'espace tangent à F le long
de 8 qui prolonge dHx \ 8Q en appliquant ^ sur S1 dH1(e1), et- sur |f,
i > 1, et le champ v0 des vecteurs unitaires normaux à Do dans K sur v

aux points correspondants par Hx. D'après 3.2 et 3.3, il existe des

difféomorphismes E% et j?2 de voisinages de 80^ K et 8' ^ K' dans F et M
resp. tels que fQH% if^o» #1 e* #2 étant des extensions de Hx et H'l9
la différentielle dH2 le long de 80r\ K étant l'isomorphisme défini plus haut.
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c) sur K. Prolongeons le champ dH2(v0) suivant un champ de vecteurs
v le long de D r\ fo1 Bo et transverse à D, ce qui est possible car
codim D — m — n> 2n — m — dim D. On peut alors (cf. 1.3) étendre Ht
suivant une application HT d'un voisinage de Do ^ K dans F qui coïncide

avec H2 \ K au voisinage de Sor> K et qui applique v0 sur v. Puisque dH3
est biunivoque le long de Dor^K, H3 est un plongement dans F d'un
voisinage assez petit de Do ^ K dans K.

Considérons les restrictions de H1 et H[ à la sphère £ Do ^ (v 0)
et à la boule go(Z) resp. (cf. 4.4). Comme n9(f) 0, nous montrerons en

4.9 que ces applications peuvent être étendues suivant des applications H
de B dans F et H1 de B' dans M resp. (cf. 4.4) telles que f0H H'gQ

sur B.
Comme K peut se rétracter sur (Do ^ K) ^ B, il est possible d'étendre Hz

suivant une application £T4 de K dans F, la restriction de i/4 à B étant

homotope à H. On peut choisir Jï4 générique (2.5); ce sera donc un plongement

car 2 dim K 4:n — 2m + 2 < n dim F. On peut supposer de

plus que H^1(D) Dor> K, car on peut construire £T4 transverse à la sous-
variété D — H1(D0^ K) (cf. 1.8), c'est-à-dire ne la rencontrant pas puisque
dim K 2n —- m -\- 1 < m — n codim D.

d) sur Kr. L'application Hz de go(K) dans Jt^ est bien définie par la
condition /0i?4 HzgQ. En vertu du fait que g0 et /0 sont génériques, de

3.13 et 1.2, il est possible d'étendre la définition de Hz sur un voisinage de

Ao o K dans K' de sorte que H'% soit un plongement et qu'il coincide avec
Hg restreint à un voisinage de 8'0 dans X'. Soit v0 le champ des vecteurs
unitaires normaux à go(K) — Ao dans K'. Prolongeons le champ de vecteurs
dH'z(v'o) suivant un champ de vecteurs v1 le long de H3(gQK — Ao) transverse
à /0F. Appliquant 1.3, on peut encore étendre la définition de H'z sur un
voisinage de goK dans K1 de sorte que dH.'%(v'Q) v' ; ainsi #3 est un
plongement dans M d'un voisinage de (folf dans K1.

Les restrictions à go{B) de #3 et H' sont homotopes (cf. c)). Comme

K' peut se rétracer sur go(K) ^ B', il est possible d'étendre #3 suivant une
application l/4 de Jl ' dans M que l'on peut supposer être un plongement,
car 2 dim K' 4w — 2m + 4 < m dim F. On peut supposer enfin que
H4~1/0F goR*1 <^ K1, car i/4(!£'), qui est une sous-variété de dimension
2n — m + 2, évite génériquement une sous-variété de codim m — 7&>2w — m+2.

Nous avons ainsi obtenu des plongements H H^ de JT dans F et
#' U\ de iT dans M vérifiant les conditions 1), 2) et 3) de 4.5.

4.7. Notre but est maintenant de définir dH et dH! sur les vecteurs

tangents à Rn et Rm d'origine K et K' de sorte que
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4) df
a) Considérons le champ d/72(et), 1 < i ^ m — n, défini au voisinage de

H(Sors K) (cf. 4.6, b)) et qui est formé de m — n — 1 vecteurs linéairement

indépendants et transverses à H(K). Comme ce champ peut se prolonger

à -H(Do" rs K) avec les mêmes propriétés (4.6, b)) et que K et D% r\ K
peuvent se rétracter par déformation sur un point, on peut trouver le long
de H(K) un champ de m — n — 1 vecteurs indépendants f2,..., fm_n,
transverse à H(K) et qui coincide avec le champ donné dH^) au voisinage
de H(80 r\ K). Soit N le fibre engendré par les |t.

Nous définissons dH par linéarité en posant dH(et) fo i > 1.

b) Construisons de même le long de H1 (K) un champ transverse de

(2m — 2n — 2)-plans JY7 qui contienne l'image de N par rf/0 et qui soit
engendré au voisinage de H' (8'0 ^ K') par dH'^e'j) et dH'2(el), 1 < i ^ m — n,
(cf. 4.6, b)).

Remarquons que dg0 applique le vecteur et, i > 1, pris en un point de

K de coordonnée a^ sur le vecteur e^ + #i^'; le champ de vecteurs cj est
donc transverse à gQ(Rn).

Construisons un champ N% de (m — n — 1)-plans le long de fQH(K) et
au voisinage de Hf(S'0<~> Kf), contenu dans N', et tel que

1) Ni soit complémentaire à dfo(N),

2) au voisinage de H' (S'Q ^ K1), N% est engendré par |J rfJÏ^^), i > 1,

3) en un point H'{d), où deZl0, JV^ est engendré par

où dx et dg sont les deux points de Do appliqués sur d par g0, x^dj et
a^(d2) étant leur ^-coordonnée.

c) Le long de f0H(K), considérons un champ JVj de (m — n — l)-plans
contenu dans N' et complémentaire à J^. Ce champ a une trivialisation
naturelle |^, l<i^m — n, à savoir la projection du champ dfo{S{)

parallèlement à JV^. On désire maintenant étendre le champ fg> • • • » %'m-n dans
N' le long de H'(Kr)\ comme <fo(^Q a le type d'homotopie d'une (p + 1)-
sphère, on rencontre une obstruction qui est mesurée par un élément de

Mp+tWlimXn-è> oil VltmXn-2 est ^ variété de Stiefel des (m — n — 1)-
repères de l'espace numérique de dimension 2m~ 2n — 2. Or ce groupe est
trivial, car p+l^.2n — m + l<m — n — l. Cette extension est donc

possible et sera notée f$, i > 1.

d) Le champ N% peut être étendu suivant un champ N2 complémentaire
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dans Nr au champ engendré par les ^, i > 1. Choisissons maintenant un
champ de (m — n — 1) vecteurs |?, i > 1, qui engendre N2 et qui coïncide
le long de H'(Aors K') et au voisinage de H^Sq^ K') avec le champ donné
en b), 2) et 3).

Nous définissons alors dH' (ej) f<, i > 1.

e) Définissons enfin fj le long de fQH(K) en faisant correspondre à un
point f0H(a), où aeK, le vecteur d/0[f»(a)] —- #i(a)fj(a); au voisinage
de Hf(8'orsK'), on posera aussi £'i H'{ei). On a fJ f< modulo JV£. On
étend |^ le long de H'(K') de sorte que cette condition reste vérifiée. On

posera finalement dH' (e^ £$, i > 1.

Il résulte immédiatement de la construction de dH et dH' que l'égalité
4) est satisfaite.

4.8. D'après 1.3 (ou en utilisant une métrique riemanienne), il est
possible d'étendre H à Ke, si e est assez petit, suivant un difféomorphismedont
la différentielle dH le long de K a la valeur prescrite précédemment, et qui
coïncide avec £T2 au voisinage de (SQ ^ K) (cf. 4.6, b).

Par la condition 1) de 4.5, Hr est défini sur go(K8.) et aussi au voisinage
de 8'0 r\ K1 (cf. 4.6, b). Il est aisé de vérifier que, au voisinage de tout point
de go(Ke)9 cette définition de jH7 peut être étendue de sorte que dH' ait
la valeur donnée dans 4.7, car K coupe transversalement go(Ke). D'après
1.3, il est donc possible, pour e assez petit, d'étendre H1 sur K'e, de sorte

que la condition 1) de 4.5 soit vérifiée. Si e est assez petit, H' sera un
difféomorphisme et la condition 3) de 4.5 sera aussi vérifiée, puisqu'elle l'est déjà
sur K et K'. La démonstration de la proposition 2 sera donc achevée, une
fois démontré ce que nous avons utilisé en 4.6, c).

4.9. Considérons dans l'espace numérique Rp+2(x, y, %,..., up) la demi-
boule BPX2 définie par x2 + y2 + u2 < 6g, y > 0. Son bord est formé de

l'hémisphère S**1 : x2 + y2 + u2 62Q, y > 0 et de la boule B**1 :

x2 + u2 < 0O, y 0. Soit enfin 8* le bord de J3*+l.
Nous pouvons construire un homéomorphisme h de 8V"^} sur la boule

B c K c Rn (cf. 4.4) appliquant un point de S*^1 de coordonnées (x, y,u)
sur le point de B de coordonnées o\ x/(l + u2)..., u u. Soit ti0 l'application

continue de 5P+1 dans B' c K' c Rm qui envoie un point (x, 0, u)
sur le point de B' de coordonnées Xx 0, Yx 1/2, Uj 2ui ou
0o%/(*2 + ^2)1/2 suivant que (s2 + u2)112 < 0o/2 ou > 0/2. Il est possible
de construire une application continue h! de J3P£2 sur J5' dont la restriction
à l'intérieur de Bp^} est un homéomorphisme et qui est égale à goh sur
S**1 et à Ai sur
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Nous considérons maintenant le «mapping cylinder» Mf de /0, l'injection
i de F dans Mf et la projection naturelle j de Mf sur ifef (cf. 0.4).
L'application %Hx1i de #* dans Mf peut être étendue suivant une application
y) de J5^+1 dans Mf telle que y y H\h' sur JS^+1. Comme xp envoie Sp
dans le sous-espace F de Mf, elle représente un élément de np+1{Mf9 F)

7rp+i (/) 0. Il est donc possible d'étendre ^ suivant une application
continue W de Bv\x dans Jf, envoyant S^1 dans F.

Alors Wh"1 est une application H de B dans F prolongeant -Hx et

l'application H1 de jB' dans M définie par jW H'h' vérifie f0H H'g0
sur B.

Démonstration de la proposition 1.

Construction d'un modèle.

4.10. Définissons une famille d'applications grj dépendant du paramètre

t, où 0<t<1, de BP-n+1(xl9...,xm_n9u) dans

l9..., XW^Y1?..., Yw_n, U) par les équations

Y1=A(u,Q\r)y(x1)l(l + x\), Y% xxxt

où i A[^ —

y,Q,<x étant définis comme dans 4.4,
2% et ô étant des nombres >0, ô<u0,
X une fonction d'une variable u, égale à 0 pour u ^ — ô, strictement

croissante entre — ô et + à, égale à 1/2 pour u 0 et à 1 pour w ^ <$.

On vérifie, comme dans 4.4, que

1) g\ a un seul point singulier $!J : xt 0, u tWq,

2) la courbe J$ des points doubles de g\ est la demi-droite

Xt 0, Y1=l/2, Y, 0, j>1, U^ruo,
et que g\ est générique pour tout t.

L'effet de la déformation est ainsi de repousser les points doubles le long
de la demi-droite A%.

Soit K*e le compact de JRTO-n+1 défini par

|^|<2, £2<e2, - d^u^uo+ ô
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et soit K'e° le compact de B2m~2n+1 défini par

|I1|<2, r3>1Zf<e2, O^Y^l, 27i:>1YÎ<4ea, - ô^u^uo+ ô,

et soient K° et Kf° leur intersection avec le plan xj 0, j > l, et le plan
X5 — 0, Y, 0, ?* > 1, respectivement.

Comme dans 4.4, la déformation est constante en dehors de K°e et l'on a

4.11. Plaçons-nous maintenant dans les hypothèses de la proposition 1,

8 et A étant la variété des points singuliers et des points doubles resp. de

t:8' f,(8) et i> /0-*(d).
Construisons un champ de vecteurs v le long de S transverse à D, ce

qui est possible car codim D m — n> 2n — m — 1 dim S; soit Ex le
fibre linéaire trivial engendré par v. Soit Em_n_1 un fibre de base 8 engendré

par un champ de (m — n — l)-plans le long de S complémentaire à D et
à Ex. Désignons enfin par L le fibre linéaire engendré par le champ des

noyaux de df0 le long de 8.
Le fibre N L + Em_n_x + Ex est isomorphe au fibre normal à S dans

F. Nous pouvons réduire le groupe structural de L au groupe orthogonal
0(1), celui de Em_n_1 à 0(m — n — 1) et celui de Ex à l'identité en
considérant que v est un champ de vecteurs unitaires. Identifions la fibre type
de N à Bm~n+1, l'espace numérique des coordonnées (x1}..., xm__n, u),
la fibre de L étant identifiée à Taxe des xt, celle de Em_n_1 au plan des

variables x2,..., xm__n et celle de Ex à l'axe des u.
Soit N' le fibre associé à N de fibre R2m~2n+1(Xli..., Xm_wî Y^

YTO_W, U), un élément du groupe structural de N représenté par les équations

x[ ± #!, a£ a{xj9 i, j > 1, ur u définissant la transformation

x[=±xl9 x\ 4xj9 y; ±*{xi9 y'^y^ y15 tr u.
Soit alors gT l'application fibrée de iV^ dans Nf, se projetant sur l'identité

de 8 et qui, sur chaque fibre, se réduit à l'application gl définie en 4.10,
vi0 étant <fi — q>o- ^^ a un sens, car gQx commute avec les opérations du

groupe structural. On vérifie immédiatement que gT est une application générique

de N dans Nf, pour tout x ; les variétés 80 et Ao des points singuliers

et des points doubles de g0 resp. sont la réunion de $ et A% resp. dans

chaque fibre. Désignons par U la fonction sur Ao égale à la coordonnée U
dans chaque fibre. Enfin soient Ke et K'e les compacts de N et Nr resp.
qui coupent chaque fibre suivant K\ et K'e° resp.

4.12. Pour construire la déformation /r, il suffira comme dans 4.5 de

construire des difféomorphismes H : Ke->V et Hr : K'e-> M tels que
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1) UH H'g0 sur Kt
2) sur A et Ao les fonctions <p et £7 + 9?o se correspondent par H'
3) H'-W g0N ~ K't.
On définira alors /T comme l'identité en dehors de H(KS) et par

U H'gTH-* sur tfdQ.
La construction de H et jH7 est tout à fait analogue à celle décrite en

4.6 à 4.8 dans le cas de la proposition 2, et nous ne la répéterons pas. Remarquons

simplement que Ton n'a pas d'obstructions homotopiques comme dans

4.6, c), d) et 4.7, c), car DQr> K peut se rétracter par déformation sur S et
gQ(K) sur 8'.

4.13. Remarque. Dans le cas où F a un bord 3 F et où g est une application

de F dans M qui soit un plongement au voisinage de 3 F et telle que
g(dV) ^ g(V — 3F) 0, on construit d'abord une application générique /
proche de g, vérifiant donc les mêmes propriétés que g, et égale à g au
voisinage de 3F. La sous-variété des points doubles de / ne rencontre pas
/(3F). On peut donc effectuer sans aucun changement les constructions
précédentes en prenant garde simplement que H(Ke) <^ dV 0 et que
H1 (K\)r>> f(dV) 0, ce qui est toujours possible, pour s assez petit, car
dim K' 2n — m + 2<m — n + 1 codim /(3F).

4.14. Remarque. Dans la proposition 2, au lieu de supposer 2m ^ 3(t&+ 1),

il suffit de supposer 2p + 2 <n et p + n + 2 <m.
En effet, il existe un difféomorphisme de Ke dans un voisinage arbitraire

de la réunion P de DonZ et de la (p + l)-boule B (cf. 4.4), ce difféomorphisme

étant fixe sur B. De même, il existe un diflEéomorphisme de K\ dans

un voisinage arbitraire de la réunion P' de AQ ^ K' et de la (p + 2)-boule
Br (cf. 4.4), aussi fixe sur P'. Ainsi dans les inégalités de 4.6, c) et d),
2n — m dim Ao peut être remplacé par p.

Dans la proposition 1, il suffit de supposer 2 m > Zn + 1 (pour assurer
l'existence du champ de vecteurs v, cf. 4.11), car il existe des diflféomorphis-
mes de Ke et K\ dans des voisinages arbitraires de Do ^ K et Ao ^ K'
respectivement.

5. Existence (Tisotopies

5.1. Théorème. Soit Fo une variété compacte sans bord de dimension %
et Mo une variété de dimension m^. On suppose 2m^ > 3(% -f 1).

Soit g une application de Fo dans MQ telle que ^2*0-1110+2(0) 0. Alors
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deux plongements de Vo dans Mo homotopes à g sont isotopes.
(C'est le théorème d'existence b) de l'introduction.)

5.2. Posons F F0X I, M Mox I,m mo+l,n no+l. Ainsi
*i—m+i(0) 0 et 2m ^ 3(n + 1).

Désignons par t et t' les projections de FoX / et Mox I sur /.
D'après 2.7, il existe une homotopie générique reliant les deux plongements

donnés de Fo dans MQ; désignons par / l'application de V V0X I dans
M Mox I associée à cette homotopie. On a t t'f, f est une application
générique de F dans M et les points singuliers de la restriction de t1 à la
variété A des points doubles de / ne se trouvent pas sur le bord 8f de A.

Nous allons maintenant reprendre la démonstration et les notations du § 4

appliqué à la situation ci-dessus. Il s'agit de déformer l'application générique

f:V->M comme au paragraphe précédent, en la laissant fixe sur dV
(Fo X 0) ^ (Fo X 1), et de sorte que, pour chaque déformation /T, on

ait t tffT. Nous allons donc simplement indiquer quelles sont les précisions
à apporter pour que cette nouvelle condition soit vérifiée.

Dans 4.2, on supposera que les variétés de niveau <p <p09 çp q>x, <p_ c,
ç>+ c ne contiennent pas de points singuliers de la restriction de t1 à A.
Dans les hypothèses des propositions 1 et 2, on suppose donc que /0 correspond

à une homotopie générique, et on exige dans les conclusions que, pour
tout t, on ait t trfT.

Pour démontrer la proposition 2 avec cette condition supplémentaire, on
part du même modèle qu'en 4.4 en introduisant de plus dans K\ la fonction
4 définie par t'0(X, Y, U, F) t'[U9 F) + X2, où t'(U,V) est la restriction

de la fonction tr à A exprimée dans les coordonnées locales (U, F)
dans la boule J50. On pose t0 t'0g0.

Les difféomorphismes H et H1 de 4.5 devront alors vérifier de plus la
condition

1)' to tH et t'0 t'Hf.
Comme la déformation gT vérifie la condition to t(igT, elle définira

comme dans 4.5 une déformation fT telle que t~t'fT.
5.3. Nous suivons maintenant 4.6 en indiquant à chaque pas ce qu'il faut

pour que 1)' soit vérifié.
Rien n'est changé dans a). Dans b), on impose de plus au champ

(f2, • • •, £m-n> ^) de vérifier < dt, f, > 1, <dt, ^ > 0 pour i > 2,

< dt, v> < dt0, vo> aux points correspondants par Ht. On peut réaliser
la première condition en appliquant le lemme 5.5 qui suit. Ceci fait, comme
dt restreint à la somme du fibre tangent à D et du fibre engendré par |2
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est partout de rang 1, la construction du champ (f3,..., fm_n, v) revient à
celle d'une section d'un espace fibre de base l'espace contractile Hx (D% ^ K).
On construit ensuite H2 et H'2 en appliquant 3.4.

Dans c), v doit vérifier < dt, v > < dt0, v0 > aux points correspondants
par Hx. Pour cela on construit d'abord |2 le long de D et transverse à D
de sorte que < dt, f2 > 1 (cf. 5.5); la construction de v satisfaisant à la
condition imposée et transverse à D et £2 est la construction d'une section
d'un fibre affine de base D qui évite un sous-fibré affine de codimension
m _ ^ __ 1 > 2w — m dim D. On pourra ensuite trouver Hz tel que
$£T8 t0 en tenant compte de 5.6. Enfin pour construire HA tel que tHé tQ

restreint k K, on utilise 2.9.

Dans d), on construit les extensions successives de H's en tenant compte
de 5.6. Le champ de vecteurs v' doit vérifier de plus < dt', v! > < dt'Q9 vQ >
aux points correspondants par H'z; comme t' restreint à f0V est une fonction

non singulière, la construction de v' revient de nouveau à celle d'une
section d'un fibre affine de base H'z(goK) ne rencontrant pas un sous-fibré
affine de codim m — n> 2n —-m+ 1 dim K. Enfin on construit H\
par 2.9.

5.4. Dans 4.7, dH et dH' doivent vérifier de plus

4)' dt0 dtdH et dt'o dt'dH'
Les conditions supplémentaires sont, dans a), <dt', |2 > 1 (cf. 5.5),

< dt, ii > 0 pour i > 2, dans b), < dt1, N2 > 0, dans c), < dt',
f2 > 1 et < dt', £i > 0 pour i > 2. Ceci ne présente aucune difficulté
nouvelle.

Enfin dans 4.7, on tient de nouveau compte de 5.6.
Les précisions à apporter à la démonstration de la proposition 1 sont tout

à fait semblables.

6.5. Nous démontrons maintenant ce que nous venons d'utiliser.
Lemme. Soit S une sous-variété d'une variété V et t une fonction numérique

non singulière sur V. On suppose dim S < codim S.
Etant donnée une fonction <x sur S qui ne s'annule pas en même temps que

la différentielle dt de t restreinte à S, il existe le long de S un champ de

vecteurs v tel que

1) v est transverse à S,

2) <dt, v(s) >=<%($) pourtoui se S.

Il est tout d'abord possible de construire un champ de vecteurs v le long
de S vérifiant 2), car ceci revient à construire une section d'un espace fibre
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E dont la fibre est un espace affine. Soit F le fermé de 8 formé des points où
dt restreint à S s'annule identiquement; d'après l'hypothèse sur <x, v est
certainement transverse à S aux points de F. En dehors de F, la condition

1) signifie que v n'appartient pas au sous-fibré affine Eo de E formé
des vecteurs v0 tangents à S et tels que < dt, v0 > <x. La codimension
de Eo dans E est égale à celle de 8 dans F. Donc si dim 8 < codim 8,
il sera toujours possible d'étendre une section de E définie sur F en une
section sur S ne rencontrant pas Eo.

5.6. Remarque. Soient F et M des variétés et t une application de F
dans une variété R. Désignons par p et t' les projections naturelles de

M X R sur M et R respectivement. Soit / une application d'un voisinage
d'un fermé F de F dans M X R telle que, sur F, d(trf) dt. Il existe
alors une application /' d'un voisinage de F dans M X R telle que t'f t
et que df df sur F, II suffit en effet de définir /' par /' (pf, t).

6. Théorèmes d'approximation

6.1. Les variétés F et M sont supposées munies de métriques rieman-
niennes complètes; la distance de deux points xx et x2 est notée d(x1, x2).

Théorème. Soit F une variété compacte de dimension n et M une variété
de dimension m. On suppose que 2m ^ 3(n + 1).

Etant donné un plongement topologique g de V dans M et un nombre positif
e arbitraire, il existe un plongement différentiable f de V dans M tel que

d[f(x), g(x)] < e pour tout x e F. De plus si g est un plongement différentiable

au voisinage d'un fermé F de V, on peut supposer que f g sur F.
L'idée de la démonstration est d'approcher g par une application générique

/ et d'éliminer pas à pas les points doubles de / comme au § 4. Si / est
suffisamment proche de g, les paires de points de F appliqués par / sur un
même point de M sont très proches, donc liés par une unique géodésique; il
en résulte que l'on ne rencontre aucune obstruction homotopique dans
l'identification avec le modèle (4.6 à 4.7).

6.2. Il existe un nombre q>0 (resp. q' > 0) tel que deux points de F
(resp. M) dont la distance est inférieure à q (resp. q1) sont joints par un
segment géodésique unique de longueur égale à la distance de ces points et dépendant

continuement de ces points.

Lemme. Etant donné un nombre rj > 0, il existe une application générique

/: F-> M telle que



80 André Haefliger

a) d[f(x), g(x)]< r\ pour tout xeV,
b) si f(x) f(y), alors d(x, y) < g et, pour tout couple de points xl9 yt

sur Ze segment géodésique joignant x à y, d[j(xx), f(yi)]<r)-

Démonstration du lemme. Comme g est une application continue, il existe
un nombre a, 0<oc<g, tel que, si d(x, y) <», alors d[g(x), g(y)] < rj/2.
D'autre part, comme g est biunivoque et F compacte, il existe un nombre
P>Q tel que si d[g(x), g(y)] < p, alors d(x,y)<<x.

Soit alors / une application générique (cf. 2.5) de F dans M telle que
d[f(*)> 9(*)1 < min W*> PI2)- Si f(x) f{y), alors

d[g(x), g(y)] < d[g[x)9f{x)] + d[g(y), /(y)] < p
donc d(x, y) <<x < g. D'autre part, si d(x,y) <ot, alors

rftf(*)J(»)]<<*^
c.q.f.d.

6.3. Démonstration du théorème. Nous voulons montrer que si l'on part
d'une application générique / vérifiant la condition b) du lemme, avec y\ < g',
chacune des déformations fr de / /0 qui interviennent dans les propositions

1 et 2 de 4.2 peut être effectuée de sorte que d\jx(x), /0(#)] < ^ et que
fx vérifie la condition b) du lemme.

Remarquons tout d'abord que dans les modèles 4.4 et 4.10, il existe une
déformation de Ke qui déplace les points sur les segments a parallèles à
l'axe des x1 et qui rétracte Ke sur l'union du plan xx 0 et du compact
Q composé des segments de droites joignant les paires de points de Dors K
qui ont même image par g0. De même soit Q' le compact de K' formé des

segments de droites parallèles au plan P des variables Xl9Yl9 et qui joignent
les points de gQ(Q) aux points de Ao. Il existe une rétraction de K'e sur
l'union du plan Xx 0, Yt 1/2 et de Q', les points se déplaçant sur les

segments o' parallèles à P et contenant un point du plan Xx 0, Yt 1/2.
En vertu de ce qui précède et de la condition b) sur /, il est possible d'étendre

l'application Hx de DQr\K dans F, donnée en 4.6, a), suivant une application

continue H de Ke dans F qui applique tout segment a sur un segment
géodésique de longueur <g. L'application de go(Ke) dans M faisant

correspondre à tout point xr gQ(x) le point f0H(x), peut être étendue suivant
une application Hr de K8 dans M appliquant tout segment de droite af

sur un segment géodésique de longueur < rj.
Ensuite, dans 4.5 et 4.7, on pourra construire H et H' très proches de

H et H1 de sorte que, pour deux points quelconques # et y de tout segment
cr, on ait 1) d[H(x)9 H(y)] <g> 2) d[fQH(x), fQH(y)] < r\, et pour deux
points quelconques x19 y' de tout segment a', 3) d[Hf(xf), H'(y')] < rj.
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Or au cours de la déformation fT, les points se déplacent sur les arcs H(a')\
donc d'après 3), d[fx(x), fo(x)] < q pour tout x e F. D'autre part les points
de H(K8) qui ont même image par fx se trouvent sur un arc H (a); leur
distance est inférieure à q et d'après 2), la condition b) est vérifiée.

Enfin on peut supposer qu'il y a au plus 3 déformations fT qui déplacent
un point x donné de F. En effet, soient /*, i 1,..., JV, les déformations
successives que l'on doit effectuer pour éliminer les points doubles (4.2),
H1 : K\-» F, H' : K'e% -> M les identifications avec les modèles qui servent à
les définir (4.5, 4.12). En choisissant ô assez petit dans le modèle 4.10, on
peut supposer que tout point de A appartient au plus à 3 compacts H/i(Kf8i)
(cf. 4.2). D'autre part, si H'^K'*) r. H'*(K'*) * A 0, on pourra supposer
H*(K{) rs H1{K{) 0, car 2 dim K en - 2m + 2 < n dim F.

En choisissant donc une application générique / vérifiant les conditions
du lemme avec rj < e/4, on obtiendra après ces déformations successives le

plongement désiré.
Si g est déjà un plongement au voisinage de F, on partira d'une application

générique / telle que les segments géodésiques joignant les paires de

points de F ayant même image par /, ne rencontrent pas F. On pourra
donc supposer qu'aucun des compacts ^(K^) ne rencontre F'; ainsi chaque
déformation /* sera constante sur F.

Le théorème d'approximation pour les isotopies (cf. introduction) se

démontre exactement de la même manière.

6.4. Nous énoncerons pour terminer un autre théorème dont la démonstration

sera laissée au lecteur, car elle est aussi très semblable à la précédente.

Théorème. Soit f un plongement d'une variété compacte V de dimension n
dans une variété M de dimension m. On suppose 2m> 3(n + l). Il existe

un nombre e dépendant de f tel que tout plongement f de F dans M avec

d[f(%), /'(#)] < £> pour tout x e V, est isotope à f.
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