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Sur les variétés a courbure positive de diamétre minimum

par MARCEL BERGER, Strasbourg?)

1. Inftroduction

Dans [2] et [3], il a été démontré que si une variété riemannienne compacte
V, simplement connexe, de dimension paire et de courbure comprise entre 1
et }, avait un diameétre de valeur minimum =z, alors V était nécessairement
un espace riemannien symétrique compact de rang un (muni de sa structure
riemannienne canonique, c’est-a-dire 1'un des espaces suivants: sphére, espace
projectif complexe ou quaternionien, plan projectif des octaves de CAYLEY.
Dans la démonstration apparaissait en particulier le fait que toutes les géo-
désiques de V (issues d’un point quelconque et de direction quelconque)
étaient fermées et de longueur 2xz. Dans le présent article, on démontre que
ce dernier résultat subsiste si la variété V satisfait toutes les hypotheses ci-
dessus & I'exception de celle concernant la courbure qui est affaiblie en: la
courbure de ¥V est inférieure ou égale a 1 et strictement positive. Le résultat
obtenu (théoréme 4 ci-dessous) impose alors & la topologie de V des restric-
tions trés fortes que 1’on précisera dans un article ultérieur.

2. Notations et définitions

Dans toute la suite, V désignera une variété riemannienne, de dimension
plus grande que 1 et 7', l’espace des vecteurs tangents & V en un point p
de V; pour tout peV, par || || (resp. {, D), on désignera la norme
(resp. le produit scalaire associé) qui définit la structure riemannienne de V,
structure qui sera supposée indéfiniment différentiable. La courbure de V
dans le sous-espace u & deux dimensions de 7',, engendré par deux vecteurs
linéairement indépendants X et Y, est, par définition, le scalaire:

_ ~ (R(X,Y) X, 7>
e =eX. V)= =y a7 P — <X, T3

ou R(X,Y) désigne ’endomorphisme de 7', défini par le tenseur de cour-
bure de ¥V, que I’on associe canoniquement & la structure riemannienne de
V (si dim V = 2, la fonction ¢(7,) = ¢(p) n’est autre que la courbure de
GAuss de la surface considérée au point p). La variété riemannienne V est
dite 8-pincée st Uon a: 6 < p(u) <1 quel que soit u (ou, plus généralement,

1) Le résultat de cet article a été présenté au Colloque international de Géométrie différen-
tielle et de Topologie de Zurich de juin 1960.



MArcEL BERGER Sur les variétés & courbure positive de diamétre minimum 29

si 04 < po(u) < A4 avec 4> 0, mais on supposera dans toute suite, ce qui
est banalement toujours possible, avoir normé la structure riemannienne de
V en sorte que 4 = 1). Toutes les géodésiques considérées dans V seront
paramétrées par la longueur de leur arc & partir de leur origine. Si A = {A(s)}
(0 <8 <8y est une telle géodésique, A’'(s) désignera son vecteur tangent
en A(s) et 'onaura || A'(8)|| = 1 quel que soit s. Par d(p, q) on désignera
la distance des deux points p,q de V dans la structure d’espace métrique
de V canoniquement associée & sa structure riemannienne; la borne supé-
rieure (éventuellement infinie) des d(p, q), lorsque p et ¢ parcourent V,
est appelée le diamétre de V et notée d(V). Par ||| p,q||| on entendra
Uensemble des géodésiques de V qui ont pour extrémités p, q et dont la longueur
est égale & d(p,q). Si p est un point de V et X un élément de 7', tel que
|| X || =1, on sait qu’il existe une géodésique et une seule A(X)= {A(s, X)}
(0 <8 < ¢e(X)) dorigine p et telle que A'(0, X) = X, avec ¢(X)>0. Il
est classique que si la variété V est compacte, alors on peut prendre ¢(X) = oo
pour tout X ¢7', tel que || X |[[=1 et tout p e V, autrement dit A(s, X) a
un sens quel que soit s. Le point p étant fixé, on peut alors définir une
application de 7', dans ¥V, notée exp (p) et dite application exponentielle
d’origine p, en posant pour tout Ze7,:

exp (p)(Z) = z(nzu, -”—gﬁ)

3. Rappel de résultats connus

Les résultats suivants seront nécessaires dans la suite:

Théoréme 1 (Horr-Rinow). 8i la variété V est compacte, quels que soient
p,qeV, Uensemble ||| p,q||| n'est pas vide.

En particulier, quel que soit p, l’exponentielle exp (p) est surjective. Le
résultat suivant est un critére pour qu’une certaine restriction de exp (p)
soit injective (il utilise le théoréme 1):

Théoréme 2 (KLINGENBERG [4], théoréme 1, p. 655). Soit V wune variété
riemannienne compacte, simplement connexe, de dimension paire et J-pincée
avec &> 0. Alors, quels que sotent les deux points p,q de V tels que

d(p, q) <z, Uensemble ||| p,qll| a un élément et un seul. En particulier, le
diamétre de V vérifie: d(V) = .

Théoréme 3 ([3], lemme 3, p. 165). Soit V wune variété riemannienne com-
pacte, simplement connexe, de dimension paire et §-pincée avec & > 0. Soient
D,q deux points de V tels que d(p,q) = m et @, @, deux géodésiques appar-
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tenant @ ||| p, q|]] (6(0)=06,(0)=p, 0(n) =0, () =q) telles que 6'(0)# £ 6,(0).
Soit @(A4, u) la géodésique d’origine p, de longueur n et dont le vecteur tangent
26'(0) + p6,(0)

[146"(0) + p6,(0) || °
O(A, u) elll p,qlll. En outre, le sous-ensemble de V constitué par la réunion

des O(4, p) (A =0, u = 0) est une sous-variété totalement géodésique de dimen-
sion 2de V, et de courbure constante égale & 1.

en p est Alors, quels que sotent A >0, u>0, on a

4. Enoncé du résultat

Dans toute la suite, V sera une variété riemannienne compacte, simple-
ment connexe, de dimension paire, §-pincée avec & > 0, et dont le diamétre
a la valeur minima dans l'inégalité du théoréme 2, c’est-a-dire telle que
d(V) = n. Sous ces conditions, nous allons démontrer le résultat suivant:
pour deux points quelconques p,q de V, désignons par A4, , le sous-
ensemble de 7', constitué par les vecteurs tangents en ¢ aux éléments de
Il p,qlll; A, est un sous-ensemble de la sphére 8, des vecteurs unitaires
d’origine gq.

Théoréme 4. Quels que soient p,q tels que d(p,q) = n, le sous-ensemble
A, ., de S, est Uintersection de S, avec un sous-espace vectoriel de T,.

Il en résultera en particulier que, si X ed,,, onaaussi —Xed,, ce
qui montre que toute géodésique I'e||| p,q |||, dont le vecteur tangent en
g est X, se prolonge en la géodésique I'vI” de longueur 2x constituée
par la réunion de I' avec la géodésique I € ||| p, g ||| dont le vecteur tangent
en g est —X. D’oli, puisque p,q et X e A4, , sont arbitraires et d’aprés
le lemme 2 de [2], le fait que toutes les géodésiques de V (d’origine et de
direction initiale quelconques) sont fermées et de longueur 2z. Il est d’autre
part facile de voir que tous les 4, , ont méme dimension et que, pour ¢
fixe et p variable, ce sont les fibres d’une fibration de §,. Enfin, pour tout
peV, lensemble C(p) = {q|d(p,q) ==}, qui n’est autre que le lieu ré-
siduel de p (voir par exemple: [2], p. 57, et lemme 3, p. 61) est alors une
sous-variété de V de codimension égale & la dimension des A4, ,. Tout ceci
implique de trés fortes restrictions sur la topologie de V'; nous les préciserons
ultérieurement.

5. Démonstration d’icelui

Les hypothéses sont toujours celles du no 4; et p,q deux points de V,
fixés une fois pour toutes, tels que d(p,q) = n. Posons 4, ,= U; d’aprés
le no 7, p. 169 de [3], sous de telles hypothéses, il existe X,e U tel que aussi
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— Xy e U. Appelons T I'orthogonal de X, dans 7', et posons U’ = U ~ T}.
Nous devons montrer que U est I'intersection de S, avec un sous-espace
vectoriel de T',. Pour cela, il suffit de montrer que U’ est Uintersection de 8,
avec un sous-espace vectoriel de T ,. En effet, supposons qu’il en soit ainsi;
alors Z eU' entraine —Z eU’'. Comme U vérifie le théoréme 3, il suffit
de montrer que, quel que soit X ¢ U, alors aussi — X e U. Supposons
d’abord que l'on ait (X, X,> <<0; alors, si XeU, on a aussi ZeU
(d’apres le théoréme 3), ou Z est défini par: Z = —”{,—“—, avec ¥ =X —
— (X, Xy>X,. Mais, par construction: Z e U'; mais — Z e U’ par hypo-
thése. Comme X est une combinaison linéaire & coefficients positifs de Z
et de X,, c’est que — X sera une combinaison linéaire & coefficients posi-
tifs de (— Z) et de (— X,), donc appartiendra & U d’aprés le théoréme 3.
Dans le cas ou (X, X,> > 0, le raisonnement ci-dessus reste valable en y
échangeant les roles de X, et — X,.

Démontrons maintenant que U’ est l'intersection de §, avec un sous-
espace vectoriel de T',, ce qui nécessite d’abord quelques lemmes.

Lemme 1. Soit P le sous-espace vectoriel de T, engendré par U'. Pour
tout X eP tel que || X || =1, il eviste un ¢ >0 et un n> 0 tels que: quel
que soit le vecteur umitasre Y de T, qui vérifie <Y, X>>1 —n, on a:
d(p,exp(q)(tY)) <d(p,q) = n pourtout t tel que 0 <t <e.

Comme Dlensemble des vecteurs unitaires Y de 7T, qui sont tels que
(X,Y)>=1—7n est un compact, il suffit, pour démontrer le lemme, de
montrer que, pour tout Y dans ce compact, il existe un &(Y) tel que:
d(p,exp(q)(tY)) <d(p,q) pour tout ¢t tel que 0 <t < &(¥). Il est d’abord
classique que, si <(Z, X,> <0, il existe &(Z) tel que d(p,exp(q)(t2)) <
<d(p, q) pour tout ¢t tel que 0 <t < e(Z); ceci parce qu’il existe un élé-
ment de ||| p,q||| dont le vecteur tangent en ¢ est X,. Changeant X,
en — X,, on voit qu’il suffit de trouver un &(Y) ayant la propriété deman-
dée pour tous les Y tels que <Y, X>>1—n et (¥, X, =0.

Utilisons maintenant le fait que X appartient & l’espace vectoriel P
engendré par U’'. Appelons I'= {p(s)} (0 <s < 2xn) la géodésique cons-
tituée par la réunion des deux géodésiques de |||p, ¢||| dont les vecteurs tan-
gentsen g sont X, et — X, respectivement (y(xn) = ¢, y(0) =9y(2xn) = p).
Pour tout Z eT,;, définissons un champ 9 (Z)= {Z(s)} (0 <s<2n) le
long de I' par les deux conditions: 1. V,ywZ(s) =0 quel que soit s
2. Z(n) =Z (autrement dit, Y (Z) est le champ obtenu en transportant
parallelement Z le long de I'). D’aprés le théoréme 3, si Z e U’, alors la
courbure g (y'(s), Z(s)) est telle que: p(p'(s), Z(s)) = 1 pour tout s tel
que 0 < 8 < 2z. Mais le raisonnement fait au bas de la page 63 de [2] montre
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que les champs Y (Z), tels que go(y'(s), Z(s)) = 1 quel que soit s, forment
un sous-espace vectoriel de 7';; c’est donc que l'on a, puisque P est le
sous-espace vectoriel engendré par U’': o(y'(s), X(8)) = 1 quel que soit s
et quel que soit X ¢ P.

Soit maintenant Y €7, quelconque et introduisons le champ X(Y) =
= {sin (ks) Y (s)} (0 < s < m). La formule de la variation seconde ([1], p.97,
formule (1)) donne:

7 (0) (X(Y)) = f(k’ cost(ks) — o (7' (s), ¥(s)) sin?(ks))ds .

On vient de voir que o (y'(s8), X(s)) = 1 pour tout s et tout X ¢ P; puis-
que la courbure pg(y'(s), Y(s)) est continue en le vecteur Y (s) et que
« Y voisin de X » entraine « Y (s) voisin de X(s) quel que soit s», il est clair
que, pour tout { > 0, il existe un 7({) > 0 tel que, quel que soit Y tel que
KY,X>2>21 —n(), on ait: o(»'(8), Y(8)) =1 — ¢ quel que soit s tel
que 0 <8 < z. On a alors, par une intégration directe:

I"(0)(X(Y)) < (#/2)(k* — (1 —0)) + (1/4k)(1 — C + k?) sin (2nk) .

Prenons k tel que 3/4 <k <1 et {=1 —k?%; alors, si I’on pose
n=mn({=1—k=, on a bien, pour tout Y wvérifiant <Y, X>>1 —9:
1"(0)(X(Y)) < 0. Il est alors banal que cela entraine ’existence d’'un ¢(Y) > 0
tel que d(p,exp (q9)(tY)) < d(p,q) pour tout ¢ tel que 0 <t < e(Y).

Lemme 2. Quel que soit X € P, il existe Z' e U' tel que <X,Z'> > 0.

11 suffit de démontrer qu’il existe Z e U tel que (X, Z> > 0, car alors
7 — Z_<X0’Z>X0

[1Z — <X, 2) X, ||

puisque (X,, X>=0 et ||Z —<(X,, Z)>X,|| <1 entrainent <{Z' 6 X)><Z,X).
Pour exhiber un tel Z, utilisons d’abord le lemme 1 dans le cas particulier
de X lui-méme. Posons ¢(¢)=exp (q)(tX)(0<t<e); onadone d(p,q(?)) <=
et 'on posera d(p,q(t) = d(t) et e(t) =x — d(¢). D’aprés le théoréme 2,
I’ensemble ||| p,q(t)||| n’a qu'un seul élément que l'on désignera par
A@) = {A(u,t} (0 <u<d(), 0<t<e) (avec A(0,t)=p,A(d(t),t) =q(t)).
Appelons ¢'(t) le vecteur tangent en ¢(f) & la géodésique exp (¢9)(tX) et
posons: «(t) = <q'(t), A;(d(t), t)>. On a d(q,q(t) =1¢, donc, d’aprés le
théoréme 6 de [3], p. 164: d(p, ¢)2 <d(£)2 412+ 2¢x(t)d(t). De d(p,q)=m,
on déduit I'inégalité:

est un vecteur de U’ qui répond & la question,

a(t) > 2l _ ’22J;d‘zt()‘)2 . (1)

Soit r(t) le point défini en prolongeant A () jusqu’a la distance = de p
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c’est-a-dire r(t) = A(n,t). Lorsque t—>0:d() >n et e(f) >0, donc
d(g,r(t)) >0 d’aprés l'inégalité du triangle; il existe donc &' > 0 tel que
d(gq,7(t)) <e quel que soit ¢t <¢&'. Appliquons alors le lemme 1 en prenant
pour vecteur Y le vecteur tangent Y () en ¢ a la géodésique unique de
Il g, 7(t) |||. D’aprés ce lemme, si Y (t) était tel que <Y (¢),X)> >1 — 1,
on aurait d(p,r(t)) <z; comme d(p,r(t)) =xn par construction, c’est
donc que <Y (t), X> <1 —#. Considérons le triangle de ¥ dont les trois
sommets sont les points ¢, q(t), r(¢) et les trois cotés les éléments uniques de
g, g@ il Hlg@®,r@I1ll, lllg, @ |l respectivement. L’angle en ¢ de
ce triangle étant tel que (Y (1), X)> <1 — 7 et la métrique de V étant,
lorsque ¢ — 0, euclidienne au deuxiéme ordre prés, c’est donc que, si s(?)
désigne le pied de la perpendiculaire abaissée de ¢(t) sur ||| ¢, r(¢)]||, 1'on
a: d(q(t), r(t) >d(g(t), s(t) et:

d(q(t),s(t) _ e(f)
d(g,q(?) t

(ou 'on a posé cos B(¢) = (Y (t), X>). Donc on a:

e(t)
t

= sin f(t) (¢ — 0)

>a(t—>0) avec a>sing(t) >(1 —(1 —n)?)">0. (2)

De (1) et (2) on déduit qu’il existe &" > 0 tel que:
«(t) = b>0 quel que soit ¢ tel que 0 <t << ¢". (3)

De la famille des géodésiques «(t), on extrait une suite convergente, dont on
notera la géodésique limite par A (A el||p,qll]). Si Z désigne le vecteur
tangent & A en ¢, comme «(t) = <q'(t), A;(d(),t)> et que ¢’ (t)—>X(t—0),
Ay (d(t),t) - Z (t - 0), linégalité (3) entraine <Z, X)> > 0.

Déduisons maintenant le théoréme 4 du lemme 2. Dans l’espace vectoriel
P engendré par U’, soit CU’ le cone ensemble des kX pour tous les
X eU' et tous les k£ > 0; le théoréme 3 affirme que CU’ est convexe et il
faut montrer que CU’ = P. Soit donc un point Y e P tel que Y¢ CU’;
il existe un point Z de CU’ tel que la distance euclidienne dans P de Y
& Z soit un minimum absolu en Z pour I’ensemble des points de CU’.
Si H désigne ’hyperplan de P qui est orthogonal & Y — Z, il est classique
que le cone convexe C U’ est alors tout entier dans la région fermée de H
qui ne contient pas Y (car §’il existait un Z' e CU’' dans la région ouverte
qui contient Y, le segment fermé d’extrémités Z et Z' aurait des points

3 CMH vol. 36
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situés strictement a l’intérieur de la sphére de centre Y qui passe par Z).
Onadonc Y —Z, 8> < 0 quel quesoit SeCU’, afortiori <Y —Z,8> <0
quel que soit S e U’. Mais ceci contredit le lemme 2 appliqué au vecteur
Y —Z de P.
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