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Sur les variétés à courbure positive de diamètre minimum

par Maucel Bebgeb, Strasbourg1)

1. Introduction

Dans [2] et [3], il a été démontré que si une variété riemannienne compacte
F, simplement connexe, de dimension paire et de courbure comprise entre 1

et J, avait un diamètre de valeur minimum n, alors F était nécessairement

un espace riemannien symétrique compact de rang un (muni de sa structure
riemannienne canonique, c'est-à-dire l'un des espaces suivants : sphère, espace
projectif complexe ou quaternionien, plan projectif des octaves de Cayley.
Dans la démonstration apparaissait en particulier le fait que toutes les géo-
désiques de F (issues d'un point quelconque et de direction quelconque)
étaient fermées et de longueur 2tt. Dans le présent article, on démontre que
ce dernier résultat subsiste si la variété F satisfait toutes les hypothèses ci-
dessus à l'exception de celle concernant la courbure qui est affaiblie en: la
courbure de F est inférieure ou égale à 1 et strictement positive. Le résultat
obtenu (théorème 4 ci-dessous) impose alors à la topologie de F des restrictions

très fortes que l'on précisera dans un article ultérieur.

2. Notations et définitions

Dans toute la suite, F désignera une variété riemannienne, de dimension
plus grande que 1 et Tp l'espace des vecteurs tangents à F en un point p
de F; pour tout p* F, par || || (resp. < », on désignera la norme
(resp. le produit scalaire associé) qui définit la structure riemannienne de F,
structure qui sera supposée indéfiniment différentiable. La courbure de F
dans le sous-espace fx à deux dimensions de T9, engendré par deux vecteurs
linéairement indépendants X et Y, est, par définition, le scalaire :

où E(X, Y) désigne l'endomorphisme de Tp défini par le tenseur de courbure

de F, que l'on associe canoniquement à la structure riemannienne de

F (si dim F 2, la fonction q(Tp) g(p) n'est autre que la courbure de
Gaxjss de la surface considérée au point p). La variété riemannienne V est

dite d-pincée si Von a: ô < g (pt) < 1 quel que soit fi (ou, plus généralement,

1) Le résultat de cet article a été présenté au Colloque international de Géométrie différentielle

et de Topologie de Zurich de juin 1960.
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si àA ^ q([x) ^ A avec A > 0, mais on supposera dans toute suite, ce qui
est banalement toujours possible, avoir norme la structure riemannienne de
F en sorte que A 1). Toutes les géodésiques considérées dans F seront
paramétrées par la longueur de leur arc à partir de leur origine. Si A {A(s)}
(0 ^ s < s0) est une telle géodésique, A' (s) désignera son vecteur tangent
en A(s) et Ton aura || A'(#)|| 1 quel que soit s. Par d(p,q) on désignera
la distance des deux points p, q de F dans la structure d'espace métrique
de F canoniquement associée à sa structure riemannienne ; la borne
supérieure (éventuellement infinie) des d(p,q), lorsque p et q parcourent F,
est appelée le diamètre de F et notée d(V). Par |||2?,g||| on entendra
Vensemble des géodésiques de V qui ont pour extrémités p, q et dont la longueur
est égale à d(p,q). Si p est un point de F et X un élément de Tp tel que
|| X || 1, on sait qu'il existe une géodésique et une seule A(X) {A(s, X)}
(0 < s < e(X)) d'origine p et telle que A'(0, X) X, avec e(X) > 0. Il
est classique que si la variété F est compacte, alors on peut prendre e(X) oo

pour tout X € Tp tel que || X \\ 1 et tout p € F, autrement dit A(s, X) a

un sens quel que soit s. Le point p étant fixé, on peut alors définir une
application de Tp dans F, notée exp (p) et dite application exponentielle
d'origine p, en posant pour tout Z €TV:

3. Rappel de résultats connus

Les résultats suivants seront nécessaires dans la suite :

Théorème 1 (Hopf-Rinow). Si la variété V est compacte, quels que soient

p,q € F, Vensemble \\\ p, q \\\ n'est pas vide.
En particulier, quel que soit p, l'exponentielle exp (p) est surjective. Le

résultat suivant est un critère pour qu'une certaine restriction de exp (p)
soit injective (il utilise le théorème 1):

Théorème 2 (Klingenberg [4], théorème 1, p. 655). Soit V une variété
riemannienne compacte, simplement connexe, de dimension paire et à-pincée
avec ô > 0. Alors, quels que soient les deux points p,q de V tels que
d(p, q) < n9 Vensemble \\\p,q\\\ a un élément et un seul. En particulier, le

diamètre de F vérifie:

Théorème 3 ([3], lemme 3, p. 165). Soit V une variété riemannienne
compacte, simplement connexe, de dimension paire et à-pincée avec à > 0. Soient

p} q deux points de V tels que d(p9q) n et 0, &x deux géodésiques appar-
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tenantà \\\ p,q\\\ (6(0)=01(0) p, 0(7r)=01(^) g) telles que 0'(O) ^ ±0[(O).
Soit 0(X,fi) la géodésique d'origine p, de longueur n et dont le vecteur tangent

en p est n^/LI + il0'(0)11 ' Alor8' quds qW S°imt * > °' ** > °' m a

*) e\\\ p,q\\\. En outre, le sous-ensemble de F constitué par la réunion
des 0(À, fi) (X ^ 0, ju, ^ 0) est une sous-variété totalement géodésique de dimension

2 de F, et de courbure constante égale à 1.

4. Enoncé du résultat

Dans toute la suite, F sera une variété riemannienne compacte, simplement

connexe, de dimension paire, <5-pineée avec ô > 0, et dont le diamètre
a la valeur minima dans l'inégalité du théorème 2, c'est-à-dire telle que
d(V) 7t. Sous ces conditions, nous allons démontrer le résultat suivant:
pour deux points quelconques p, q de F, désignons par A9 q

le sous-
ensemble de Tq constitué par les vecteurs tangents en q aux éléments de

III p, q m ; Apq est un sous-ensemble de la sphère Sq des vecteurs unitaires
d'origine q.

Théorème 4. Quels que soient p, q tels que d(p,q) tz, le sous-ensemble

Avq de Sq est Vintersection de 8q avec un sous-espace vectoriel de Tq.
Il en résultera en particulier que, si X € Avq, on a aussi — X € Apq ce

qui montre que toute géodésique jr€|||p,?|||, dont le vecteur tangent en
q est X, se prolonge en la géodésique F ^ P de longueur 2n constituée

par la réunion de F avec la géodésique F' e \ 11 p, q \ \ | dont le vecteur tangent
en q est —-X. D'où, puisque p,q et XeA^q sont arbitraires et d'après
le lemme 2 de [2], le fait que toutes les géodésiques de F (d'origine et de
direction initiale quelconques) sont fermées et de longueur 2^r. Il est d'autre
part facile de voir que tous les Apq ont même dimension et que, pour q
fixe et p variable, ce sont les fibres d'une fibration de 8q. Enfin, pour tout
p c F, l'ensemble C(p) {q \ d(p, q) vz}, qui n'est autre que le lieu
résiduel de p (voir par exemple: [2], p. 57, et lemme 3, p. 61) est alors une
sous-variété de F de codimension égale à la dimension des Apq. Tout ceci

implique de très fortes restrictions sur la topologie de F ; nous les préciserons
ultérieurement.

5. Démonstration d'icelui

Les hypothèses sont toujours celles du no 4; et p, q deux points de F,
fixés une fois pour toutes, tels que d(p, q) n. Posons Apq U; d'après
le no 7, p. 169 de [3], sous de telles hypothèses, il existe Xo c U tel que aussi
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— Xo c U. Appelons Tq l'orthogonal de Xo dans Tq et posons U' U ^ Trq.

Nous devons montrer que U est l'intersection de 8q avec un sous-espace
vectoriel de Tq. Pour cela, il suffit de montrer que U1 est Vintersection de Sq
avec un sous-espace vectoriel de Tq. En effet, supposons qu'il en soit ainsi;
alors Z € V entraîne — Z c V. Comme U vérifie le théorème 3, il suffit
de montrer que, quel que soit XeU, alors aussi — XeU. Supposons
d'abord que l'on ait <X,X0>^0; alors, si XeU, on a aussi ZeU

Y
(d'après le théorème 3), où Z est défini par: Z v avec Y X -—

— {X, XoyXo. Mais, par construction: Z e U' ; mais — Z e U' par hypothèse.

Comme X est une combinaison linéaire à coefficients positifs de Z
et de Xo, c'est que —X sera une combinaison linéaire à coefficients positifs

de — Z) et de — Xo), donc appartiendra à U d'après le théorème 3.
Dans le cas où <X, Xoy ^0, le raisonnement ci-dessus reste valable en y
échangeant les rôles de Xo et — Xo.

Démontrons maintenant que U' est l'intersection de Sq avec un sous-

espace vectoriel de Tq, ce qui nécessite d'abord quelques lemmes.

Lemme 1. Soit P le sous-espace vectoriel de Tq engendré par Uf. Pour
tout X € P tel que \ \ X \ \ =¦ 1, il existe un e > 0 et un rj > 0 tels que: quel
que soit le vecteur unitaire Y de Tq qui vérifie <F,X> ^ 1 — rj, on a:
d(p, exp(g)(£ Y)) < d(p, q) n pour tout t tel que 0 < t < e.

Comme l'ensemble des vecteurs unitaires Y de Tq qui sont tels que
<X, Yy ^1 — rj est un compact, il suffit, pour démontrer le lemme, de
montrer que, pour tout Y dans ce compact, il existe un e(Y) tel que:
d(p, exp(g)(£ Y)) <d(p,q) pour tout t tel que 0 < t < e(Y). Il est d'abord
classique que, si (Z, Xoy < 0, il existe e(Z) tel que d(p, exp(q)(tZ)) <
<d(p,q) pour tout t tel que 0 < t < e(Z) ; ceci parce qu'il existe un
élément de 111 p, q 111 dont le vecteur tangent en q est XQ. Changeant Xo
en — Xo, on voit qu'il suffit de trouver un e Y) ayant la propriété demandée

pour tous les Y tels que <7, Xy^l—rj et <F, Xo> 0.
Utilisons maintenant le fait que X appartient à l'espace vectoriel P

engendré par U'. Appelons F {y(s)} (0 ^ s ^ 2n) la géodésique
constituée par la réunion des deux géodésiques de \\\p> q\\\ dont les vecteurs
tangents en q sont Xo et —Xo respectivement (y(n) q, y(0) y(2n) p)
Pour tout ZeTfq, définissons un champ ?)(Z) {Z(s)} (0 < s < 2n) le
long de F par les deux conditions: 1. Vy,{8)Z(s) 0 quel que soit s
2. Z{tz) Z (autrement dit, Y(Z) est le champ obtenu en transportant
parallèlement Z le long de F). D'après le théorème 3, si Z e Uf, alors la
courbure q(y'{s), Z(s)) est telle que: Q(y'(s), Z(s)) 1 pour tout s tel
que 0 < s < 2n. Mais le raisonnement fait au bas de la page 63 de [2] montre
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que les champs Y(Z), tels que g (/(*), Z(s)) 1 quel que soit s, forment
un sous-espace vectoriel de Tq; c'est donc que Ton a, puisque P est le

sous-espace vectoriel engendré par V : q(y'(s), X(s)) 1 quel que soit s
et quel que soit X € P.

Soit maintenant Y e Tq quelconque et introduisons le champ X(Y)
{sin (ks) Y (s)} (0 ^ s ^ n). La formule de la variation seconde ([1], p. 97,

formule (1)) donne:

$\k2cos2(ks) - q(y'(8), Y(s)) sin2(ks))ds
0

On vient de voir que Q(yf(s), X(s)) 1 pour tout s et tout X e P; puisque

la courbure Q(yf(s), Y (s)) est continue en le vecteur Y (s) et que
« Y voisin de X » entraîne « Y (s) voisin de X (s) quel que soit s », il est clair
que, pour tout £ > 0, il existe un rj(Ç) > 0 tel que, quel que soit Y tel que
<r,X> > 1 -rj(C), on ait: e (/(«), Y {a)) > 1 -£ quel que soit s tel
que 0 ^ s ^ rc. On a alors, par une intégration directe:

Z"(O)(£(F)) < (*/2)(É« - (1 - 0) + (l/4i)(l - C + &2) sin (2**)
Prenons h tel que 3/4 <&<1 et £ 1 — k2; alors, si l'on pose
rj ??(£ 1 — k2), on a bien, pour tout Y vérifiant <F, X) ^ 1 — rj :

V (0) (X Y)) < 0. Il est alors banal que cela entraîne l'existence d'un e Y) > 0

tel que d(p,exp (q)(tY)) <d(p,q) pour tout t tel que 0 <t < e(Y).

Lemme 2. Quel que soit X eP, il existe Zf e U' tel que <X, Zf} > 0.
Il suffit de démontrer qu'il existe Z c U tel que <X, Z> > 0, car alors

Zr -jn? /y°9 f7\ ir° u es^ un vecteur de Uf qui répond à la question,
11^ — v* A^ll

puisque <X0, X} 0 et ||Z — <X0, Z>X0|| < 1 entraînent <Z;, X> ><Z, X>.
Pour exhiber un tel Z, utilisons d'abord le lemme 1 dans le cas particulier
de X lui-même. Posons q(t)^=exp(q)(tX)(O<t<e); on a donc d(p,q(t))<7t
et l'on posera d(p, q(t) d(t) et e(t) n — d(t). D'après le théorème 2,
l'ensemble |||p>?(OIII n>a qu'un seul élément que l'on désignera par
A(t) {l(u,t}(0 ^u ^d(t), 0<t<e) (avec X{0,t)==p,A(d(t),t)=q{t)).
Appelons qf(t) le vecteur tangent en q(t) à la géodésique exp (q)(tX) et
posons: a(t) (q'(t), X!t(d{t), t)}. On a d(q,q{t)) t, donc, d'après le
théorème 6 de [3], p. 164: d(p, q)2 ^d(t)2 + t2 + 2toc(t)d(t). De d{p,q) n,
on déduit l'inégalité:

"{*)>—j- 2td(t) ¦ (1)

Soit r(t) le point défini en prolongeant A(t) jusqu'à la distance n de p
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c'est-à-dire r(t) X(n, t). Lorsque t -> 0 : d(t) -> n et e(t) -> 0, donc
d(g, r(£)) -> 0 d'après l'inégalité du triangle; il existe donc e' > 0 tel que
d(q, r(t)) < e quel que soit t < s'. Appliquons alors le lemme 1 en prenant
pour vecteur Y le vecteur tangent Y{t) en q à la géodésique unique de

M g, r(*) m. D'après ce lemme, si Y(t) était tel que <F(*),X> > 1 — rç,
on aurait d(p, r(t)) < n; comme d(p,r(t)) n par construction, c'est
donc que <F(£), X} ^ 1 —-rj. Considérons le triangle de V dont les trois
sommets sont les points q,q(t), r(t) et les trois côtés les éléments uniques de

III ?,?(*) III, III ?(*),*¦(*) III, lllî.'WIII respectivement. L'angle en q de
ce triangle étant tel que (Y(t),X} < 1 — rj et la métrique de V étant,
lorsque t ->0, euclidienne au deuxième ordre près, c'est donc que, si s(t)
désigne le pied de la perpendiculaire abaissée de q(t) sur ||| q, r (t) |||, l'on
a: d(q(t),r(t)) > d (q (t), s (t)) et:

(où l'on a posé cos p(t) (Y(t), X». Donc on a:

—~^- ^ a(t -> 0) avec a > sin f}(t) > (1 — (1 — rj)2)112 > 0 (2)

De (1) et (2) on déduit qu'il existe e" > 0 tel que:

oc(t) ^ b > 0 quel que soit t tel que 0 < t < e" (3)

De la famille des géodésiques oc (t), on extrait une suite convergente, dont on
notera la géodésique limite par il(il€|||p,g|||). Si Z désigne le vecteur
tangent à A en q, comme oc(t) (q'(t), Xft(d(t), £)> et que qf (t)->X(t->0),
l't(d(t), t) -> Z (t -> 0), l'inégalité (3) entraîne <Z, Z> > 0.

Déduisons maintenant le théorème 4 du lemme 2. Dans l'espace vectoriel
P engendré par Uf, soit GUf le cône ensemble des kX pour tous les

X € U' et tous les k ^ 0 ; le théorème 3 affirme que G Uf est convexe et il
faut montrer que CUf P. Soit donc un point Y e P tel que Y$ CU' ;

il existe un point Z de C V tel que la distance euclidienne dans P de F
à Z soit un minimum absolu en Z pour l'ensemble des points de CUf.
Si H désigne l'hyperplan de P qui est orthogonal à F — Z, il est classique
que le cône convexe C U' est alors tout entier dans la région fermée de H
qui ne contient pas F (car s'il existait un Z' eC U' dans la région ouverte
qui contient F, le segment fermé d'extrémités Z et Z1 aurait des points

3 CMH vol. 35
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situés strictement à l'intérieur de la sphère de centre Y qui passe par Z),
Onadonc <T — Z,8} <0 quelquesoit 8€GUf, afortiori <F — Z,8> <0
quel que soit 8 c V. Mais ceci contredit le lemme 2 appliqué au vecteur
Y -Z de P.
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