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On the Euler characteristic of Compact Locally Affine Spaees

by Louis Atjslander1»2), Bloomington, Ind. (USA)

Introduction

Let M be an n dimensional compact manifold endowed with an affine
connection whose curvature and torsion tensors vanish identically. Over the
years there has been some effort made to détermine the Euxer characteristic
of such spaees. Indeed, J. Melnor [4], has shown that for dimension two the
Euler characteristic must always be zéro. In our study of this problem, we
hâve been forced to place two additional conditions on our spaees. We hâve
first required that our spaees shall be affinely complète. This is équivalent to
assuming (see [3]) that the universai covering space of M, endowed with
the lifted affine connection, shall be the affine plane. We will call a manifold
with such a structure a locally affine space. The second restriction is topo-
logical and will be given in the statement of our main theorem.

Main Theorem. Let M be a compact, complète locally affine space whose

fundamental group contains a non-trivial normal abelian subgroup. Then the

Euler characteristic of M is zéro.

Remark. Ail known examples of compact complète locally affine spaees
hâve the property that their fundamental groups contain non-trivial normal
abelian subgroups.

1. Background material

Let An dénote the n dimensional affine plane and let A (n) dénote the
group of ail affine transformations of An. Further, let F dénote the
fundamental group of M, M a locally affine space. Then the affine connection on
M induces an isomorphism of F into A (n). We will identify F with its
image in A(n) under this isomorphism and we will identify M with the
orbit space An/F.

Now A(n) has a normal subgroup T, consisting of ail pure translations,
and A(n))T is isomorphic to GL(n,R). Now h(F) F/F^T is the
holonomy group of the connection.

Before proceeding with the proof of our main theorem we would like to
remark that most of the machinery and results we will use hâve been available
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for some time in [1], [3], [6]. The major new material we will use is the follow-
ing theorem of A. Selberg [5].

Selberg's Theorem. Let G be a finitely generated subgroup of a group of
matrices over a field of characteristic zéro. Then there exists a subgroup (?*
of G, such that (?* is torsion free and of finite index in G.

2. Proof of Main Theorem

By means of homogeneous coordinates A (n) can be given a faithful matrix
représentation in GL(n-\- 1,22). For the rest of this discussion, we will
assume this imbedding has been made. Now let Z be an abelian normal
subgroup of F. Then by Theorem 12 in [6], Z has ail eigen values one. Let
H(Z) dénote the algebraic hull of Z in GL(n + 1, R). Then H(Z) is
invariant under inner automorphisms of GL(n -f- 1, R) by éléments of F.
Further, H(Z) is a connected abelian Lie group, let us say of dimension
s, s > 0. Hence we hâve a représentation W of F in GL(s, R). We may
now apply the Selberg Theorem to W(F) and get a subgroup F* of F
of finite index such that W(F*) is torsion free. Let Jf* be the covering
space of M corresponding to A71/F*.

Theorem 1. M* is a fiber bundle over a manifold X* with the s dimensional
torus as fiber.

Remark 1, Theorem 1 will prove that the Euler characteristic of Jf* is

zéro and hence, since M* is a finite covering of M, it will show that the
Euler characteristic of M is also zéro.

Remark 2. The proof of Theorem 1 will be essentially a modification of
the proof of Theorem 1 in [1]. Because of this, we will just give an outline
of the proof.

Prooî of Theorem 1. Let us begin by considering H(Z) acting in An.
Then the orbit space X AnjH(Z) is homeomorphic to An~*. We will now
see that F* acts properly discontinuously on X. Let y e F*. Then since

yH(Z) H(Z)y, y préserves the orbits of H(Z) acting on An. Hence
.T* may be considered as acting on X. We will dénote this action of JT*

on X by /(F*).
Assume now that / (y) x0 x0 for some x0 c X. Then yk maps the orbit

of H(Z) determining xa onto itself for ail k. Hence yk must be in Z for
some k or else J1* would not act on An properly discontinuously (for
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greater détails see Lemma 1, [1]). This is impossible by our définition of F*,
Hence F* acting on X has no fixed points.

It remains to show that I(F*) opérâtes without accumulation points.
Assume this is false; i.e. there exist yl9,.., yn,... in JT* such that the set

I(yi)x0, i=l,...,%,..., is a Catjchy séquence. Then there exists

yt yt mod. Z such that y^a^, a0 c An would also be Cattchy. This is
impossible. (For greater détails see Lemma 2, [1].) Hence we see that X/I(F*)

X* is a manifold. It is trivial to verify that M* is a fiber bundle over X*
with fiber an s dimensional torus. Hence X* is compact. This complètes
the proof of Theorem 1 and hence by Remark 1 the proof of the Main Theorem.

The détermination of whether or not X* is also locally affine seems to be
hard due to the difficulties exhibited by the examples in [2],
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