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Fibrations and Cocategory’)

by Tupor GANEA, Bucharest

1. Introduection and results

In a previous paper [3], I have defined a based homotopy type invariant,
the cocategory, which appears as dual to LUSTERNIK-SCHNIRELMANN category
within the framework of the EckMANN-HiLTON [1] duality in homotopy
theory. The cocategory, cocat X, of an arbitrary topological space X with
base-point is the (possibly infinite) strictly positive integer given by the
following inductive

Definition 1.1. cocat X = 1 if and only if X is contractible; cocat X =n 41
whenever there exists a fibration @ — Y — B such that the fibre @ dominates
X and cocat Y < mn. If the phrase cocat X < n 1is false for all » =1, we
put cocat X = oo.

Evidently, cocat X = n will mean that cocat X < n is true but cocat X
<n — 1 is false. It is assumed that all homotopies involved in 1.1 keep
base-points fixed ; the precise sense of the word fibration is explained in the
next section.

In the EckmanN-HiLTON setting, fibrations are dual to cofibrations, i.e.
sequences @ < Y <— B in which the first arrow results by pinching to a
point the image of B in Y, while the second has the lowering homotopy
property [5; p. 14]. It follows that cocategory is indeed dual to category since,
provided X has the based homotopy type of a connected C'W-complex, cat X
is equal to the invariant obtained by reversing the arrows and replacing in
1.1 the words fibration and fibre by cofibration and cofibre respectively [3;
Th. 1.9]. The following relations between cocat X and standard homotopy
invariants of X have been established:

1.2. If X <s a 1-connected CW -complex with only n mon-trivial Postnikov
tnvariants k%2, then cocat X < n + 2; in particular, if the 1-connected CW -
complex X has only n non-trivial homotopy groups, then cocat X =n + 1
[3; Th. 2.10 and Cor. 2.11].

1.3. If X bhas a non-trivial n-fold Waireaeap product, then cocat X
=n-+1 [3; Cor. 2.13].

1) Presented at the International Colloquium on Differential Geometry and Topology, Ziirich,
June 1960.



16 Tupor GANEA

Also, for every n = 1 there exists a connected CW-complex X such that
cocat X = n [3; Remark 2.16].
The purpose of this paper is to present two further results.

Theorem 1.4. If X s a (p — 1)-connected (p =2) CW-complex such
that 7w (X) =0 for ¢ =7+ 1, thencocat X < [(r — 1)/(p — 1)] + 1.

Here [a/b] stands for the largest integer < a/b. Theorem 1.4 dualizes a
previous result by D. P. GROSSMAN [4] according to which cat X < [r/p] + 1
if X isa (p — 1)-connected complex of dimension =< r. In fact, GROSSMAN’S
result may be restated for a 1-connected complex X such that H?(X; G) # 0
only if p <q < r. The slight difference between the numerical estimation
given in 1.4 and that of the GrossmMaN theorem agrees with the relations

dim[x,f]=dimx +dimg —1 and dimwuvv=dimu + dimv,

involving WHITEHEAD and cup products which are dual to each other. The
proof of 1.4 is based on the extension, given in the next section, of a well
known result concerning fibrations with a K (w, n) as fibre.

Our next result refers to the cocategory of (n — 1)-connective spaces
(X,n) over X, and to that of spaces (n, X) obtained by attaching cells
to X so as to kill its homotopy groups in dimensions =n. When X is a
CW-complex we shall assume, as we may, that both (X,n) and (n,X)
have the based homotopy type of CW-complexes, and state

Theorem 1.5. Let X be a connected CW-complex. Then, for all n =1,
cocat (X ,n) < cocat X and cocat (n, X) < cocat X .
For » = 2 we have the

Corollary 1.6. The simply connected covering space X of a connected CW -
complex X satisfies cocat X < cocat X .

2. A lemma on induced fibrations

All spaces, maps, and homotopies hereafter are assumed to possess, pre-
serve, or keep fixed a base-point, generally denoted by x. A sequence

F:Q Ay f> B of spaces and maps is a fibration with fibre @ = g-1(x) and
inclusion map # if for any space E, any homotopy h,: E — B and any
map k:E — Y satisfying fok = hy, there is a homotopy H,: £ — Y
such that Hy=% and foH,=h,. We do not require that f be onto.
The space of paths in B emanating from the base-point is denoted by EB,
the loop-space by 2 B. Consider the fibration # above, and let &: C — B

be a map; the sequence ¢ —i- Z % ¢ in which
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Z={(c,y)|¢(c)=ﬁ(y)}c0>< Y, *Z:‘:(*C’*Y)a

£(q) = (x¢,n(@)) and y(c,y)=c,

is the familiar fibration induced by # via @. Suppose the rows in the dia-
gram

are fibrations. The first is algebraically equivalent to the second if there are
singular homotopy equivalences f, g,k such that each square commutes.
A map f:X — Y is a singular homotopy equivalence if f,: =, (X, z) >
n (Y, f(x)) is isomorphic for all ¢ =0 and all zeX; if X and Y
are O-connected, it suffices to take x = x. We shall often use the geometric
realization | S(X)| of the singular complex of an arbitrary space X and
the canonical map jy:|8S(X)| - X which induces homotopy and homo-
logy isomorphisms in all dimensions [7].

Lemma 2.1. Let 7:Q Ay -€>B be a fibration with Y and B both having

the based homotopy type of a CW-complex. Suppose that B is (m — 1)-con-
nected and that 7, (Q) #= 0 only if n <q <n -+ m — 2, where m =2 and
n = 1. Suppose further that there exists a singular homotopy equivalence
0:Q - QW, where W s a l-connected space. Then, there exists a map
D: B> W such that F is algebraically equivalent to the fibration induced by

C:OWSEWEW via @.

Proof. Introduce the diagram

Q<215 / - QW
nJ’ . |nll li
Y <X 18(7)]| ¢ . EW
4 (1)
B 18] | S()|/1S@)] y
y v

v e e N

B« |8(B)| =——C(y) —— W

2 CMH vol. 35
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The maps |#z| and || are induced by # and f respectively, and the
two squares on the left commute; | S(Q)| is a subcomplex of | S(Y)| and
| n| is the inclusion map. Since |S(x)| =% and foxn(Q) = x, we have

| Blolnl(18@)])=x*. (2)

Let |S(Y)|/|S(Q)| and ¢ result by pinching the subset |S(Q)| of
| S(Y)| to a point, which will serve as base-point in | S(Y)|/|S(@)|. It
follows from (2) that y = | B| o ¢~ is single-valued, and hence continuous.
According to [11; § 8], the space | S(Y)|/|S(Q)| may be given a CW-
structure and 9 is easily seen to be cellular; therefore, its reduced mapping
cylinder C(y) is a CW-complex in which |S(Y)|/|S(@)| and |S(B)|
are embedded as subcomplexes by means of the maps ¢ and k respectively.
The standard retraction ¢ of C(y) onto |S(B)| satisfies the relation
poe=1y. Let f=00jqg. Since the CW-pair (| S(Y)|,|S(@)|) has the
homotopy extension property and since EW is contractible, there exists a
map ¢ such that

goln|=1tof. (3)

Finally, since poi(2W)= %, (3) implies that y = pogo g~ is single-
valued, and hence continuous.
We now prove that there is a map & such that

hoe =1y .

Since & is an inclusion map, this amounts to extending y over the complex
C(y). The diagram

H(Y,Q) <2 H,(18(1)],18Q 1) —2> H,(18(X)]| /8@, %)

2 gl 7 Je- (4)

Hq(B,*)*-qf'i)—ik——H«(IS(B)I,*)< = H,(C(y), )

in which j, is induced by the map of pairs defined by jy, is obviously
commutative. Consideration of the upper left square in (1) and the five
lemma show 4, isomorphic in all dimensions; excision in the CW-pair
(|8(Y)|,]|8(Q)]) implies that so is also ¢,, while (jg), and p, are
standard isomorphisms. Since #,(@) =0 for ¢g<n and =z, (B)=0 for
q <m, a well known result by SERRE [9; p. 469] implies that f,, whence
| B« and e, are monomorphic for ¢ <n» + m — 1 and epimorphic for
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qg = n + m. Passing to cohomology, the universal coefficient theorem yields
He (C(y), | 8(Y)|/18@)];@) =0 forall gsn+m—1  (5)
and all coefficient groups G. Since #, (W) ~ =, (@), we also have
n(W)=0 forall g =n-+m. (6)
From (5) and (6) we finally obtain
H(C(y), | 8(Y) | /| 8(@) |57, (W)) =0 forall ¢ =0,

and a standard obstruction argument now yields the desired map A.
Since Y and B have the based homotopy type of a CW-complex, there

exist homotopy inverses ey and ep of jy and jp respectively. Select a
homotopy

b,: |S(B)| = |8(B)| with by=1id, b, =epojp, b,(x) = x.
Notice next that there is a homotopy

ke |8(Y)]/]18@)| =C(y) with ky=2¢, ki=Fkoy, k,(x)=x*.
Define a homotopy H,: | 8(Y)| - W by

H,(y) = hokyop(y) if 0=t
=hokoby ,0|B|(y) if } =t

%,
1.

A IIA

Taking (2) into account, we obtain

H,(]8@)|) =x=pog(]8@)|) and Hy(y) =pog(y) .
Therefore, by [6], there is a map ¢,:| S(Y)| - EW such that
glolnlzgolnl and h°k°eB°fiB°|ﬂI=p°gl (7)

A
Let @ =hokoep and let F#: QW ——C> Z —> B be the fibration induced by
G via @. According to (7), a map d:|S(Y)| - Z, satisfying

do|n|=2Cof and jpo|f|=2cd, (8)
is defined by setting d(y) = (js<| 8| (%), 9:.(y)) . In the sequence

'Q q Aq
7 (18(T) ], 18@) 1) Zny(¥,Q B (B, x) Cny2, OW),
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where j, is induced by the map of pairs defined by jy, the first arrow, as
in (4), is isomorphic for all ¢ = 1; since F and # are fibrations, so are
also B, and 1,. Therefore, (8) and commutativity on the left in (1) imply
that the map of pairs defined by d induces isomorphisms

7, (| 8(Y) [, 8@)]) ~ 7, (Z, 2W)

in all dimensions. Since f = 0o0jq is a singular homotopy equivalence, the
first of the relations (8) and the five lemma now imply that d also is a sin-
gular homotopy equivalence. As easily seen, the map Aodoey:Y — B is
homotopic to f. Since ¥ is a fibration, the covering homotopy theorem
yields a map D:Y — Z, which is homotopic to doey, and satisfies
AoD=pf; let F:Q — QW be the map defined by D. Like doey, D is
a singular homotopy equivalence; the five lemma implies that so is also F,

and the required algebraic equivalence is now provided by the maps idg,
D,F.

Remark 2.2. Letting m = 2 in 2.1 we recover the well known result con-
cerning fibrations with a K (n, n) as fibre (see for instance [5; Th. 7.1, p. 43]).
Lemma 2.1 has a dual concerning induced cofibrations.

3. Proof of Theorem 1.4

It is well known that any (» — 1)-connected C'W-complex of dimension
< 2n has the homotopy type of a suspension. Dually, we have

Lemma 3.1. Let X be an arbitrary space and let n = 2. If X is (n — 1)-
connected and 7 (X) =0 for ¢ =2n — 1, then there exists a l-connected
space W and a singular homotopy equivalence X — QW .

Proof. The space W is obtained by attaching cells to the reduced sus-
pension XX so as to kill its homotopy groups in dimensions = 2n. Let
o:2X — W denote the inclusion map and consider the sequence

e Qo
X—>0XX - QW ,

in which e is the natural embedding. Evidently, Q¢ induces isomorphisms
of homotopy groups in dimensions =< 2n — 2; by the FREUDENTHAL theorem
(see for instance [8; p. 05]), so does also e. Finally, for ¢ =2n — 1 we
have zn (X) = #n, (W) = 0.

Proof of 1.4. The result is obvious if 1 <r <p — 1 since X then is
contractible. Suppose r =p and let X be an arbitrary (p — 1)-connected
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CW-complex such that =z (X) =0 for ¢ =7 + 1. Let the CW-complex B
result by attaching cells to X so as to kill its homotopy groups in dimensions
=7 — p + 2. Replace the inclusion map X — B by a homotopy equivalent
fibre map to obtain a fibration #:@Q — Y — B such that

Y has the homotopy type of X , (9)
7,(B)#0 onlyif p=q¢g=r—p+1, (10)
n,(Q) #0 onlyif max(p,r—p+2)=q=r. (11)

Since r — p + 1 <r, we may assume as an induction hypothesis that (10)
implies
cocat B <[(r —p)/(p — )]+ 1. (12)

It follows from (10), (11), 3.1, and Lemma 2.1 that there is a 1-connected
space W and a map @: B — W such that # is algebraically equivalent
to the fibration QW —>Z — B induced by QW — EW — W via &. There-
fore, Y has the homotopy type of the singular polytope of Z. By (9), [3;
Prop. 2.8 and 2.9], and (12) we finally obtain

cocat X = cocat | 8(Z)| <cocat Z <cocat B+ 1 <[(r — 1)/(p—1)] + 1.

4. Proof of Theorem 1.5

For any 0-connected space X and any » =1 there is a space (X, n)
and a map p:(X,n) > X such that #n,(X,n)=0 if ¢g<n and p,:
7 (X,n) ~ n,(X) if ¢ =n. Similarly, there is a space (n, X) and a map
j: X - (n, X) suchthat = (n, X) =0 if ¢ =n and j,: n,(X) ~ 7, (n, X)
if g<mn. When X has the homotopy type of a CW-complex, we shall as-
sume, as we may, that the same holds for both (X,n) and (n, X); their
homotopy type is then uniquely determined by that of X and n.

Proof of 1.5. If cocat X = 1, then X is contractible and so are both
(X,n) and (»,X). Suppose 1.5 is true for any connected CW-complex of

cocategory =<m and suppose cocat X =m + 1. Let @ 1 Yﬁ B be a

fibration such that @ dominates X and cocat ¥ = m.

Let R5z% | S(B) |, denote the fibration obtained by replacing the
map |Ble:|S(Y)]|o—>|S(B)|, by a homotopy equivalent fibre map; the
subscript 0 indicates restriction to the path-component of the base-point.
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As easily seen, there is a map r: R — @ which, by the five lemma, induces

isomorphisms 7 (R) 7 (Q) forall q=1. (13)

Let C be a connected covering space of | S(B)|, such that =,(C) maps
isomorphically onto the subgroup v,n,(Z) of =,(|S(B)|,) under the pro-
jection f:C — | S(B)|,. Since Z has the homotopy type of a connected
CW-complex, the monodromy principle yields a map ¢:Z — C such that

fog=1vp. Let T 5 W20 be the fibration obtained by replacing g by
a homotopy equivalent fibre map. As above, there is a map ¢:7 — R which,
since f, is monomorphic, induces isomorphisms

to: 7 (T) 7 (R) forall g¢g=1. (14)

For the same reason and since f,x,(C)= y,n,(Z), the homomorphism
v1: 7, (W) = =, (C) is onto. Therefore, in =,(C) the subgroup

Y7, (W) s closed under the operations of 7,(C). (15)

Introduce the diagram

U—>» (W,n) —> D

bl

T —> W —C

Bl
V" n, W) - E

The space E and the inclusion map e are obtained by attaching cells to
C in such a way that

e (C) o (B) if q<m,
the sequence

(W) 3 7,(C) = 1, (B) — 0
be exact, and =,(B) =0 if ¢>n; according to [10; Th. 2.10.1] this is

possible in view of (15). The space D and the map d are selected so that
n,(D) =0 if ¢ <m,

d,:n,(D) ~ y,7, (W) and d,: 5, (D)~ n,(C)

if g >mn. Since W has the homotopy type of a connected C'W-complex, so
have, by assumption, (W,n) and (n, W), and standard arguments now
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yield maps A and u for which the two squares on the right are homotopy
commutative. Without altering the homotopy types of (W, =) and (n, W),
we may assume that 4 and pu are fibre maps with U and V as fibres;
the inclusion maps are denoted by ¢ and z. Next, by means of the covering
homotopy theorem, we may readjust the maps p and 4 within their own
homotopy classes so as to obtain totally commutative squares on the right.
Suppose this is so and let 2 and % be the maps defined by p and j respec-
tively. Passing to homotopy groups, application of the five lemma, in the form
given in [2; p. 16], to the resulting ladder yields

mU)=0 if qg<n, hy:n,(U)rmna,l) if qgq=n, (16)
ma(V)=0 if qz=n, kin,(T) sz, (V) if qg<mn. (17)

Since X is a connected CW-complex which is dominated by @, X is
also dominated by | S(@Q)|,. Since y, is onto and W is O-connected, 7' is
0-connected and, by (13) and (14), |S(Q)|, has the homotopy type of
| S(T)|. It follows from (16) that (| S(7)|,n) has the homotopy type of
| S(U)|, while (17) implies that (n,|S(7)|) has the homotopy type of
| 8(V)|. Since (X,n) and (»,X) have the homotopy type of CW-com-
plexes, it follows easily that (X, n) is dominated by | S(U)|, and (n, X)
by | 8(V)].

Since W, like Z, has the homotopy type of | S(Y)|,, and since the
component of the base-point in a CW-complex is a retract of the complex,
by [3; Prop. 2.8] we have

cocat W = cocat | S(Y) |, = cocat | S(Y)| < cocat Y =m .

Since W has the homotopy type of a connected CW-complex, the induction
hypothesis now implies that cocat (W,n) <m and cocat (n, W) <m. By
[3; Prop. 2.8] and 1.1 we obtain

cocat | S(U)| <cocat U =<m + 1, cocat |[S(V)| <cocat V =m 41,
and this clearly implies the desired result.

Appendix
(Added in proof)

The inductive arguments used in the proof of 1.4 are easily seen to yield
the following more general result:

Let X bea (p — 1)-conmected CW-complex, p = 2. If the set of all integers
q for which m (X) # 0 s contained in the union of k closed linear intervals,
each of length p — 2, then cocat X < k + 1.
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We allow the linear intervals to be degenerate, i.e. to have length 0. The
second part of 1.2 now follows as the set {g,,...,q,} is contained in the
intervals [g;,¢q;], 7= 1,...,n; Theorem 1.4 follows upon noticing that the
integers between p and r are all contained in the intervals

lip— D+ 15— +p—1Lj=1,..., [;:11]

Also, the author wishes to acknowledge that a result equivalent to Lemma
2.1 above has been obtained independently and with a different proof by
P. J. HiuroN as Theorem 3 in his paper ‘“Excision and principal fibrations”,
Comment. Math. Helv. 35 (1961).

REFERENCES

[1] B. EckMANN et P. J. HILTON, Groupes d’homotopie et dualité. C. R. Acad. Sci. Paris, 246
(1958), 24442447, 25552558, 2991-2993.
[2] S. EmensEre and N. E. STEENROD, Foundations of algebraic topology, 1952.
[3] T. GANEA, LUSTERNIK-SCHNIRELMANN category and cocategory. Proc. London Math. Soc.
10 (1960), 623-639.
[4] D. P. GrossMAN, An estimation of the category of LUSTERNIK-SCHNIRELMANN, C. R. (Doklady)
Acad. Sci. URSS (N.S.) §4 (1946), 109-112.
[6] P. J. HiLToN, Homotopy theory and duality. Lecture notes, Cornell University (1959).
[6] I. M. James and J. H. C. WHITEHEAD, Note on fibre spaces. Proc. London Math. Soc. 4
(1954), 129-137.
[7] J. MiLNOR, The geometric realization of a semi-simplicial complex. Annals of Math. 65 (1957),
357-362.
[8] J. C. MoorE, Le théoréme de FREUDENTHAL, la suite exacte de JAMES et l'invariant de Hopr
généraligé. Séminaire H. Cartan, E. N. S. (1955).
[9] J. P. SERRE, Homologie singuliére des espaces fibrés. Ann. of Math. 64 (1951), 4256—-505.
[(10] G. W. WriTEREAD, Homotopy theory. Lecture notes, Massachusetts Institute of Techno-
logy (1953).
[11] J. H. C. WHITEEEAD, Combinatorial homotopy I. Bull. Amer. Math. Soc. §5 (1949), 213-245.

Institute of Mathematics, R.P.R. Academy, Bucharest

(Received June 4, 1960)



	Fibrations and Cocategory.

