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Homotopy mod. C of Spaces of Category 27%)

by IsRAEL BERSTEIN, Bucharest

The known result of Hopr concerning the cohomology structure of H-spaces
may now be restated as follows. An H-space, i.e. a space with a continuous
multiplication with unit, has over a field k£ of characteristic 0 the same
cohomology ring as a product of spaces of type (m,n). Denoting by C the
class of finite groups, THOM [7] has shown more, namely that an H-space is
equivalent mod. C to a product of spaces of type (m,n). On the other hand,
in the theory of EckmManN-HrutoN [1], the dual of an H-space is a space of
LUSTERNIK-SCHNIRELMANN category < 2. For such spaces we are proving
here the dual of the above result of THoM: any finite simply connected CW-
complex of category < 2 is equivalent mod. C to an union of spheres with
a single common point (here and throughout the paper, C denotes the class
of finite groups). The precise result in a slightly more general form is stated
in Theorem 2. 2.

1. Preliminary lemmas
@ : 7 (S") =, (S")
be defined by left composition with a map 8" — 8* of degree £k, 1i.e.
@e(y) =kioy for any y en,. (S") (tex,(8") is the class of the identity.
Then we have for n even [3]
k(k —1) )
Pu(y) = by + ——5—[1, Jo Ho(y) + [, [e, ] o Hy(y) (1)

where H, and H, are the generalized Hopr invariants of Hinton. As a
consequence of (1)

Let

(k4 1) k(b —1
3

1.1. gy =0, yen (S") implies @g(y) =0 (for n odd it was shown
by SERRE that already g,,(y) = 0).

Let m» be even and let m,, ,(8") = Z' + G, where Z' is infinite cyclic,
generated by « and @ is finite of order g. Denote by d the classical HoprF
invariant of «, i.e. Hy(x) = diy,_,, Where i, , generates m,,_ (8% 1).
Let [¢,¢] =sx + B, feG@. An easy computation, based on (1), shows that
for any v € m,,_,(8?)

1.2, @spn,(y) = Nymy where Ny= 29 + gsd(Z2mg — 1). Moreover,

1.3. if py=ra+ 6, 6eQ then @g,,(y) = Noyrmo.

1.4. Lemma. Let K be a CW-complex, n an even integer and

f: K2n—1 - Sn

1) The result of this paper was presented to the International Colloquium on Differential
Geometry and Topology, Zurich, June 1960 (in absence of the author, by Professor Hirrox).
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a map such that f*(u) = h e H*(K, Z) where u e H*(S", Z) 1s the fundamental
class. If the cup-square h v h e H*(K,Z) s an element of finite order, then
there exists a map @: 8" — 8* of degree s = 0 such that @o f/K2"2 1is ex-
tendable over K2,

Proof. Without loss of generality we may assume, for the sake of con-
venience, that dim K = 2n. Attach to S* a 2mn-cell with characteristic
map in class «; let Y be the resulting space. Let ¢**(f) e C** (K, m,,_,(S™))
be the obstruction to the extension of f. By 1.3, if p: 8" — 8* has degree
2g, the obstruction c?"(ypof) takes on each cell a value which is a multiple
of «. Therefore, denoting by ::8* — Y the inclusion, 7o9pof can be
extended to a map F KoY.

If w'eH"(Y,Z) is the fundamental class, then %' v4' = —da, where a
is the fundamental class of H#*(Y,Z) ~Z and d is the Hopr invariant
of «.
Let j:Z — 7wy, ;(S®) map Z onto Z'(j(1) = «); it induces homomor-
phisms ot HM(K, 2) > H (K, 730, () |
j* : H2n(Y, Z) __>H2n(Y, nzn—-l(Sn)) .
It is easy to check that
F* (jx(a)) = y*™(yo )
where y*(yof) is the cohomology class of ¢**(yof). We further have
d-y™(yof) = d-F*(jx(a)) = ju (F*(d-a)) = —jx (F* (' vu')) =
= —jx(2g9h v 2gh) = —4g*-jx(h v B).
This proves that 92"(ypof) is an element of finite order, say m. Let
%:8" — 8" be a map of degree 2mg. Then 1.2 immediately yields
(g oyof) = Nome*(yof)

Y (xoyof) = Nemy*(yof)=0.
This proves the assertion of the lemma.

and

1.5. Proposition. Let K be a q-dimensional (g < oo) CW-complex, n
an integer and h an arbitrary element of H™(K,Z), such that the cup-square
hvh is an element of finite order. There exist an integer N > 0 and a map
f: K — S8 such that f*(u)= Nh, where w 18 the fundamental class of
H»(S", Z).

This proposition was conjectured by SERRE and proved by him for n odd
[5, ch.V, Prop. 2]. For n even the proof is practically the same but uses
1.1 and 1.4.
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Remark. In view of 1.5 and of [6, II, 2] we may add to [6, II, 4] the
following result:

Let V* be an orientable closed differentiable n-manifold, £ an even
number and z a class in H, ,(V", Z), whose selfintersection is a class of
finite order. Then there exists an integer N > 0 such that the class Nz can
be realized by means of a submanifold whose normal fibre bundle is trivial.

2. The main theorem

The base point of any space will be denoted by x. For any spaces X,,...,
X,.. X;v...~X, denotes their union with a single common point *. There
are obvious retractions r,: X,v...vX, — X, mapping X,,...,X,,,
X;1,-..,X,, onto x. If ¢,: X, - Y, are maps, there is a map

¢1v...v(pm:X1v...va—>Ylv...va

defined in the obvious way.

In this paper we consider only spaces which have the homotopy type of
connected CW-complexes. For such a space, the two following definitions of
LUSTERNIK-SCHNIRELMANN category < 2 are equivalent (compare [8, p. 94]).

A) cat X <2 ifand only if X = 4, v 4, where 4, and A4, are open
and contractible in X.

B) cat X <2 if and only if there exists a map

d: X >XvX

such that r,0® >~ 05:X - X (j = 1,2) where 0y is the identity map of
X and the homotopies are rel. x.
If cat X < 2 define

qjm:Xv—)Xv...vX (2)
m-fold
by Dy =D, O, = (Ogv.. nO0evP)o®, _,. (2)
(m — 2)-fold
If follows readily that
2.1. TJOngex, j—_—'-l,...,m.

2.2. Theorem. Let K be a connected and simply connected CW-complex
whose homology groupes are finitely generated in each dimension and let C be
the class of finite groups. If cat K < 2, there exists for any integer r > 1 a map

f: Kt — L
where L 18 an union of spheres, such that
fx: Hy(K™,Z) - Hy(L, Z)
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and fy : o (Kr+1) — my(L)

are C-monomorphisms for + <r and C-epimorphisms for ¢ <r.
2.3. Corollary. If dim K < oo, we may choose Y and themap f: K — L
such that {:H(K,Z) > H,(L, 2)
and fo i m(K) > my (L)
are C-isomorphisms in all dimensions.

Remark. If the homology of K is not finitely generated, then Theorem
2.2 is not true. A counter example is provided by a complex K' = K'(Q, 2)
such that H,(K',Z) =0 for ©+# 0,2 and H,(K',Z) = where @ is
the group of rationals.

Proof of 2.2. Since all cup-products in K vanish (see [2]) if follows from

1.5 that for any cohomology class ke Hi (K™, k), ¢« <r, where k is the
field of rationals, there exists a map

g: K+t — §¢
and a class u ¢ H*(8%, k) such that
g*(u) =h.

L 4
Let h,,h,,...,h, be a base of X H!(Krt', k). Choose for each 7,
(j=1,...,m) amap s

g, . Kr+1 - IS,
where S, is a sphere of the corresponding dimension, such that
g;“(u,) == h, ’ u, € Hnj (Sj, k) ’ ’n, = dj.m S’ . (3)
Let ®,:K—>Kv...vK
m-fold

be as in (2). We may assume that @, is cellular; then @, induces a map

@m Kl s Kl VKT,
Consider the map

giv .o VG  Ktiv  VvKH - 8 v.. . vS,=L.
It is easy to check, by means of 2.1 (where all homotopies may be chosen
cellular) and (3) that f: K'Y, f=(9;,v. ..vgm)oa.im induces iso-
morphisms f*: H{(L, k) — Hi (K™, k)

in dimensions ¢ < r. Applying the known results of SERRE [5, ch. ITI, Th. 3
and Prop. 1] we obtain the conclusion of the theorem.
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Remark. Set K+1 = A, L = B; in order to apply SERRE’s results, quoted
above, we must assume that m,(4) — 7,(B) is an epimorphism. In fact,
this restriction may be removed. We may assume that f is an inclusion.
Further, passing if necessary to singular polytopes, we may also assume that
B is a simplicial complex with the strong (metric) topology and A4 is a sub-
complex (the strong topology and the weak one on a simplicial complex yield
spaces of the same homotopy type [4]).

Let Y be the space of paths in B beginning at the base point and ending
in A. According to [4], Y is sufficiently smooth in order to admit an uni-
versal covering space; as noticed by SERRE [5, ch. III, Remarque 3], this is
sufficient for the validity of his Théoreme 3 without the above assumption
concerning the second homotopy groups.

3. Concluding remarks

The notion of space of category < 2 may be relativized by introducing
spaces of category < 2 mod. C. Namely, with the notations of the beginning
of the previous section, cat X < 2 (mod. C) if there is a map

X >XvX
such that r,0®,j = 1,2 are C-isomorphisms in homology. Obviously

3.1. Remark. Theorem 2.2 remains true if we replace cat K <2 by
cat K < 2 (mod. C).

In view of Theorem 2.2 all computations mod. C of the homotopy groups
of a simply connected space X of category < 2 with finitely generated
singular homology groups reduce to similar computations for an union of
spheres, a problem solved by HmronN [3]. For, we may replace X by its
singular polytope P(X) whose category is also << 2 [2]. It results that for a
space X of category < 2 the HurEwicz homomorphism =x,(X) — H,(X)
is always a C-epimorphism; its kernel consists mod. C of iterated WHITE-
HEAD products. This means that the homology groups of X (their free
part) entirely determine mod. C its homotopy groups. This enables us to prove

3.2. Corollary. For any two simply connected CW-complexes K and L
with finitely generated homology groups in each dimension, the groups =, (K~ L)
are determined mod. C by =n,(K), n,(L), H (2K, k) and H,(QL, k) (where
k is the field of rationals).

Proof. As is well known
7, (K~ L) = 7, (K) + 7,(L) + 7, (K O L)
where K 0O L is the space of paths in K x L beginning in the subspace
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K xx v x L and ending at the base point. It is easy to see that
KoL=EKXxQLvQKXELc EKXxEL=E(KxL),

where QK, QL are the loop spaces and EK, EL, E(K x L) are the spaces
of paths ending at x. Applying the relative KUNNETH theorem to
(FK,QK) x (EL,2L) we obtain

H (KoL,k)= X H(QK,k)Q H, (2L, k).

p,q=n—1
»,¢>0

Or the other hand, by [4], K 0O L has the homotopy type of a CW-complex
and by 2.4 below, cat (K O L) < 2. Then, as we have remarked, the homo-
logy groups H,(KOL, k) determine x,(K 00 L) and 2.3 is proved.

2.4. Lemma. cat (KOL) <2.

Proof. Let U be a contractible open neighbourhood of x in K and V
be such a neighbourhood of x in L. Then K 0L has the homotopy type
of the space Z of paths in K X L, beginning in K X Vv U X L and

ending at *. Z=EK x E,LvE,K x EL

where E,K c EK consists of paths beginning in U and E,L c EL of
paths beginning in V. It suffices to prove that cat Z < 2. This is true
since Z is the union of the following two open contractible sets

A=EK x E,LvEU x EL
B=EK xELvEK x EV .

Institute of Mathematics R.P.R. Academy, Bucharest
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