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Geodesics of Bounded, Symmetric Domains

by RoBERT HERMANN!), Cambridge (Mass., USA)

1. Introduction

Let G be a semi-simple, non-compact connected LIE group with closed, con-
nected subgroups G', @,, K such that

K=Gnda,.

Let G, G', G, K be the corresponding LiE algebras.
We suppose that G is a complex simple LIt algebra in the sense that there
is a linear mapping ¢: G - G such that:

2 = —1. (1.1)
Ad X:=(:Ad X forall X ¢G. (1.2)
Suppose that:
K is not semi-simple. (1.3)
G’ and G, are real forms of G; i.e. (1.4)
G=G®:G) =G6,d:G,)
G, is compact. (1.5)

It is known [12] that there is a connected, closed subgroup 8 of G such that
¢(S) c §, (1.6)

S~AnG@,=K=8~G,and: (1.7)

The natural map @,/K — G/S is a diffeomorphism, i.e. (1.8)

M = G,/K (the space of right cosets) admits a complex analytic structure,
and G acts on M as a group of complex analytic transformations.

Let z, be the identity coset of M and let D = G'/K be the orbit of @' on
z,. By 1.7, D is an open set of M. As the quotient of a Lir group by a com-
pact subgroup, D has a RIEMANNian metric invariant under the action of
G'. Our job here is to describe the geodesics of D starting at z, as curves in M.

To make this more precise, let n: @ — G /8 = M be the natural projection.

1) This work was performed at Lincoln Laboratory, Massachusetts Institute of Technology,
under contract with the U.S. Army, Navy and Air Force. — A short lecture at the International
Colloquium on Differential Geometry and Topology (Zurich, June 1960) was based upon this

paper.
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2 ROBERT HERMANN

Let Exp: G — G be the usual exponential map. [7]. It is known that one
can suppose G and @, chosen so that there is a subspace Mc G, with

[K,M]cM, [M,M]cK. (1.9)
G.=K®M, G'=K®D((M). (1.10)
Now, we want to find the curves ¢ — X (), 0 <?¢ < oo, in M such that
t —x Exp (X (¢)) is a geodesic of D starting at x,.
This will, in particular, enable us to determine
(= Exp)-1 (D), as a subspace of M.

Our main result can now be stated:

Theorem. In terms of a linear mapping
J: M — M such that

J2= —1, (1.11)
Ad XJ =J Ad X for X K. (1.12)
J(X), Y]+ [X,J(Y)]=0for X and ¥ M, (1.13)
X (t) 18 determined as the solution of the differential equation:
sinh Ad(X (¢)) [ d .
AdX () (dt X(t)) = J (cosh Ad (X (t)) (X)) (1.14)

with J(X) = —(%—X(t) at t = 0.
Suppose further that G, admits a linear representation L by N X N real
matrices such that:

There ts an N X N real matriz J, with

J2 = —1. (1.15)

Jo L(X) = L(X)J, for X K. (1.16)
Jo L(X) = —L(X)J, for X eM. (1.17)
L(J(X)) = J, L(X) for X eM. (1.18)

Then, if X(t) = J(Z(t)) s a solution of 1.13,
'?:lzt‘ L(Z(t)) = cosh (L(2Z(2))) L(X), (1.19)

and Z(t) e H, a mazximal abelian subalgebra of M, for all t.
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Suppose the real-valued linear forms ¢,,...,on are the weights of the
representation, i.e.

2z V —1¢;(X),1<j<N
are the eigenvalues of L(X), for X e H.

Then,
& 0 (B0) = cos (4mg,(Z()) 9,(X), 1 <F <N, (1.208)
hence
cosh (47p;(X)) cos (4nmp,;(Z(t))) = 1. (1.20b)
If o;(Y) = 0, then @;(Z(t)) = O for all t. (1.21)
If ;(Y) £ 0, then @;(Z(t)) > + 3 ast — oo. (1.22)

Qualitatively, at least in the case where G, admits a representation L with
properties 1.15-1.18, these results can be interpreted as follows:

Suppose F is the boundary of D in M. K acts on F. Then, a ‘“‘general”
geodesic of D starting at xz, tends to one of only a finite number of orbits of
K on F. The “exceptions’ to this rule can be transformed by operations of K
so that their initial vectors lie on one of a finite number of hyperplanes of H.

These facts confirm results (unpublished) of D. LOWDENSLAGER obtained
by studying the geodesics in the special examples.

Further he found in the examples that a ‘“‘general” geodesic tends toward
a unique orbit of K on F', which could be identified with the BERGMAN-SILOV
boundary [10] of D when it was imbedded as a bounded domain in a complex
Evoripean space. These facts have not yet been verified in our general
situation, but they seem very plausible. Note at least, by 1.22, that the orbits
to which the general geodesics may tend are the orbits of maximal distance
in the RIEMANNian metric on M .

In Section 4 we present some remarks that serve as a complement to
LowDENSLAGER’S earlier work [10]. I wish to thank Prof. LOWDENSLAGER for
allowing me to use his unpublished results.

2. Differential-geometric generalities

All manifolds, Lie groups, action of LiE groups on manifolds, tensor-fields,
maps, etc., will be of differentiability class C*. We follow CHEVALLEY [7]
for Lir group and differential geometric notations with some of the modifica-
tions suggested by AMBROSE, SINGER and Nomizvu [1, 11].

All manifolds will be connected and paracompact. Let M be such a manifold.
For z e M, M, denotes the tangent space to M at z. If g: M - M’ is a
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map of manifolds, @, : M, - Mgy, denotes the linear map @ induces on
tangent vectors.

Suppose now that ¢,@G,, G, 8,K,G,G,,G,S, K
Exp: GG, M=G/8=G,/K,D=G'K and
7: G — M have the meaning assigned to them in the Introduction.

Let e be the identity element of G'. G can be identified with G,.

For X ¢G, we will, with the identification of Gx with G, consider
Exp, as a linear mapping: G — Gy, x. For ge G, let L, (resp. R,) be
the diffeomorphism =z —gx (resp. « - xg-!) of G with itself. Then,
Ly~ xy« Expy: G — G is the map.

1 —exp(— Ad X)
Ad X

[9, p.249] (2.1)

For geG, ny By1y: G — M, (vesp. myL,,) has as kernel Ad g(S)
(resp. S).

To show that there is a linear map J: M -~ M satisfying 1.11-1.13, choose
a Y, in the center of K. It is known that K acting in M is irreducible, hence

Ad Y, acting on M can be normalized so as to have as eigenvalues only +V —1.
Then put
J=Ad Y,.

S is usually defined using the root structure of G [12]. But, in this simple
case, it can be defined more explicitly as:

S={X,+ Y+ (X + J(): X,, Xp e K, ¥ eM}. (2.2)

It is well known [11] that the geodesics of D = G’ /K through 7 (e) are of
the form
t > m(Exp(t(X)t)), 0 <t < oo, for X eM. (2.3)

If =(g), for g € @, is on this geodesic, then the tangent vector to the geo-
desic at m(g) is:
(9) 7y Ry1se (1(X)) (2.4)

Suppose this geodesic is also equal to ¢ —a Exp (X (¢)), for a curve
t - X(t) in M. Then,

d
7ty EXpy (‘a‘i‘ X(t)) = My Bygp(— xapx (¢(0)). (2.5)
By 2.1,

N ( L= exp(— é)d X (1) ) ( 4 X(t)> _

s Lyxp xe (BExp Ad (—X(2)) (¢(X)))

(2.6)



Geodesics of Bounded, Symmetric Domains 51

or

AdX () dt

Now, since K c S,¢(K) c S, and
[M,M] c K, the condition that X (¢) must

1 — exp(— Ad X (¢)) (d X(t)>_Eprd(——X(t)) (X)) eS (2.7

satisfy takes the form:

sinh Ad X(¢) [ d
Ad X () ( di

X(t)) — J cosh (Ad X (¢)) (X). (2.8)

3. Proof of the theorem

Now, suppose that G, has a linear representation L satisfying 1.15-1.19.
Let H be a maximal abelian subalgebra of M. We calculate:

L([J(X), [J(X), Y]]) =4 L(X)?2L(Y)for X,Y eH. (3.1)
We see from this that:
[J(X),[J(X),Y]]erorX,YeH (3.2)

and hence that:
If XeH,t—> X(t) satisfies 2.8 if and only if X(¢) ¢ J(H) for all ¢, and

% X () = J (cosh (Ad X (¢)) (X)) . (3.3)

Substituting 3.1 in 3.3 gives 1.19. Applying @, to both sides of 1.19 gives
1.20a), hence finishes the proof of the theorem since 1.20b)-1.22 follow
immediately on solving the ordinary differential equation 1.20a).

Remarks: Unfortunately, only when @, is a classical group does G, admit
a linear representation of the type we require2). Then, the job of explicitly
solving 1.14 remains open for the cases of the two exceptional domains.

For the following cases, one can choose the ‘“‘classical”’ representation of G,,:

G,/ K =8U®)[8U(p) x U(n —p), 80(2n)/U(n), SP(n)/U(n).

For example, in the first case SU(n) acts as a group of unitary transfor-
mations of a complex vector space V (of complex dimension ») with a Hermition
form. V is the direct sum of two mutually perpendicular subspaces of dimension
p and n—p. K is the subgroup of @, leaving the subspaces invariant. J is just
the transformation which multiplies every element in one subspace by V' —1,
by — ¥V —1 in the other.

2) Due to B. KosTANT (unpublished).
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For the remaining classical case,
G,/K =80(n)[8S0(2) x 8O(n — 2).

the ““classical’’ representation of G, does not suffice. We must use the spinor
representation (The fundamental representation ¢,, in CARTAN’s notation [6]).

The transformation J: M —- M makes M into a complex EucLiDean space.
The solutions of 3.2 determine an imbedding of D in M. If the required
representation exists, it is clear from 1.19b) that D is a bounded, open set
in M. Then, we have another proof for the classical G, that G’/ K is a bounded
domain [4, 8]. Perhaps it is possible to reason directly, in all cases, that all
solutions of 3.2 are bounded, hence that G'/K is a bounded domain? This
seems, however, to be a difficult problem in ordinary differential equations.

4. Remarks on the behavior of the LarLAcian of D on its boundary in M

Suppose first that M is a complex-analytic manifold and that D is an open
subset of M with a KArHLERian metric, i.e. for x e D, M, has a positive-
definite inner product ( , ). Let F be the boundary of D in M and let b,¢ F.
Suppose 4 is the LaprLacian of the metric on D, a second-order, linear
differential operator acting on C* real-valued functions in D. Suppose 4 can
be extended smoothly to a differential operator in a neighborhood of DU F'.
Suppose that the following condition is satisfied :

4.1. For every C* curve o¢:[0,1] > M with ¢(tf) e D for 0 <t <1 and
o(l) = b, and every C* vector-field v along o, v:t > v(f) e My, for 0 <<t <1,
with »(1) % 0, we have:

lim (v(t), v(t)) = oo

t—>1
Then, one sees easily, using the classical expression for the LAPLAcian operator
in terms of the metric tensor, that:

4.2, A =0 at by, i.e. 4(f)(by) = 0 for every C® real-valued function f
defined in a neighborhood of D U F'.

(Condition 4.1 is just a way of making precise the idea that the metric tensor
of D approaches oo on the boundary.)

Now, return to the case where M = G,/K = G/S, D = G'|K c M, and the
metric on D is the unique one (up to a constant multiple) invariant under G'.

It is well-known that this metric on D has non-positive sectional curvature
(since K is a maximal compact subgroup of the simple Lit group G’) and that
the map nExp: (M) - D is a diffeomorphism.
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Suppose that = = aExp(:(X)), for X ¢H, is a point of D. Consider the
endomorphism of «(M):
sinh (Ad (:(X)))
Ad (¢(X))
One sees that it can be put into diagonal form, i.e. there is an orthonormal

basis X;, 1 <1 < m (= dim M) for M such that the (X,) are eigenvectors for
4.3 with eigenvalues

(4.3)

sinh (4, (X)) / 2,(X), (4.4)

where A; are the real-valued linear forms on H obtained by diagonalizing the
adjoint representation of Hin G, . (They are just the roots of G, restricted to H.)
Suppose 4;, for 1 <¢<p, are the non-zero roots.
Define:
V(%) = 74 By~ x5 (1(X,)) € Dy, for 1 <o <m. (4.5)

From formula 2.4 of [9], due to CArTAN and HELGASON, we see that:
(v;(z), v;(x)) =0 if t #£7. (4.6)
(vi(x), v;(2)) = (Smh(}*i(X ) [ A(X)E 1 < <m. (4.7)

Now,  — v,;(x) determines vector fields v, on all of D. These are precisely
the vector fields obtained from the action on D of the one parameter sub-
groups 8 - Exp(s¢(X;)) of @. Since @' acts on all of M, these vector fields
can be extended smoothly over all of M. 4.7 then proves the following result:

Proposition 4.1. Suppose that o(t) = Exp («(X)(#)), 0 <t < oo, %8 a C%
curve in D such that lim(t) e F. Suppose further that v : t—>v(t) €Dy, 18

t—> o0
a vector-field along o such that lim v (t) exists and ts not zero. If
{—> o
lim (4, (X(#)2 = o0, 1 <1 < p, then lim(v(t),v()) = co.  (4.8)
t—> o0 t—> o0

Notice, in particular, that if X (t) = ¢tX,, with X, an element of H not lying
on any of the hyperplanes A, = 0, 1 <% <p, i.e. if ¢ is a geodesic of D in
general position, then 4.8 is satisfied. By our previous remarks, the points
on the boundary towards which these geodesics tend are then points at which
the LArracian of D is zero.

These results tie in with the earlier work of LOWDENSLAGER [10]. The
“BERGMAN-SILOV”’ boundary of D in M is at least contained in the set of
points of F' where the Larracian of D vanishes. We have seen that a general
geodesic of D tends to a point on F where the Lapracian of D vanishes.
If one could prove for all cases that the general geodesics of D tend to a single
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orbit of K on F, the identification of the BERGMAN-SLOV boundary with
the set of points of F where the LaPrAcian vanishes would be complete, and
independent of LOWDENSLAGER’s case-by-case verification [10]. We have not
tried very hard to push the method used in Sections 2 and 3 to prove this
since A. KoraNYI has obtained a proof of this (to be published) using
HAarise-CHANDRA’S more general approach [8].

Lincoln Laboratory
Massachusetts Institute of Technology
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