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Geodesics of Bounded, Syminetric Domains

by Robert Hermakn1), Cambridge (Mass., USA)

1. Introduction

Let G be a semi-simple, non-compact connected Lie group with closed, con-
nected subgroups G', Gu, K such that

K G' n Gu

Let G, G', Gfu, K be the corresponding Lie algebras.
We suppose that G is a complex simple Lie algebra in the sensé that there

is a linear mapping t: G ~>G such that :

i«=-l. (1.1)

Ad Xi= i Ad X for ail XeG. (1.2)
Suppose that :

K is not semi-simple. (1*3)

G' and Gu are real forms of G ; i.e. (1.4)
G Gf@t(Gf) Gtt0*(GJ

Gu is compact. (1-5)

It is known [12] that there is a connected, closed subgroup S of G such that

t(S) c S, (1.6)

8rsGu K 8^G',&nd: (1.7)

The natural map GJK -> G/S is a diffeomorphism, i.e. (1.8)

M GJK (the space of right cosets) admits a complex analytic structure,
and G acts on if as a group of complex analytic transformations.

Let x0 be the identity coset of M and let D G1 jK be the orbit of G1 on
x0. By 1.7, D is an open set of M. As the quotient of a Lie group by a compact

subgroup, D has a RiEMANNian metric invariant under the action of
G1. Our job hère is to describe the geodesics of D starting at x0 as curves in M.

To make this more précise, let n\ G -+G/S M be the natural projection.

x) This work was performed at Lincoln Laboratory, Massachusetts Institute of Technology,
under contract with the U.S. Army, Navy and Air Force. - A short lecture at the International
Colloquium on Differential Geometry and Topology (Zurich, June 1960) was based upon this
paper.
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2 Robert Hebmann

Let Exp: G ->(? be the usual exponential map. [7]. It is known that one
can suppose 0! and Gu chosen so that there is a subspace McGu with

[K,M]czMi [M,M]cK. (1.9)

GU K@M, G' K®i(M). (1.10)

Now, we want to find the curves t -> X(t), 0 < t < oo, in M such that

t -> n Exp (X(t)) is a géodésie of D starting at x0.

This will, in partieular, enable us to détermine

(n Exp)"1 (D), as a subspace of M.

Our main resuit can now be stated:

Theorem. In terms of a linear mapping

J:M ->M 8uchfkat _ n m
AdXJ JAdX for XeK. (1.12)

[J(Z), 7] + [Z, J(F)] 0 for X and TcM, (1.13)

is determined as the solution of the differentied équation:

^W * t 0.

Suppose further that Gu admits a linear représentation L by N x N real
matrices such that :

There is an N x N real matrix Jo with

J02=-l. (1.15)

J0L(X) L(X)J0 for XeK. (1.16)

J0L(X) -L(X)J0 for XeW. (1.17)

L(J(X)) =J0L{X) for X€M. (1.18)

Then, if X(t) J(Z(t)) is a solution of 1.13,

^ L(X), (1.19)

Z(t) € H 9 a maximal abelian subalgebra of M, for ail t.
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Suppose the real-valued linear forms <pt, ç>n are the weights of the

représentation, i.e.
V~ 1 < j < N

are the eigenvalues of L(X), for X <¦ H.
Then,

A.<p.(Z(t)) =cos(47zcPj(Z(t)))<pj(X), 1 <? <#, (1.20a)

hence

eosh (éncpiiX)) eos (4^ (£(*))) 1. (1.20b)

// 9j(Y) 0, then q>s(Z(t)) 0 for ail t. (1.21)

> ±%ast ->oo. (1.22)

Qualitatively, at least in the case where Gu admits a représentation L with
properties 1.16—1.18, thèse results can be interpreted as follows:

Suppose F is the boundary of D in M. K acts on F. Then, a "gênerai"
géodésie of D starting at x0 tends to one of only a finite number of orbits of
K on F. The "exceptions" to this rule can be transformed by opérations of K
so that their initial vectors lie on one of a finite number of hyperplanes of H.

Thèse facts confirm results (unpublished) of D. Lowdenslagbr obtained
by studying the geodesics in the spécial examples.

Further he found in the examples that a "gênerai" géodésie tends toward
a unique orbit of K on F, which could be identified with the Bergman-Silov
boundary [10] of D when it was imbedded as a bounded domain in a complex
EircuDean space. Thèse facts hâve not yet been verified in our gênerai
situation, but they seem very plausible. Note at least, by 1.22, that the orbits
to which the gênerai geodesics may tend are the orbits of maximal distance
in the RiEMANKian metric on M.

In Section 4 we présent some remarks that serve as a complément to
Lowdenslager's earlier work [10]. I wish to thank Prof. Lowdenslager for
allowing me to use his unpublished results.

2. Differential-geometric generalities

Ail manifolds, Lie groups, action of Lie groups on manifolds, tensor-fields,
maps, etc., will be of differentiability class C00. We follow Chevalley [7]
for Lie group and differential géométrie notations with some of the modifications

suggested by âmbrose, Singer and Nomizxj [1, 11].
Ail manifolds will be connected and paracompact. Let M be such a manifold.

For x € M, Mx dénotes the tangent space to M at x. If 0 : M -> M' is a
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map of manifolds, 0* : Mx -> M'0{x) dénotes the linear map 0 induces on
tangent vectors.

Suppose now that G, Gu, G1, 8, K, G, Gu, G', S, K
Exp: G -*(?, Jf G/S GJZ, D G'/Jf and
n\G -> M hâve the meaning assigned to them in the Introduction.
Let e be the identity élément of G. G can be identified with Ge.

For X e G, we will, with the identification of Gx with G, consider
Exp* as a linear mapping: G->(?ExpX. For geG, let Lg (resp. Rg) be
the diffeomorphism x -> gx (resp. x -> o;^"1) of G with itself. Then,

: G ->G is the map.

1 — exp(— AdX)
AdZ [9, p.249] (2.1)

For geG, n* Rg-!* : G -> Jfn{g) (resp. n*Lg*) has as kernel Ad g (S)

(resp. S).
To show that there is a linear map J: M ->M satisfying 1.11-1.13, choose

a Yo in the center of K. It is known that K acting in M is irreducible, hence

Ad Yo acting on M can be normalized so as to hâve as eigenvalues only ±V—-1.
Then put

J Ad Fo.

S is usually defined using the root structure of G [12]. But, in this simple
case, it can be defined more explicitly as :

S= {Xt+ Y+i(X2 + J(Y)):X1,X2eK, FcM}. (2.2)

It is well known [11] that the geodesics of D G1 jK through n(e) are of
the form

t->7z(Exp(i(X)t)), 0 <*< 00, for ZcM. (2.3)

If 7t(g), for g eG, is on this géodésie, then the tangent vector to the geo-
desicat ,(,)*: ,,2^ (.(X)). (2.4)

Suppose this géodésie is also equal to t -> n Exp (X (<)), for a curve
t-+X{t) in M. Then,

«* Exp* (-^ X(t)\ a* Rj^,(.xim (i(*)) • (2.5)

By2.1,
l-exp(-AdZ(<))\/d \_^ x^r^ I jâYjfî J ^ X(t)j - (2 6)

Ad(-
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or

Now, since K c S, i(K) c S, and

[M, M] c K, the condition that X(t) must

satisfy takes the form:

sinh AàZ(t) (dX(t)\ JcQsh {AdX{t)) {Z)m (2-8)AdX(t) \dt

3. Proof of the theorem

Now, suppose that Gu has a linear représentation L satisfying 1.15-1.19.
Let H be a maximal abelian subalgebra of M. We calculate :

L([J(X),[J(X)> Y]]) 4 L(X)* L(7)£ot X, 7 € H. (3.1)

We see from this that :

[J(X),[J(X), F]] etfforX, TcH (3.2)
and hence that :

If X €H,t-> X(t) satisfies 2.8 if and only if X(t) e J(H) for aU t, and

-^-Z(0 J(cosh(AdX(*))(J)). (3.3)

Substituting 3.1 in 3.3 gives 1.19. Applying q>s to both sides of 1.19 gives
1.20a), hence finishes the proof of the theorem since 1.20b)-1.22 follow
immediately on solving the ordinary differential équation 1.20a).

Remarks: Unfortunately, only when Ou is a classical group does Gu admit
a linear représentation of the type we require2). Then, the job of explicitly
solving 1.14 remains open for the cases of the two exceptional domains.

For the following cases, one can choose the * 'classical" représentation of Gtt:

QJK SU(n)/SU(p) x U(n -p), S0(2n)/U(n), 8P{n)/U{n)
For example, in the first case 8U(n) acts as a group of unitary transformations

of a complex vector space F (of complex dimension n) with a Hermition
form. V is the direct sum of two mutually perpendicular subspaces of dimension

p and n-p. K is the subgroup of Qu leaving the subspaces invariant. Jo is just
the transformation which multiplies every élément in one subspace by V — 1,

by — y — 1 in the other.
2) Due to B. Kostant (unpublished).
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For the remaining classical case,

Gu/K 80(n)IS0(2) x8O(n-2).
the "classical" représentation of Gu does not suffice. We must use the spinor
représentation (The fundamental représentation gl9 in Cabtan's notation [6]).

The transformation J : M ->M makes M into a complex EuCLiDean space.
The solutions of 3.2 détermine an imbedding of D in M. If the required
représentation exists, it is clear from 1.19b) that D is a bounded, open set
in M. Then, we hâve another proof for the classical Gu that G'jK is a bounded
domain [4, 8], Perhaps it is possible to reason directly, in ail cases, that ail
solutions of 3.2 are bounded, hence that G'jK is a bounded domain? This
seems, however, to be a difficult problem in ordinary differential équations.

4. Remarks on the behavior of the LAPLAcian of D on its boundary in M

Suppose first that M is a complex-analytic manifold and that D is an open
subset of M with a KAEHLERian metric, i.e. for x eD, Mx has a positive-
definite inner product Let F be the boundary of D in M and let b0 € F.
Suppose A is the LAPLAOian of the metric on D, a second-order, linear
differential operator acting on C°° real-valued functions in D. Suppose A can
be extended smoothly to a differential operator in a neighborhood of DU F.
Suppose that the following condition is satisfied :

4.1. For every C00 curve a: [0, 1] -> M with a(t) € D for 0 < t < 1 and
a(l) b0 and every C°° vector-field v along a, v: t ->v(t) eMa{t) for 0 ^£ ^ 1,

with v(l) ^ 0, we hâve:
lim(v(t),v(t)) oo

Then, one sees easily, using the classical expression for the LAPLAcian operator
in terms of the metric tensor, that :

4.2. A 0 at b0, i.e. A(f)(b0) 0 for every C00 real-valued function /
defined in a neighborhood of D U F.

(Condition 4.1 is just a way of making précise the idea that the metric tensor
of D approaches oo on the boundary.)

Now, return to the case where M GJK G/S, D G'/K c M, and the
metric on D is the unique one (up to a constant multiple) invariant under Gr.

It is well-known that this metric on D has non-positive sectional curvature
(since K is a maximal compact subgroup of the simple Lie group G') and that
the map ^rExp: i(M) ->D isa diffeomorphism.



Geodesics of Bounded, Symmetric Domains 7

Suppose that x nExp(i(X)), for X € H, is a point of D, Consider the
endomorphism of i(M):

sinh(Ad(t(X)))

One sees that it can be put into diagonal form, i.e. there is an orthonormal
basis X{, 1 ^ i ^ m dim M) for M such that the (X{) are eigenveetors for
4.3 with eigenvalues

(4.4)

where A^ are the real-valued linear forms on H obtained by diagonalizing the
adjoint représentation of HinGu. (They are just the roots of GM restricted to H.)
Suppose Xi9 for 1 ^ i < p, are the non-zero roots.

Define :

v{(x) ^*i?Exp(-.x)*0(^)) € Dœ, for 1 < i < m. (4.5)

From formula 2.4 of [9], due to Cartan and Hblgason, we see that:

(*,(*),*,(*)) =0 if t^j. (4.6)

1 < i < m. (4.7)

Now, a; -> vt(o;) détermines vector fields vt- on ail of D. Thèse are precisely
the vector fields obtained from the action on D of the one parameter sub-

groups s -> Exp(5a(-3lj)) of Gr. Since G1 acts on ail of M, thèse vector fields
can be extended smoothly over ail of M. 4.7 then proves the following resuit :

Proposition 4.1. Suppose that a(t) Exp(t(X)(*)), 0 < t < oo, is a C°°

curve in D such that lim(£) € F. Suppose further that v:t->v(t)€ Dait) is
t—>oo

a vector-field ahng a such that lim v(t) exists and is not zéro. If

Um(At.(Z(^)2= oo, 1 <i <p, then ]im(v(t),v(t)) oo. (4.8)

Notice, in particular, that if X(t) ^Xo, with Xo an élément of H not lying
on any of the hyperplanes À{ 0, 1 ^ i ^ ^> i.e. if o* is a géodésie of D in
gênerai position, then 4.8 is satisfied. By our previous remarks, the points
on the boundary towards which thèse geodesics tend are then points at which
the LAPLAOian of D is zéro.

Thèse results tie in with the earlier work of Lowdenslagbr [10]. The
"Bergman-Silov" boundary of D in M is at least contained in the set of
points of F where the LAPLAOian of D vanishes. We hâve seen that a gênerai
géodésie of D tends to a point on F where the LAPLAOian of D vanishes.

If one could prove for ail cases that the gênerai geodesics of D tend to a single
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orbit of K on F, the identification of the Bebgman-Silov boundary with
the set of points of F where the LAPLACian vanishes would be complète, and
independent of Lowdenslager's case-by-case vérification [10]. We hâve not
tried very hard to push the method used in Sections 2 and 3 to prove this
since A. Kobanyi has obtained a proof of this (to be published) using
Bjlrish-Chaîtdba's more gênerai approach [8].

Lincoln Laboratory
Massachusetts Institute of Technology
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