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Zwei elementare Sitze iiber positive Losungen
linearer homogener Gleichungssysteme

Von H. Gross, Ziirich

Fiir positive bzw. nichtnegative Losungen eines linearen homogenen Glei-
chungssystems gelten die beiden folgenden Sétze:

1. Satz: Das lineare homogene Gleichungssystem
Zalkszo (’I:=1,...,’m,) (l)
k=1

hat dann und nur dann eine positive Losung &, >0 (k= 1,...,n), falls
jede Losung % des transponierten Ungleichungssystems

m
Xogn, =0 k=1,...,n) (2)

1=1

sogar eine Losung des Gleichungssystems

m
206”617,-=0 (kzl,..-,n)
ist. i=1

2. Satz: Das lineare homogene Gleichungssystem (1) besitzt dann und nur
dann eine nichtnegative Losung &, >0 (k= 1,...,n), nicht alle & =0,
falls fiir jede Losung % des transponierten Ungleichungssystems (2) in min-
destens einer Ungleichung das Gleichheitszeichen gilt.

Beweis des 1. Satzes: Der Beweis 148t sich leicht geometrisch fiihren. Wir
betrachten zwei reelle euklidische Vektorrdume A", B® der Dimensionen =
und m, in denen je eine orthonormierte Basis (e;,...,¢€,), (¢,...,€,) aus-
gezeichnet sein moge. ¢ sei eine lineare Abbildung von A™ in B™,
@: A" - Bm mit der Matrix (x,;). Die lineare Abbildung ¢*, die durch die
Skalarprodukte in den Réumen A%, Bm induziert wird, ¢*: B™ — A",
(px, y) = (x, p*y) mit x e A%,y ¢ B™ hat bekanntlich die zur Matrix («;;)
transponierte Matrix.

Es habe nun das System (1) eine durchwegs positive Losung, das hei3t, es
existiere ein Vektor z,e A®™ mit (z,,¢;)>0 (¢ =1,...,n) derart, dall
(pxy,€) =0 (j=1,...,m). Die Hyperebene E mit dem Normalenvektor
%o, definiert durch die lineare Gleichung (z,, ) = 0, x ¢ A®, enthilt keinen
Vektor « mit (z,e) >0 (i =1,...,n) auBer dem Nullvektor. Denn ist
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mindestens ein (x,e;) > 0, so folgt wegen (xy,¢,)>0 (¢t =1,...,n) daB
(%o, ) = X'(xy, €;) (%, ;) >0, was nicht geht. Nach Voraussetzung ist
(PZo, &) = (2o, p*e¢;) =0 (j=1,...,m), also ¢*Bm c E. Somit enthilt

@* B™ auller dem Nullvektor keinen Vektor, dessen simtliche Komponenten
nichtnegativ sind. Damit ist die erste Hilfte des Satzes bewiesen.

Hat umgekehrt der Kegel K = {x|x = X4e;, 4, >0,i=1,...,n} mit
dem Bildraum ¢* B™ nur den Nullvektor gemeinsam, so gibt es wegen der
Konvexitit von K eine Hyperebene E, die mit K nur den Nullvektor
gemeinsam hat und ¢*B enthilt (folgt etwa aus dem Satz von HanN-
BANAcH). E sei definiert durch die Gleichung (z,, ) = 0, x, ¢ A®. Offenbar

liegt K ganz in einem der beiden durch E definierten offenen Halbriume,

das heiBt, es gilt (zy,¢;)>0 (¢=1,...,n) oder aber (z,,e¢;) <0,
(¢e=1,...,n). Also liegt z, oder — z, in K. Es moge x, in K liegen.
Da ¢*B c E gilt, ist (z,, ¢*e,) =0, (j=1,...,m). Somit gibt es
einen Vektor z,eA™ mit (2y,e,)>0 (¢ =1,...,n) und (pz,,¢) =0
p=1,...,m).

Die geometrische Uberlegung zum Beweis des 2. Satzes entspricht genau
der vorangehenden. Beweise zu den einen Hilften der beiden Sitze findet
man in Math. Ann. 76 (1915), 340-342: E. STieMKE, Uber positive Losungen
homogener linearer Gleschungen.

Eine elegante Anwendung des 1. Satzes auf die Theorie der quadratischen
Formen findet man in E. S. BARNES, On a Theorem of Voronoi, Proc. Cambridge
Philos. Soc. 83 (1957), 537-539. (In Gleichung (3) der zuletzt zitierten Arbeit
ist offenbar > durch = zu ersetzen.)

Eingegangen den 20. November 1960
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