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Zwei elementare Sâtze iïber positive Losungen
linearer homogener Gleichungssysteme

Von H. Gross, Zurich

Fur positive bzw. nichtnegative Losungen eines linearen homogenen Glei-
chungssystems gelten die beiden folgenden Sàtze :

1. Satz: Das lineare homogène Gleichungssystem

hat dann und nur dann eine positive Lôsung |fc > 0 (Je 1,..., n), falls
jede Lôsung rj des transponierten Ungleichungssystems

£ 0 (k 1,..., n) (2)

sogar eine Lôsung des Gleichungssystems

m

^ ^ikVi \"* ' * * * ' ^7
ist. i"1

2. Satz: Das lineare homogène Gleichungssystem (1) besitzt dann und nur
dann eine nichtnegative Lôsung £k ^ 0 (k 1,..., n), nicht aile Çk 0,
falls fur jede Lôsung rj des transponierten Ungleichungssystems (2) in min-
destens einer Ungleichung das Gleichheitszeichen gilt.

Beweis des 1. Satzes: Der Beweis lâBt sich leicht geometrisch fûhren. Wir
betrachten zwei réelle euklidische Vektorrâume An, Bm der Dimensionen n
und m, in denen je eine orthonormierte Basis (e1}..., en), (e1?..., em) aus-
gezeichnet sein môge. <p sei eine lineare Abbildung von An in B™,

<p: An -> B™ mit der Matrix (<xik). Die lineare Abbildung ç>*, die durch die
Skalarprodukte in den Râumen An,Bm induziert wird, (p*:Bm-*An,
(<px,y) (x, <p*y) mit x e An, y c Bm hat bekanntlich die zur Matrix (ocik)

transponierte Matrix.
Es habe nun das System (1) eine durchwegs positive Lôsung, das heiBt, es

existiere ein Vektor x0 € An mit (x0, e{) > 0 (i 1,..., n) derart, dafi
(<Pxo, êf) 0 (j 1,..., m). Die Hyperebene E mit dem Normalenvektor
x0, definiert durch die lineare Gleichung (xOi x) 0, x € An, enthâlt keinen
Vektor x mit (x, et) ^ 0 (i 1,..., n) auBer dem Nullvektor. Denn ist
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mindestens ein (x, e{) > 0, so folgt wegen (x0, et) > 0 (i 1,..., n) daB

(#0, x) 2J(x0, ei)(x, e{) > 0, was nicht geht. Naeh Voraussetzung ist
(q>x0, ëj) (x0, 9?*e,.) 0 (7=1,..., m), also y*B™ c 2?. Somit enthâlt
q>* B™ auBer dem Nullvektor keinen Vektor, dessen sàmtliche Komponenten
nichtnegativ sind. Damit ist die erste Hâlfte des Satzes bewiesen.

Hat umgekehrt der Kegel K {x | x 274^, At > 0, i 1,..., n) mit
dem Bildraum qfîB™ nur den Nullvektor gemeinsam, so gibt es wegen der
Konvexitât von K eine Hyperebene E, die mit If nur den Nullvektor
gemeinsam hat und ç>*J3 enthâlt (folgt etwa aus dem Satz von Hahn-
Banach). E sei definiert durch die Gleiehung (x0, x) 0, x0 e An. Ofifenbar

liegt K ganz in einem der beiden durch E definierten offenen Halbrâume,
das heiBt, es gilt (x0, e{) > 0 (i 1,..., n) oder aber (x0, e{) < 0,
(i 1,..., n). Also liegt x0 oder — x0 in K. Es môge x0 in K liegen.
Da ç?*B c E gilt, ist (#0, 99*^) 0, (7 1,..., ira). Somit gibt es
einen Vektor x0 e An mit (x0, e{) > 0 (i 1,..., n) und ((pxQ, ê^ 0
(?' 1,..., m).

Die geometrische Ûberlegung zum Beweis des 2. Satzes entspricht genau
der vorangehenden. Beweise zu den einen Hâlften der beiden Satze findet
man in Math. Ann. 76 (1915), 340-342: E. Stibmkb, Vber positive Lôsungen
homogener linearer Gleiehungen.

Eine élégante Anwendung des 1. Satzes auf die Théorie der quadratischen
Formen findet man in E. S. Barnes, On a Theorem of Voronoi, Proc. Cambridge
Philos. Soc. 53 (1957), 537-539. (In Gleiehung (3) der zuletzt zitierten Arbeit
ist offenbar ^ durch zu ersetzen.)

Eingegangen den 20. November 1960
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