Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 35 (1961)

Artikel: Projectively Flat Spaces with Recurrent Curvature.
Autor: Wong, Yung-Chow / Yano, Kentaro

DOl: https://doi.org/10.5169/seals-27343

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-27343
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Projectively Flat Spaces with Recurrent Curvature
To the University of Hong Kong on its Golden Jubilee in 1961

By Yung-CHOow Woxne and KENTARO YANO

Introduetion

Let Ax be an affinely connected N-dimensional space with a symmetric
connection (i.e. a connection without torsion). Ay is a projectively flat space,
or simply, a Py if there exists a coordinate system in terms of which the
finite equations of the paths are linear. Ay is of recurrent curvaturel) if the
covariant derivative of its curvature tensor is the tensor product of a non-
zero covariant vector and the curvature tensor itself.

The purpose of this paper is to determine all the projectively flat spaces
with recurrent curvature. For convenience we shall denote such a space by
Py. Tt is found that the space Pj (or rather its connection) depends on 2
arbitrary functions of one variable or on 3 arbitrary functions of one variable
according as its RiIcci tensor is symmetric or non-symmetric. The actual
construction of the connection of the P} depends on the solution of a dif-
ferential equation of the Riccat type and on the solution of a completely
integrable system of differential equations.

Projectively flat space with covariantly constant curvature tensor (i.e.
projectively flat symmetric space) is also considered. We prove that it is a
well-known type of projectively flat space characterized by its Riccr tensor
being symmetric and covariantly constant.

1. Preliminaries %)

Throughout this paper, each of the indices a, A, ¢, §,... runs through the
range 1,...,N; 90, denotes partial differentiation with respect to the kth
coordinate ; and a repeated index implies summation.

Let Ax be a linearly connected N-dimensional space with a symmetric
connection 1“,-’} (i.e. I’,-"i = I",-’;-). The curvature tensor, the Riccr tensor, and
the tensor P,, are defined respectively by:

Ry = o, I'p — o,Ig; + I'L, Ify — M TE; (1.1)
R;; = Rgy; (1.2)

1) RIeMANNian spaces with recurrent curvature have been studied in great detail by H. S.
Ruse [2] and A. G. WALKER [3]. Certain classes of non-RiEMANNian spaces with recurrent cur-
vature have been studied by Y. C. Wona [4].

1) See EISENHART [1], but our notation is slightly different from his.
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N 1
Pﬁ=_“—‘——‘Rﬁ"‘*N?—_—‘l-

e R, . (1.3)

It follows from (1.3) that P,; is symmetric iff the Riccr tensor R,; is sym-
metric.

By definition, Ay is of recurrent curvature if its curvature tensor satisfies
the condition

where I denotes the covariant differentiation and 7, a non-zero covariant
vector. If

Vle;iih =0, (1.5)

the space Ay is said to be symmetric.
Ay is projectively flat iff there exists a coordinate system in terms of which
the components I}, have the form

I =o0,A} + 0,4}, (1.6)

where A? is the KRONECKER delta and o, a set of N functions. The special
form (1.6) for I'}; is preserved by affine transformations of coordinates. Ex-
pressed in terms of P,;, a well-known necessary and sufficient condition for
Ay to be projectively flat is

Rkiih+A2Pﬁ'—A;‘Pki—'(Pk;—Pm)Agz(),
ViPjy — VP =0.

For N > 2,(1.7),is a consequence of (1.7),; for N = 2, (1.7), is an identity.
There exists, for (1.6), a function o such that o, = 9,0 iff P,, = P,;. Since
on account of (1.7) a projectively flat space with P,, = 0 is flat, we shall
always assume that

(1.7)

P, #0. (1.8)

2. Some necessary conditions

By definition, a Py is a non-flat projectively flat Ay with recurrent
curvature and therefore it is characterized by the conditions (1.4), (1.7) and
(1.8). To find all the Pj’s, we first derive a set of necessary and sufficient
conditions and then determine the functions @, in (1.6) which satisfy these
conditions.

From (1.4) we obtain V,R,; = r, R,;, and consequently

VP = 1Py (rx #0) . (2.1)



Projectively Flat Spaces with Recurrent Curvature 225

It is easy to see that conversely (1.4) is a consequence of (2.1) and (1.7),.
On account of (2.1), equation (1.7), becomes

5Py = 1; Py
which is equivalent to
Py =1;p;, (2.2)

where p, is some non-zero vector (since P, # 0).

Using (2.2) in (1.7),, we see that the curvature tensor of a Pj has the
form

Rkjih = — (Aﬁr; — A?Tk)pi + (rep; — ijk)A? . (2.3)
On account of (2.2), equation (2.1) becomes
(Ver)ps + r;(VeDs) = 137,04, (2.4)
from which it follows that
V,ri =s8;r; ,
¢ ¢ 2.5
Vip: = 4;p; , (2.5)

for some vectors s;,t,. These equations show that », and p, are of the form

r; = A&, (&= 0;§5£0),

2.6
Pi = un; (n; = 9,n=£=0), (2.6)
for some scalars &, 5, 4, u.
Substitution of (2.6) in (2.3) and (2.5) gives
Rkjih = w[(A2 £ — A? Ex)ns — (Exmy — ank)Ag] (2.7)
ij' = 0‘515' >
¢ t 2.8
Vini = Bnin; (2-8)

where v, «, B are some scalars.
We now proceed to consider the integrability conditions of the differential
equations (2.8). For any covariant vector u,, we have the Riccr identity

VeViu, —V,Viu; = — Rytu,. (2.9)
Using (2.7) in (2.9) and putting », = &;, we get, since &,=£0,
(Sxxs — &5op) = — p(&xmy — &mi) (o = 0;00)
Le. Exlovs + wmy) = &5(oa + )

which is equivalent to
oy + yn; = @& (2.10),
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for some scalar p. Similarly, using (2.7) in (2.9) and putting u; =%, we
get
B; — 29&;=o0n; (B;=9:8) (2.10),
for some scalar o.
Equations (2.10) tell us that

The scalars «, B, vy, 0,0 can be expressed as functions of &,n alone. (2.11)

On account of (2.11), equations (2.10) can be re-written as
(“§-Q)§9+(an+1P)nj=0 ’

(:Bf - 21/))§j + (ﬂﬂ - 0')"7; == O )

0o O
28 M T oy
n is functionally dependent on &, i.e. whether or not #; and §&; are pro-
portional. Now, by (2.2) and (2.6), n, and &, are proportional or not accord-
ing as the tensor P,, (or the Riccr tensor) is symmetric or not. We shall
consider these two cases separately in § 3 and § 4 respectively.

(2.12)

where o; = , etc. Two cases arise according as whether or not

3. P} with symmetric Riccr tensor

In this case, = 7(£) so that (2.12) reduce to

(xg —0) + (o, +9)7 =0,

Be — 29) + (B, — o)y’ =0,
where 7' = dn/d&. Since these equations just determine the unspecified
functions ¢, s of & which appear in (2.10), the integrability conditions of

(2.8) reduce to the mere fact that «, and vy are functions of §&.
On account of 7 = (&), equations (2.7) and (2.8) become

Ry = vy’ (Ap g — A;‘ §x) s
Viéi=a&&,
Viéi=(Bn — n'[n')E;&; .

Hence, we have the first part of the following

Theorem 3.1. For a Py with symmetric Riccr tensor, there exists a scalar
& and functions 0 and « of & such that

Ryt = 0(4ke, — Alg) e, (3.1)

Vj§i=“§j§ia (3.2)
where &, = 0,§.



Projectively Flat Spaces with Recurrent Curvature 227

[T'he tntegrability condition of (3.2) is tdentically satisfied.]
Conversely, an An satisfying this condition is a Py (or a symmetric Py)
with symmetric Ricer tensor.

Proof. We need only prove the last part of the theorem. It follows from
(3.1) that

P, = —0§¢,;, (3.3)

and so P, is symmetric. On account of (3.3) and (3.1), condition (1.7),
is satisfied. Furthermore, a simple calculation involving (3.3) and (3.2) will

r; = — (0460 + 20) ¢, (95 == %—2—) . (3.4)
It follows from this that (1.7), is satisfied and that V,R;;* = r, R;;*. The
Ay is therefore a Py or asymmetric Py according as 0¢/0 + 20 # 0 or =0,
Hence our theorem is completely proved.
In order to construct the I'j; of a P} with symmetric Riccr tensor, we
choose a coordinate system in which I}, have the form

Il = e,A} 4 9,4}, (3.5)

where g; are N functions of the coordinates. With respect to the I'}; given
by (3.5), the covariant derivation of a covariant vector wu, is

Vjui = aju, -_ ﬂjui - gtu:’- N (3.6)
and the curvature tensor has the components

Ry* = — Ako,, + A} oy + (8y — 2,) A} (3.7)
where
gji - ajﬂ, — ﬂ,ﬁ, . (3.8)

Now identifying (3.7) with (3.1) and rewriting (3.2) by means of (3.6),
we get
0,9, = 8,8, — 0(£)§,&;, (3.9)
ajgi———ﬁjfi—l"ﬂifj“l”“(f)éﬂsi, '
where &, = 0,&.

It is easy to verify that for any functions 6(&) and «(&) of &, the inte-
grability conditions of the differential equations (3.9) in the N 4 1 unknown
functions @,, & are satisfied, on account of the equations (3.9) themselves.
Now the solution of a completely integrable system of differential equations
contains a finite number of arbitrary constants, while the special form (3.5)

for the connection of a Py is preserved by affine transformations of coordinates
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which depend on a finite number of constants. But neither of these would alter
the fact that I'); as given by (3.5) depends on two arbitrary functions of one
variable, namely, the functions 6,« of &. Hence (cf. (3.4)) we have

Theorem 3.2. If we take any functions 0, x(x # — 0,/26) of one variable
&, and any solution @, & of the completely integrable system (3.9), then the
connection Iy = @;A} + 9,4} defines a Py with symmetric Riccr tensor;
and any Py with symmetric Ricor tensor can be constructed in the way. Thus
the most general Py with symmetric Ricor tensor depends on 2 arbitrary func-
tions of ome variable, and the actual construction of the connection of such Py

depends on the solution of a completely integrable system of differential equations.

4. Py with non-symmetrie Riccr tensors

Let us now return to (2.12). Since #,, £, are not proportional, (2.12) are
equivalent to
“f = Q ’ ﬁﬂ =0 ’
% +y=0, ﬂ§—2y)=0.

The first two equations merely determine the unspecified scalars p, o,
which appear in (2.10). Therefore,

o+ p=0,  fr—2p=0

are the integrability conditions of equations (2.8).
From this and (2.7), (2.8) and (2.11), we have the first part of the following

Theorem 4.1. For a Py with nmon-symmetric Riccr tensor, there ewist
functionally independent scalars & and n and functions y,x,p of & and 7
such that

Rk;‘ih = "/’[(Az & — A;‘ Ex)ny — (Exmy; — 5177k)A?] (4.1)
Viéi=an&;&;, 4.9
Vini = Bnms, (4.2)

where &, = 0,&, n;, = 0;7.
[The integrability conditions of (4.2) are

0 +p=0, Br—2p=0.] (4.3)

Conversely, any An which satisfies the above condition is a P} with non-
symmetric Riccr tensor.

Proof. We need only prove the last part of this theorem. It follows from
(4.1) that

Py=—vyém,, (4.4)
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and so P,; is not symmetric. Now (4.4), together with (4.1) and (4.2) show
that condition (1.7) for a Py is satisfied. Furthermore, a simple calculation
involving (4.4) and (4.2) will show that V, P, ,=r.P,, and hence
Vi Ry;i* = r,Ry;", with

(e (e

This vector 7, is not zero. In fact, since 7,, &, are not proportional, r, = 0
would imply that

(logp)e +a=0, (logy), +B8=0.

Differentiations of these give
o, = P €

from which and (4.3) it follows that u = 0. But this gives a flat space.
Hence our theorem is completely proved.

In order to construct the I, of a P} with non-symmetric Ricor tensor,
we proceed as in the case of symmetric Rioct tensor, and have (3.5), (3.6),
(3.7) and (3.8). Identifying (3.7) with (4.1) and rewriting (4.2) by means of
(3.6), we get

0,0; = 0,0, + v(&, ) &;m;
0;6; = 0;& + 0,8 + (&, ) &imy (4.4)
0;m: = @;m; + 8.m; + B(E, n) &,

|

where &, = 0,&, n, = 9;,n7. From Theorem 4.1 it follows that an Ay with
connection (3.5) is a Py with non-symmetric Ricor tensor if the functions
o; together with two functionally independent scalars &,# and some func-
tions w,o, B of &,7n, satisfy the differential equations (4.4). We know al-
ready (from Theorem 4.1) that the integrability conditions of (4.4), 5 are
(4.3). It is easy to verify that on account of (4.4), the integrability condition
of (4.4), reduces to

(w'l + wﬂ)(fknj - E,"’]k) = 0.

Since % % (&), this is equivalent to

v, +vB=0.

Hence combining this with (4.3), we obtain the following complete set of
integrability conditions of (4.4):

%, =—v, Pe=2y, y,+yB=0.
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Rewrite these as

oy
on

Ox 9B

P Y, ”5g=2Wa = —ppB. (4.5)

From the last two equations, we obtain

=22t = —2ep=— g2,

0&n on
: 02p aﬂz
i.e. 3Eon + %

Integration of this with respect to & gives

”+%w—ﬂm (4.6),

where f(n) is an arbitrary function of #. If f is any function of &, satis-
fying (4.6),, then in virtue of (4.5), » and « can be expressed in terms of g
as follows:

'/’—% ﬂ (4.6),

%f dn + h(g) . (4.6),

where k(&) is an arbitrary function of £. Equations (4.5) are equivalent to
equations (4.6).

Since equation (4.6), is of the RicocATI type, the most general function
B (&, n) satisfying it is of the form

Br(n) + g(&)Ba(n)
Bs(n) + 9(&)Ba(n)

where f$,(n),..., fs(n) are certain functions of  and g¢g(&) is an arbitrary
function of §&.

Hence, with an observation similar to that immediately before Theorem
3.2, we have

B(&,m) = (4.7)

Theorem 4.2. With any functions f( ) and h(&) of one variable n and &
respectively, any solution f(&, n) [cf. (4.7)] of equatwn (4.6),, and the functions
w(&,n), x(&,n) given by (4.6)y, (4. 6)3, the system of differential equations
(4.4) 18 completely integrable. If o,, &, n are any solution of the completely
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integrable system (4.4), then the connection I'), = 6,A% 4 0,A} defines a P}
with non-symmetric Ricor tensor; and any such Py can be constructed in this
way. Thus the most general Pj with non-symmetric Riccr tensor depends on
3 arbitrary functions of one variable, and the actual construction of the connection
of such Pj depends on the solution of a differential equation of the Riccarr
type and on the solution of a completely integrable system of differential equations.

b. Projectively flat symmetric N-space
We now consider the Ay’s characterized by
Ry = — AL Py, + A} Py + (Py; — Py) A} (5.1)
ViRy*=0. (5.2)
On account of (5.1), the condition (5.2) is equivalent to
VeP;;=0. (5.27)
Substituting (5.2') into the Ricocr identity
ViViPj — ViV Py = — RB;,% Py — By 2Py,
and taking account of (5.1), we obtain

0= P Py; — Py, Py; — (Pyy — Py) Py
+P51Pk5”‘P5kPu"‘(sz“Pm)Pﬁ,
Le. Pyi(Pyy — Py) + Pyy(Py — Pyy) — 2(Py, — Py) Py = 0.
Putting Il =4, k=1, weget
Py(Py — Py) — 2(Py, — Py) Pj; = 0,
le. 3(P;; — Pyj)P;; =0 (¢, not summed).
This gives
Pj; = Py, (5.3)
and consequently, (5.1) becomes
Ryi® = — AP, + A} Py, . (5.4)

Since, conversely, (5.1) and (5.2) are easy consequences of (5.4), (5.3) and
(6.2'), we have
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Theorem 6.1. An Ay ts a symmetric Py, iff
Rmh = - AﬁPﬁ + A?Pm ’
Py=Py, ViP;;=0.

The properties stated in Theorem 5.1 characterize a well-known type of
projectively flat space; in particular, if P,; is of rank =, it is RIEMANNian
and of constant curvature (cf. EISENHART [1], p. 97 and p. 166). We can easily
prove that in contrast, a Py with recurrent curvature, i.e. a Py, is never a
RiemaNNian space.

Obviously, a P} with a non-symmetric Ricor tensor cannot be RIEMANNian.
If a Py with a symmetric Riccr tensor is RIEMANNian, let g,; be a fundamental

tensor whose CHRISTOFFEL symbol {7}:’} is equal to I'%. Then the covariant

1] °
components
Bijin = R Gra
of the curvature tensor satisfy the well-known equation
Bijin = Bis»

which on account of (3.1) reduces to

Iin &1 = 9is&n -

But this contradicts the fact that g,, is of rank N > 1. Therefore, no P} is
RiEMANNian.
University of Hong Kong
Tokyo Institute of Technology

REFERENCES

[1] L. P. EisENHART, Non-RiEMANNian Geometry. New York (1927).

[2] H. S. RusE, A classification of K*-spaces. Proc. London Math. Soc. (2), 53 (1951), 212-229.

[3] H. S. WALKER, On RUSE’s space of recurrent curvature. Proc. London Math. Soc. (2), 52 (1950),
36-64.

[4] Yune-CrOW WoONG, A class of Non-RiEMANNian K*-space. Proc. London Math. Soc. (3), 3
(1953).

(Received August 11, 1960)



	Projectively Flat Spaces with Recurrent Curvature.

