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\yber die Losungen linearer Differentialgleichungen
mit ganzen Funktionen als Koeffizienten

von Margbit Frei, Zurich

Einleitung

Jede Lôsung wo(^ 0) einer gewôhnlichen linearen Differentialgleichung
(abgekiirzt DG1.) n-ter Ordnung

+ avw' + ao*w 0 (1)

lâBt sich aus n Unear-unabhângigen Integralen von (1) : wl9... 9wn super-
ponieren :

w0 Cl'Wx + c2-w2 + + cn-wn (2)

wobei die ci (i 1, 2,..., n) konstant und nicht sâmtliche 0 sind. Die n
Funktionen bilden ein Fundamentalsystem der DG1. (1).

Im folgenden setzen wir voraus, daB sâmtliche Koeffizienten der DG1. (1)
ganze Funktionen sind. Dann sind auch ihre Losungen ganz.

Wenn die Koeffizienten von (1) Polynôme oder konstant sind und mindestens
einer von ihnen =k 0, so ist nach den Untersuchungen von Wiman, Vaubon
und Wittich bekannt, daB das allgemeine Intégral von (1) eine ganze trans-
zendente Funktion vom Mitteltypus einer endlichen Wachstumsordnungx)
q > 1 ist. Mindestens eine der Funktionen eines Fundamentalsystems von
(1) ist also eine ganze transzendente Funktion der W.O. g. Doch kônnen
Funktionen von schwàcherem Wachstum, insbesondere Polynôme, als parti-
kulàre Losungen auftreten, jedoch hôchstens n — 1 linear-unabhàngige.

Unsere Untersuchungen werden zeigen, daB ein Analogon vorliegt, wenn als
Koeffizienten von (1) auch transzendente Funktionen zugelassen werden: Die
allgemeine Lôsung von (1) ist nâmlich eine ganze Funktion unendlicher W.O.,
wenn wenigstens einer der Koeffizienten transzendent ist. Funktionen endlicher
W.O. kônnen aber als partikulàre Intégrale auftreten, das heiBt von den n
Funktionen eines Fundamentalsystems der DG1. (1) ist mindestens 1 von
unendlicher W.O., wâhrend hôchstens n — 1 von endlicher W.O. sein kônnen.

Das ist unser wichtigstes Résultat. Dabei macht aber der Hauptsatz (§ 2)

noch eine genauere Aussage ûber die Hôchstzahl môglicher partikulârer
Intégrale endlicher W.O.

x) Um die Begriffe «Ordnung einer Differentialgleichung» und «Ordnung einer meromorphen
Funktion» auseinanderzuhalten, werde ich von jetzt an die Ordnung einer meromorphen Funktion

als «Wachstumsordnung» bezeichnen, abgekûrzt W.O.
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Wenn wir nach einer schârferen Abschatzung fur das Wachstum der allge-
meinen Lôsung der DG1. (1) mit mindestens 1 transzendenten Koeffizienten
fragen, zeigt sich, da8 die Analogie zum Fall der linearen DG1. mit Polynomen
bzw. Konstanten als Koeffizienten noch tiefer geht. Dort sind nâmlich die

Lôsungen nach Valtron [1] von «vollkommen regelmà/iigem Wachstum», ent-
sprechend den regelmàBig wachsenden Koeffizienten.

In unserm Fall aber - besonders wenn wir als transzendente Koeffizienten
nur Funktionen von endlicher W.O. q > 0 zulassen - zeigt sich, daB die all-
gemeine Lôsung eine Funktion ist, die exponentiell-iteriert denjenigen
Koeffizienten iiberlagert ist, die fur dièse r > r0 am stârksten wachsen. Sie ist
also quasi vom «Mitteltypus» des jeweils stârksten Koeffizienten. Insbeson-
dere heiBt das: Die allgemeine Lôsung einer DG1. (1) mit mindestens 1

transzendenten Koeffizienten ist nicht nur von unendlicher W.O., sondern sogar
von «regelmàBig unendlicher» W.O.

Unser verschârfter Hauptsatz (§ 3) enthàlt Bedingungen fur die Existenz
partikulârer Intégrale von schwâcherem Wachstum als die allgemeine Lôsung.
Sie sind aber nur notwendig, nicht hinreichend. Zwar kônnen wir Differential-
gleichungen konstruieren, welche die nach diesem Satz môgliche Hôchstzahl
solcher Intégrale auch realisieren, aber an andern Beispielen wird es wahr-
scheinlich, daB eine DG1. (1) mit transzendenten Koeffizienten nur in Aus-
nahmefallen partikulâre Intégrale besitzt, die das Wachstum der allgemeinen
Lôsung nicht erreichen, auch wenn solche nach unserm Satz zugelassen wâren.

Insbesondere besitzt also eine DG1. (1) mit transzendenten Koeffizienten
nur selten partikulâre Intégrale endlieher W.O.

Einen Teil meiner Resultate habe ich schon 1953 ohne Beweis in den «Comptes

rendus» verôffentlicht (Band 236, S. 38-40).
Die Anregung zu diesem interessanten Thema verdanke ich Herrn Prof.

Saxee. Er und Herr Prof. Pfluger haben durch ihr wohlwollendes Interesse
meine Arbeit gefôrdert. Beiden bin ich zu groBem Dank verpflichtet.

§ 1. Obère Schranken fur das Anwachsen der Lôsungen der DGL (1)

Méthode von Wiman nach den Untersuchungen von Wiman [1], [2], Vali-
bon [1], Wittich [1], [2], [3], [4] und Polya-Szego [1].

00

Es sei w g(z) Zhk*zk ganz transzendent (g.tr.). Da fur ein festes r
Jfe-0

die Glieder | bi | • r* bei j -> oo gegen Null streben, gibt es unter diesen Glie-
dern mindestens 1 grôBtes. Falls es mehrere gibt, wird dasjenige mit dem

grôBten Index j v v(r) ausgewahlt. v(r) heiBt nach Saxer [1] der
Zentralindex. m(r) | 6y(f)rKf) | das Maximalglied.
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Zwischen M (r, g) M (r) Max | g(z) | und m(r) bestehen die Un-
gleichungen l«l-r

log m(r)< log Jlf(r) (1.1)

fur aile r, und andererseits bei beliebig kleinem, aber festem e > 0

log M(r)< (1 + fi)logm(r) (1.2)

fur aile r auBerhalb einer Menge von endlichem log. MaB.
Wir bezeichnen mit f einen Punkt auf dem Kreis \ z \ r, wo | w \ sein

Maximum erreicht. Dort gilt fur jedes <5 > 0 und aile r auBerhalb einer r-
Menge von endlichem log. MaB

(1.3)
mit

\Vi\=O(v-1'i+s), 7 1,2 (1.4)

Ist 60 ^ 0, so gilt

logm(r) -log|6«| \v{t)jt-dt. (1.5)
0

Erfiillt nun w die DG1. (1), so folgt aus (1.3) die « charakteristische Glei-
chung» von Wimak

worin an(2î) 1 gesetzt wird.
Wenn w eine transzendente Funktion ist, so ist nach Def. v (r) unbeschrânkt,

also wegen (1.4)
0. (1.7)

Es gilt also fur jedes e > 0 die Abschàtzung

(Vjr)n. (i _ B) ^ | a|(f) | .{yjr)i{\ + c,), mit C/(r) | %(f) |, das heiBt

(r/r)* < (1 + e) 271 a,(f) | • b(r)/rp' (1.8)

auBerhalb einer Menge von endlichem log. MaB.

Fur v/r gibt es also zwei Môglichkeiten : Entweder haben wir als

l.Fall: vjr<\ (1.9)

oder, wenn wir annehmen, daB v/r > 1, so folgt aus (1.8) als

2. Fall: v/r < (1 + e) E \ a,(f) |

;o



204 Mabgmt Fbei

Daraus schlieBen wir, indem wir die Maximalbetrâge der Koeffizientenfunk-
tionen a5{z) auf | z | r | £ | niit A$(r) bezeichnen,

Also gilt im 2. Fall for aile r auBerhalb einer Menge von endlichem log. MaB

v/r < (1 + e)-n.Ma,x.Aj(r) (1.10)
i

Wir untersuchen nur solche Difïerentialgleiehungen, in welchen mindestens
einer der Koeffizienten transzendent ist. D. f. lim [Max^4^(r)] oo. Somit

f» oo ;'

kônnen wir die beiden Fàlle (1.9) und (1.10) zusammenfassen :

Ist w eine Losung der DG1. (1), v ihr Zentralindex und Aj (r) Max | a5 (rei(p) \,
0<<p<2n

so gilt fur jedes e > 0 und aile r auBerhalb einer von e abhangigen Menge
von endl. log. MaB

v(r)/r <(1 +e)-n.Max^(r). (1.11)
1

Eine fur aile r gultige Abschâtzung folgt sofort aus dem monotonen Wachs-
tum der Funktion v(r). Ist {r',r") ein notwendigerweise offenes Ausnahme-
intervall und r' <r <r", so gilt wegen v(r) < v(r") :

v(r)jr < v{r")jr < v(r")/r" -r'/r' (1.12)

Die Ausnahmemenge ist aber von endlichem log. MaB, also ist

lim r"jr < lim r"jr' 1 (1.13)
f=>00 f««OO

7] (v)
Das heiBt, es gibt eine Funktion r\(r) mit lim ' =0, so daB fur aile r

gilt — "

v(r)/r <n-Ma,xAj[r + rj(r)]- |l +1^-1 (1.14)

Nach (1.4) gilt daher

r t>

log m{r) < jn-Max [.4,(*')]• Tdt
d. f. nach (1.2) (1.15)

ftir aile r auBerhalb einer Menge von endlichem log. MaB

log if (r) <w.Max |>!,(r')]-— -r-logr, (1.157)
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r1
wobei rr>r, aber Km—=1. M(r) und A^r) wachsen mit r, also haben

r=oo r
wir fur aile r, weil (1.15') nur auf einer Menge von endlichem log. MaB ungiiltig

r"
sein kann, mit r" > r', aber lim — 1,

f-oo r

logif(r) <rc.Max[^(r")]. — -r-logr". (1.16)

Nach Voraussetzung ist Max [^-(r)] der Max. Betrag einer transzendenten
Funktion, also r o[Ai(r)]. (1.16) bedeutet also fur aile r, mit e e(r)-> 0,

logjJf (r) < (1 + e)-log Max [4^(^)1 r" > r, aber — -> 1 (1.16')

Was heifit (1.16')? - Wir unterscheiden :

1. Sâmtliche Koeffizienten der DG1. (1) sind von endlicher W.O. (davon nach
Voraussetzung mindestens 1 transzendent).

Dann sind Aj(r") und A^(r) von derselben Ordnung, demselben Typus
und in derselben Klasse.

Kommen unter den Koeffizienten Funktionen positiver Ordnung vor, so
existiert nach Vaubon [1] eine pràzisierte Ordnung Qj(r), so daB fiir jene
Funktionen gilt

5m l0^y) 1 mit «W < log A^r)

g(r) ist stetig, und es gilt g'(r)-r-log r -> 0. Daher strebt (r) gleich-

mâBig gegen 1, wenn > 1 und r gegen oo (Beweis nach M. L. Cabt-

wbight [1]). Damit gilt fiir aile r

log2M(r) <(1 + e). log Max [.4, (r)] e=s(r)->0, wenn r -> oo (1.16")
j

Das ergibt den

Satz: (1.17) Der 2. Logarithmus des Betrages einer Lôsung der DG1. (1)
erreicht hôchstens den Logarithmus des grôBten Betrages unter den
Koeffizienten, wenn dièse von endlicher, positiver W.O. sind.

Das sind die gewunschten oberen Schranken.
Eine genauere Aussage ist dann môglich, wenn die Max. Betrage eines

Koeffizienten der DG1. (1), zum Beispiel von ah, aile andern majorisieren. Dann
gewinnen wir nâmlich nach Rémoxjndos [1] die schârfere Abschâtzung (statt
1.14)
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v »-* r'
— < konst. VAh(r') > 1 daher (1.14')

log,Jf(r) <(l+g)- l0g^\(r) fur r>r0, e -> 0. (1.17')
7b tb

2. Als Koeffizienten der DG1. (1) sind auch ganze Funktionen von unend-
licher W.O. zugelassen.

Maillet unterscheidet nach Blumenthal [1] die Funktionen unendlicher
Ordnung in solche

a) transfiniter Ordnung und

b) nicht-transfiniter Ordnung.

Nach Définition ist das Wachstum einer Funktion nicht-transfiniter
Ordnung vergleichbar mit dem Wachstum einer endlich oft exponentiell-iterierten
ganzen, transzendenten Funktion endlicher Ordnung q > 0 (mindestens 1-

mal iteriert, damit sie von unendlicher Ordnung wird).
Funktionen, deren Wachstum nicht dieser Beschrânkung unterliegt, heiBen

transfinit.
Falls unter den Koeffizienten der DG1. (1) Funktionen von transfiniter

Ordnung vorkommen, so heiBt (1.16') :

Lôsungen von (1) kônnen transfinit sein.
Wenn hingegen aile Koeffizienten der DG1. (1) nicht-transfinit sind, so kann

das Anwachsen der Koeffizienten stàrksten Wachstums verglichen werden mit
einer &-mal exp.-iterierten g. tr. Funktion endlicher Ordnung, das heiBt

logfc Max [^(r)] ist von endlicher W.O. (Je > 1)

Dann setzen wir statt (1.16')

logk+1M(r) < (1 + e).logfc Max [As(r')]9 mit Ç -> 1 (1.16")
r

Jetzt sind logA.^4i(r) und \ogkA5(r") von derselben endlichen Ordnung,
demselben Typus und in derselben Klasse. (1.16') ergibt also den

Satz: (1.17") Der k + 1-te Logarithmus des Betrages einer Lôsung der
DG1. (1) ist hôchstens von derselben Ordnung, demselben Typus und in
derselben Klasse wie der Ic-te Logarithmus der Koeffizientenbetrâge, die am grôB-
ten sind.

(1.18) Im folgenden wollen wir solche Lôsungen der DG1. (1), deren Wachstum

nicht wesentlich schwâcher ist, als nach (1.17) bzw. (1.17") môglich ist,
Intégrale von normalem Wachstum nennen. Lôsungen, die dièses Wachstum
nicht erreichen, sollen subnormal heiBen.
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§ 2. Hauptresultat

(2.1) Die allgemeine Lôsung einer linearen DG1. mit ganzen transzendenten
Koeffizienten ist von unendlicher Ordnung.

Wir werden dièses Résultat mit einer Méthode gewinnen, die beilâufig eine
Aussage ùber die môgliche Hôchstzahl partikulàrer Intégrale endlieher W.O.
gestattet. Ausfïihrlich lautet der

Hauptsatz: (2.2) In der Difïerentialgleichung (1) sei wenigstens einer der
Koeffizienten ak(z), k 0,l,2,...,n — 1, transzendent. Dann ist ihre
allgemeine Lôsung von unendlicher W.O. Ist in der Folge ao(z), ax(z)9

an-i(z) der Koeffizient a^(z) der letzte transzendente Koeffizient (sind
also aile ak(z), h > j + 1, Polynôme), so gibt es hôchstens j linear-unabhângige
partikulàre Intégrale endlieher W.O.

Fur den Beweis benutzen wir Resultate aus der Werteverteilungslehre von
R. Nevanlinna [1], [2] und Wittich [4],

Wir formulieren nur die im folgenden verwendeten Spezialfalle :

Sei w(z) eine meromorphe Funktion. Wir definieren als ihre Schmiegungs-
funktion (abgekûrzt S.Fkt.) an den Wert oo den Mittelwert von log+|w| auf
der Peripherie des Kreises | z \ r :

l 2n

m(r, w) m(r, w, oo) =—— Jlog+ | w(r-ei(p) \ -d<p (2.3)

und als ihre Anzahlfnnktion der Pôle das Intégral iïber die Dichte der Pôle
[n (t, oo) Anzahl der Pôle im Kreis z < t] im Kjreis \t\ < r, das heiBt

r

N(r, w) N(r, w, oo) f n{t' °°] yra(°'°°) .dt + n{0> oo).log r (2.4)
0

Die charaJcteristische2) Funktion von w : T(r) ist definiert als

T(r, w) T(r) m{r, w) + N(r, w) (2.5)

T(r) m(r,w) wenn w ganz. (2.5')

Wichtige Eigenschaften der charakteristischen Funktion

wt(z) ^ konst., meromorph, i 1,2,... ,n
T (r) wâchst mit r und ist eine konvexe Funktion von log r (2.6)

wk) (2.7)

2) Begrûndung dieser Bezeichnung durch den 1. Hauptsatz, den wir sonst nicht benutzen.
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T{r,w)

•«,)
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i-1

n
fjÇj 2J wi(v,

/») +

h log»

0(1)

(2

(2

(2-

.8)

.9)

7')m(r, wv

wx + w2 + + wn) < 2Jm(r, wk) + log n (2.8')
n

Hilfssatz iiber die logarithmische Âbleitung

Wenn w(z) meromorph ist, so gilt nach Nevaotjnna [2]

m(r,w'lw)<S'log+T(r) + f-A-log+r + 0(1) (2.10)

auBerhalb einer Menge Ar von r-Werten, auf welehen die Variation von
r*/A 3) (A > 0) besehrankt ist.

Fur Funktionen endlicher Ordnung ist (2.10) ohne Ausnahmemenge erfullt,
also

m(r,wf/w) O(log r) fur jedes r (2.11)

Zusammenhang zwischen M(r) und T(r)

Fur jede ganze transzendente Funktion ist

T(r) < log M (r) < ^ + r
• T{R) r<R (2.12)

erfullt und bedeutet fur ganze Funktionen endlicher Ordnung: Die GrôBen

T(r) und log M(r) sind von derselben Ordnung, demselben Typus und in
derselben Klasse.

Auf diesen Sâtzen beruht der

Beweis des Hauptsatzes: Sei ao(z) der einzige transzendente Koeffizient
der DG1. (1). Dann isolieren wir ihn:

w(n)

und gehen ûber zur Schmiegungsfunktion (fur den Wert oo) auf \z\ r.
Dadurch bekommen wir - wegen den bekannten Eigenschaften der
Schmiegungsfunktion : (2.7') und (2.8') - die Ungleichungen

8) d.h. JfX-l(ir.
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w(k)w(k) \— wo an(z) 1 (2.14)
w i

nnd n / w{k) \ n~1
m(r, a0) <Zmir9 ^~-\ + Zm(r, ak) + 0(1) (2.15)

In diesen Ungleiehungen ist wegen (2.5') m(r, a0) T(r, a0), denn aQ(z)

ist ganz. Die S.Fkt. eines Polynoms ist von der gleichen GrôBenordnung wie
log r, also gilt fur das zweite Glied der rechten Seite von (2.15) die Absehàtzung

n-l
Zm(r,ak) O(logr) fur r -» oo (2.16)

llf\ (L>\ (Je'W IH ft 1

14) 14) 14) — ' 14) 14) 14)

ist tk u • —tîTW ' • " —tt • —r • — und fûhrt daher zu

Fur eine meromorphe Funktion endlicher W.O. gilt somit nach dem Hilfs-
satz iiber die log. Ableitung (2.11)

/ w{k) \
m (r, — j 0(log r) k 1, 2,... (2.17)

Nach (2.15), (2.16), (2.17) fuhrt daher die Annahme, da6 die DG1. (1) ein
Intégral von endlicher W.O. besitzt, auf die Absehàtzung

T(r,a0)=O(logr).
Dies ist aber im Widerspruch mit der Voraussetzung, da8 ao(z) transzen-

dent ist.
Die DG1. (1) besitzt also nur Lôsungen unendlicher W.O., wenn a0 ihr

einziger transzendenter Koeffizient ist, in Ûbereinstimmung mit der Behaup-
tung unseres Hauptsatzes.

Dieser Beweisgang, der sich vor allem auf die Isolierung des einzigen trans-
zendenten Koeffizienten sttitzt, gab die Idée fur das Vorgehen im aUgemeinen
Fall.

Eine DGL (1) kann zwar partikulâre Intégrale endlicher W.O. aufweisen,
auch wenn nur ein einziger ihrer Koeffizienten transzendent ist, wie das Bei-
spiel: w" -\- e~z*wf —w 0 zeigt. Dièse DG1. besitzt nâmlieh in w0 ez + 1

ein partikulàres Intégral vom Mitteltypus erster Ordnung.
Aber nehmen wir nun an, da8 in der Folge der Koeffizienten der DGL (1):

ao> ai9 • • • > aj, • • • an-i aj(z) ^er l^tzte transzendente Koeffizient ist; das

heifit, in der DGL (1) seien

ak(z) Polynôme fur k > j > 1 (2.18)
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Dann ist die Existenz partikulàrer Intégrale von endlicher W.O. nicht mehr
ausgeschlossen (vgl. Beispiel oben). Und hier kônnen wir die transzendenten
Koeffizienten ja auch nicht mehr isolieren wie oben und entsprechend schlie-
Ben. Doch werden wir jetzt versuchen, die DGL (1) umzuformen in eine solche
DGL, wo die Funktion a^z) im Koeffizienten der 0-ten Ableitung auftritt.
Dann ist unter Umstânden eine Isolierung des transzendenten Koeffizienten
a,j(z) wieder môglich. Eine solche Umformung gelingt mit der Méthode der
«Variation der Konstanten» von Lagbange nach Kamke [1].

Wenn nâmlich w0 ein partikulàres Intégral der DGL (1) ist, so geht durch
die Substitution

w wo.—=w0-u (2.19)

die DGL (1) iiber in eine lineare DGL (n — l)-ter Ordnung fiir u, in welcher
der Koeffizient ao(z) nicht mehr explizit4) auftritt.

Als partikulàres Intégral fur die Substitution (2.19) zur 1. Umformung
unserer DGL (1) wàhlen wir aus einem Fundamentalsystem5) von (1): wl9
w2,wz,... ,wn eine Funktion von endlicher W.O., zum Beispiel w1. Es
sollen nâmlich die ersten j + 1 Funktionen des F.S., das heiBt wl9 w2,...,
wj+1 von endlicher W.O. sein (bei passender Numerierung6). Durch dièse
Substitution

w wv — =zwvu (2.20)
wi

in der DGL (1) bekommen wir wegen

ti><*> S (k) ti?<m>u(*-m> k l,2,...,n (2.21)
m=o W

fiir u folgende DGL :

Kn\ 1 '\l n ^

x j wx + an^w^ + • • • + u ^n _ x

— 1

-2

Der Koeffizient von uin~k) bn_k lautet fur k l, 2,... ,n —1

bn^k i h ~ * j an^ • icf-0 an 1 (2.23)

4) «Explizit» soll andeuten, dafi er natûrlich im partikulàren Intégral w0, das zur Substitution
(2.19) verwendet wurde, implizit noch vorhanden ist.

*) Abgekûrzt: F.S.
«) b.p.N.
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Da w± ein Intégral von (1) ist, so verschwmdet der Koeffizient von u.
Der Koeffizient a0 tntt damit in der DG1 (2.22) nicht mehr auf, und wir be-
kommen fur uf y die lmeare DG1 (n — l)-ter Ordnung

y(n-l) Wi + yin-2)^ + + y'b% + y.bi 0 (2.24)

oder nach Division durch wx

yin-2)an_2i + + y> ^ + y ^ Q (2.24')

wo
a

b*+1
i*1 w*

Das ist eme hneare DG1. {n — l)-ter Ordnung mit meromorphen Funktionen
als Koeffizienten. Insbesondere lautet der Koeffizient von y

n_k (2.25)

In den andern Koeffizienten von (2.24) kommen nach (2.23) nur noch die

Funktionen ak(k > 2) vor neben den Quotienten —^—, die als Produkte
w1

von log. Ableitungen des Intégrais wx und semer Denvierten dargestellt wer-
den konnen (vgl. S. 209 oben).

wDa die DGL (2.24') aus der DG1 (1) durch die Substitutionen w wt • —

wx-u und u' y hervorgegangen ist und die Funktionen w2, wz,..., wn
unabhangige Intégrale von (1) smd, so smd auch die (n — 1) meromorphen
Funktionen f

^) i= l,2,...,n -1 (2.26)
wi I

unabhangige Lôsungen von (2.24) bzw. (2.24').
Nach Voraussetzung uber das F.S. von (1) wliw2,,..,wn smd die

Funktionen yl9 y} von endlicher W.O. Mit Hilfe von yx wiederholen wir
den ReduktionsprozeB an der DGL (2.24'). Im ganzen uben wir eme solche
Reduktion ^'-mal hinteremander aus. Zur Substitution verwenden wir jeweils
ein partikulares Intégral endlicher W.O. der betreffenden DG1

Wenn das Résultat der (s — l)-ten Reduktion, s<j, die DGL von
(n — s -f- l)-ter Ordnung fur die Funktion p :

p + an_s>s_rp^> +....+ (h.r-1-P' + «0.-1 "P 0 (2.27)

ist, dann bekommen wir durch die Substitution

w / v V
p — p%. JL. l-JL-\=zqi p1== part. Intégral von (2.27) (2.28)
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aus (2.27) die lineare DG1. (n — s)-ter Ordnung fur q

n(n-*) 4- n

als Résultat der s-ten Reduktion.
Analog zu (2.23) und (2.25) gilt dann zwischen den Koeffizienten der auf-

einanderfolgenden Difïerentialgleichungen (2.27) und (2.29) die Beziehung

*n-s-*,s=Mi zi z —h Vi ^=u,.^-5 (2.30)

wobei an_,+ifg«i 1 und p1 ein partikulàres Intégral endlicher W.O. von
(2.27) ist.

Das heifit, der Koeffizient al8 der Z-ten Ableitung von q (l 0, 1,...,
n — s — 1) ist eine Summe von Produkten aus log. Ableitungen des parti-
kulàren Intégrais px (bzw. seiner Derivierten) und Koeffizienten der DG1.

(2.27): am 8, deren vordere Indizes m > l + 1 sind. AuBerdem gestattet
(2.30) die Schreibung

ln-s-kt8 —. n — s T t" an- (2.31)

das heiBt, der Koeffizient al+lf9^1 kommt in at 8 isoliert vor. Wenn also
durch ^'-malige Reduktion aus der DG1. (1) die DG1.

rv 0 (2.32)

hervorgegangen ist, so kônnen wir wegen (2.30) und (2.31) aus dem Koeffi-
zientenschema (2.33) fur den Koeffizienten aOj ablesen:

Koeffizienten- Schéma

Ableitung n

1 an-l
1

(n-j)

1

-*

J \<}-

(2.33)

0

DG1. (1)

1. Reduktion

(j — 1). Reduktion

^-Reduktion

ai-\
a1,1



tîber die Lôsungen linearer Differentialgleiehungen mit ganzen Funktionen als Koeffizienten 213

aOJ at -PM (2.34)

w() p() fi)wobei Po ^ ein Polynom in den ai9 —L-, ^-,..., -j- ist, mit i=j+l,wi Pi h
,n — 1; i=l,2,...,n; m= 1,2,...,% - 5+1. tvl9... 9pl9...

und tx sind partikulâre Intégrale der DG1. (1) bzw. ihrer entsprechenden
Reduktionen (w1 ist ganz, die iibrigen meromorph und gemàB Schéma (2.33*)
aus den wl9... ,wi zu bestimmen).

Zusammenhang der Subst Intégrale mit dem F.S. von (1) (2.33*)

F.S.

F.S.

F.S.

der

der

der

DG1. (1)
1. Subst.

1. Reduktion

2. Subst.

2 T^.pdnlotion

3. Subst.

wx
mit w1

i \f
mit yx — 1

mit?/?

*

w

(-V
'¦¦¦[¦

wn

\Wl/

mi
\w1) _

usw.

Die andern Koeffizienten atj (l > 1) in (2.32) sind Polynôme in densel-
ben Unbestimmten wie Piji

altj= -Pltj. (2.35)

Setzt man fur v die nach dem Schéma (2.33*) aus den wl9..., wj+1 zu
bildende Funktion vx ein, so erhâlt man demnach aus (2.32) fur a^ den
Ausdruck: n_, {k)i^ (2.36)

wobei die Pk i Polynôme in den ai} • —— • •-^— (wie oben) sind.
wx tx

Bei der Herleitung dièses Ausdrucks wurde lediglich verwendet, daB die

wl9 w2,...., wj+1 linear-unabhângige Lôsungen der DG1. (1) sind. Es wird
fur das Folgende entscheidend sein, daB in den Pkj von den Koeffizienten
a{ nur jene mit den Indizes j -{- 1, j -\- 2,..., n — 1 auftreten.

Nehmen wir nun entgegen den Voraussetzungen des Hauptsatzes an, daB
die linear-unabhàngigen Lôsungen wl9 w%,..., wi+1 von endlicher Ordnung
und die Koeffizienten ai+l9 aj+2,..., an^x Polynôme sind, so gilt nach (2.7')
und (2.8')

m{r,PktJ) O(logr) fur aile r (2.37)



214 Mabgrit Fbei

und

m(r,_i-l O(logr) fur aile r (2.38)

Also folgt aus (2.36) nach dem Ûbergang zur Schmiegungsfunktion (das ist
charakteristische Funktion der ganzen Funktion a,) :

T (r, a,.) 0 (log r) fur aile r
Dies widerspricht aber der Annahme, daB a$ eine transzendente Funktion

ist.
Damit ist der Hauptsatz bewiesen.

§ 3. Verschârfung des Hauptsatzes

Der Hauptsatz kann in zwei Richtungen verschârft werden :

Dort unterschieden wir bei der Betrachtung der Koeffizienten der DG1. (1)
nur zwischen Polynomen und transzendenten Funktionen. Hier werden wir
die transzendenten Koeffizienten noch untereinander nach ihrer Wachstums-
stârke klassieren.

Damais interessierte uns bei den Lôsungen der DG1. (1) nur die Frage, ob
es Funktionen von endlicher oder unendlicher Ordnung seien. Jetzt werden
wir auch das Wachstum der Lôsungen unendlicher Ordnung genauer abschat-
zen kônnen.

Wir werden folgende Verbesserungen gegenuber dem Hauptsatz finden :

Einerseits wird an Stelle des letzten transzendenten Koeffizienten der DG1.

(1) in der Folge a0, al9..., an_1 der letzte Koeffizient von stârJcstem Wachstum

treten.
Andererseits erfahren wir iiber die allgemeine Lôsung der DG1. (1) nicht nur,

daB sie von unendlicher Ordnung ist, sondern genauer: Sie ist eine Funktion
von nach (1.18) definiertem normalem Wachstum, und statt den im Hauptsatz
zugelassenen part. Integralen endlicher Ordnung erhalten wir jetzt eine Aus-

sage ûber die Hôchstzahl unabhângiger subnormaler Lôsungen.
Es sei wl9 w2,..., wn ein Fundamentalsystem der DG1. (1). Wir setzen:

T(r,wi) T*(r) t=l,2,...,n (3.1)
und

IVlcLX jt \rj — JL j\Tj yo.6)

Nun reduzieren wir die DG1. (1) nach dem in § 2 beschriebenen Verfahren
/-mal. Als Substitutionsintegrale verwenden wir die nach Schéma (2.33*) ge-
bildeten part. Intégrale : yx wl9 y2 (^2/^1)' usw» Di^se sind also rat.
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Kombinationen der ersten j Funktionen des obigen F.S., das heiBt, von wl9

wi,...yWj und îhrer Ableitungen. Es gilt somit wegen (3.2) fur jedes r

T(r, yt) - 0 [T,(r)] i 1, 2,...., j + 1 (3.3)

und nach (2.10) auBerhalb einer r-Menge Ar, auf weleher die Variation von
rA/A (A > 0) beschrankt ist

m(r,yyiyt) O[logrT,(r)] ]' \' ' ' ' ' ' (3.4)

(Ausnahmen smd moglich, da wir mcht voraussetzen, da6 wx,... wj+1 Fktn.
endlicher W O smd)

Nach diesen Voraussetzungen besitzt die reduzierte DG1 (2.32) die Lôsung
2/m. Fur sie ergibt sich aus (2.38) auBerhalb Ar die Abschatzung

T(r, at) < O [log rT,(r)] + c" Z V(r, a,+k) ; (3.5)

denn nach (3.4) gelten auBerhalb Ar

™ (r, y(ï)lyl) < O [log rT3 (r)] und wegen (2.36)

n-j-l
m(r, aktj) < cx S m(r, a3+k) + O [log rT,{r)] und

m[Polyn. (2.35)] < c/i? m(r,aM) + 0[logrT3(r)]

(dabei smd Ci und c2, also auch c, Konstante, auf deren genaue Werte es

hier mcht ankommt).
Bei der Diskussion von (3.5) unterscheiden wir 3 Falle :

1. und wichtigster Fall:
(3.7) Samtliche Koeffizienten der DG1. (1) sind von endl. W.O. und minde-

stens 1 davon transzendent.

2. Fall:
(3.7') Mindestens 1 Koeffizient der DG1. (1) ist von unendlicher W.O., aber

keiner transfinit.

3, Fall:
(3.7") Mindestens 1 Koeffizient ist transfinit.

1. Hauptîall. Unter den Voraussetzungen (3.7) durfen wir annehmen, daB

aé(z) transzendent ist. Dann folgt aus (3.5), wenn wir setzen:
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Max T(r,aM) TM(r) (3.8)

T(r, at) 0 [log T,(r)] + 0 [TM(r)] (3.9)

auBerhalb einer r-Menge Ar, auf welcher die Variation von r^jk (A > 0)
beschrânkt ist.

In den Ausnahmeintervallen gewinnen wir auf folgende Weise eine Ab-
schâtzung : Nach (3.7) ist aj von endlicher WO., das heiBt, T(r, a^) 0 (rA).
Dannistauch dT(r,a^)\dr von endl. W.O. !- Denn nach (2.6) ist T(r) eine
zunehmende Funktion von r und eine konvexe Funktion von log r. Es ist
also dTjd log r dT/dr-r)> 0 und eine wachsende Funktion von logr.
D. f. fur as zum Beispiel

2r 2r

T(2r) $dT{t)jd logt-d log t > $dTjd log t-d log t
0 r

> dT(r)jd log r-log 2r/r
also

log 2 - dT {r)/d log r <T(2r) O(rx)
und

dT(r,aj)/dr O(rx-1) q.e.d. (3.10)

das heiBt, die Variation von ^(r, a,) ist hôchstens so groB wie jene von rA/A,
also auf einem Ausnahmeintervall gleichmâBig beschrânkt.

Damit gilt fur ein r' >r, wor der nâchstkleinere regulàre r-Wert zum Aus-
nahmewert r' ist, ^^ ^^ (3

Und also nach (3.9) und weil T (r) mit r wâchst

T(r>,at) 0 [log 2»] + 0 [TM(r)] + 0(1)
,(r')] + O[2V(r')]. (3.12)

Wir haben somit fur aile r :

T(r, a,) O [log 2»] + 0 [TM(r)] (3.13)
Also ist entweder

T(r,fl,) O[rjf(f)], wenn log T,(r) O[TM(r)] (3.14)

das heiBt, wenn die charakt. Funktion: T(r, a§) von hôherer GrôBenordnung
ist als jene der folgenden Koeffizienten aM,...., an_lf so besitzt die DG1.

(1) unter den Voraussetzungen (3.7) hôchstens j Intégrale wl9 w2,. wjf
deren log T(r, Wi), i 1,2,...,/, nicht wesentlich grôBer sind als die grôB-
ten unter den charakt. Funktionen von aj+1,..., an_x.

Oder:
3P(r, a,) 0 [log ^(r)], wenn TM(r) O[log Tt(r)] (3.15)
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das heiBt, mindestens einer der Logarithmen der charakt. Funktionen der

j + 1-Lôsungen wl9..., wj+1 erreicht die GrôBenordnung der charakt. Funk-
tion von aj.

Unter den Voraussetzungen (3.7) gilt also insbesondere fur die allg. Lôsung
wderDGl. (1):

\ogT(r,w)
£= Max [T(r,ak)]-- *-*"'

0<k<n-l

Nach (1.17) fanden wir unter den Voraussetzungen (3.7)

lim Max [M(r a VI ~ * ^3'17^

0<*<»-l

(3.14), (3.16) und (3.17) zusammen ergeben den

Verschârften Hauptsatz: (3.18) Wenn in der Koeffizientenfolge a0,...,
an_1 einer linearen DG1. n-ter Ordnung mit ganzen Funktionen endlicher
W.O. als Koeffizienten fur ein r » r0 ai die letzte transzendente Funktion
ist, deren charakt. Funktion T(r, a^ mindestens von der gleichen
GrôBenordnung ist wie jene der ubrigen Koeffizienten, dann erreicht auch der Log.
der charakt. Funktion der allgemeinen Lôsung w : log T(r, w) einen Betrag
von dieser GrôBenordnung.

Partikulâre Intégrale mit wesentlich kleinerer charakt. Funktion existieren
hôchstens j unabhàngige.

N.B. (3.18) heiBt nicht nur, daB der Log. der allg. Lôsung von (1) und die
Koeffizienten stàrksten Wachstums von derselben Ordnung, demselben Typus
und in derselben Klasse sind, sondern auch, daB der log T(r, w) immer den
fur r » rQ dominierenden charakt. Funktionen der Koeffizienten folgt.
Insbesondere heiBt (3.18) bzw. (3.16): Die allg. Lôsung einer lin. DG1. mit ganzen

transzendenten Koeffizienten ist ûberall1) von oo W.O.

Wichtiger Spezialfall: Wenn die DG1. (1) j unabhàngige part. Intégrale be-
sitzt, die das Wachstum der allg. Lôsung nicht erreichen, dann gilt schàrfer
als (3.16) fur sàmtliche n — j unabhàngigen Lôsungen normalen Wachstums

(Folgt aus Schéma (2.33*) fur wk und Umformung von (2.32) in

log T(r, w)
7) Eine meromorphe Funktion heiBt nâmlich von oo W.O., wenn lim

w -,x v. i- log T(r9w) r=°° gr
hier gilt aber sogar lim —~— oo.

15 CMH vol. 35
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vor dem tïbergang zur S.Fkt.)

2. Fall: Unter den Voraussetzungen (3.7') gelten (3.14) bzw. (3.15) nur
auBerhalb einer r-Menge Ar, auf welcher die Variation von rA/A beschrânkt
ist. Fur einen Ausnahmewert r' <r gilt, wenn r regulàr ist,

T(r', a,) < T(r, a,) O[log î»] + O[TM(r)] (3.19)

Weil die Koeffizienten der DG1. (1) nach Voraussetzung nicht-transfinit sind,
gibt es eine naturliche Zahl k, so dafi \ogkT(r, as) von endlicher W.O. ist.
Daner ist

logkT(r, a}) 0* [logkT(r', a,)] ,») (3.20)

wenn r der nâchstgrôBere regulâre r-Wert zu r' ist, weil dann rjr' gegen 1

strebt.
Und wir bekommen aus (3.19) fur aile r :

logkT(r, a,) 0* \}ogkT(r', a,)] (3.21)
0* [logfc+12»] + 0* [logkTM(r)] + 0(1)

Also gilt fur aile r

logfcT(r,a,) O*[logfcrM(r)], wenn logfc+1T,(r) O{\ogkTM(r)] (3.22)

logkT(r, a,) 0* [logfc+1T,(r)3, wenn logkTM(r) 0 [logk+1TM(r)] (3.23)

Wir kônnen (3.22) bzw. (3.23) analog (3.14) bzw. (3.15) deuten. Zusammen
mit (1.17") ergeben sie den

Satz: (3.24) Die Funktion at erreiehe das Wachstum einer &-mal expo-
nentiell-iterierten transzendenten Funktion von endlicher W.O. In der Folge
der Koeffizienten der DG1. (1): aQ, alt..., an__x sei sie die letzte Funktion,
deren charakt. Fkt. von keiner der vorangehenden Koeffizienten wesentlich
iibertrofien wird. Dann sind der h + 1-te Log. der charakt. Funktion der all-
gemeinen Lôsung dieser DG1. und der k-te Log. der charakt. Fkt. von ai vom
selben Wachstum.

Partikulâre Intégrale von schwâcherem Wachstum als die allg. Lôsung
gibt es hôchstens j linear-unabhângige.

3. Fall: Unter der Voraussetzung (3.7") durfen wir annehmen, daB der Ko-
effizient ai transfinit, ai+1, aj+2,.. an__i und die Intégrale wl9w2,...,
Wj+1 nicht-transfinit seien.

8) ^*[/(r)] heiBt: hôchstens vom selben Wachstum bzw. Ordnung, Typus und Klasse wie /(r).
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Daim bedeutet (3.5): ai ist auBerhalb einer r-Menge von endlichem log.
Mafi nicht-transfinit. D. f. Es gibt eine nat. Zahl m und ein endl. A, so daB
auBerhalb dieser r-Menge

Weil T(r) wâchst, so gilt fur ein r' im Ausnahmeintervall mit Endpunkt r
logmT(rf, a,) 0(rA) rf <r, Km r/r' 1

also

0(r'*(r/r')A) O(r'*)
das heiBt

logmT(r, a,) 0(rx) fur aile r
Also ist aj nicht-transfinit, entgegen der Voraussetzung und wir haben den

Satz: (3.25) Wenn in der Folge der Koeffizienten a0, al9..., an_x der
DG1. (1) aj die letzte transfinite Funktion ist, so besitzt die DGL hôchstens j
unabhângige mcfa-transfinite part. Intégrale.

§ 4. Die Frage nach der Existenz môglicher partikulârer Intégrale, welche das

Wachstum der allgemeinen Lôsung nicht erreichen; insbesondere bei Differen-
tialgleichungen 2. Ordnung

(Wir betrachten nurDififerentialgleichungen mit Koeffizienten endlicherW. 0.)

Wir kônnen Differentialgleichungen konstruieren, welche jede Verteilung
von partikulâren Integralen normalen und subnormalen Wachstums, die nach
dem verschârften Hauptsatz (3.18) in einem Fundamentalsystem môglich
sind, auch realisieren.

Eonstruktion:

y tfc<n~*> + an_h_xu^^^ + +a1-iï + ao-u (4.1)

sei ein linearer Difïerentialausdruck (n — h)-ter Ordnung mit ganzen
Funktionen als Koeffizienten. Dann ist

-A0(z)-V Q k>l, A0(z) ganz, (4.2)

eine lineare DGL n-ter Ordnung fur u:

u^ + b^u^n + + b^u' + bo-u 0 (4.3)

Die Koeffizienten-Funktionen bt (i 0, 1,..., n — 1) sind Kombina-
tionen der ah (A 0,l,...,n— k — 1) samt Ableitungen davon und A0(z).
Die Koeffizienten bn_h {h < k) enthalten A0(z) nicht.
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bn_h A0(z) + eine Kombination der ah und deren Ableitungen (fur un-
sere Betrachtung eriibrigt sich eine genauere Beschreibung). Also ist bn_k der
Koeffizient mit grôfitem Index der DG1. (4.3), der von A0(z) abhângt.

Wenn A0(z) von wesentlich stàrkerem Wachstum ist als die Koeffizienten
des Differentialausdrucks (4.1), dann ist bn_k fur jene r, wo T(r,A0) ihre
hôchstmôgliche GrôBenordnung erreicht, der kritische Koeffizient der DG1.

(4.3). Er entspricht dem Koeffizienten aj im Satz (3.18).
Nach dieser Verschàrfung des Hauptsatzes ist somit die allgemeine Lôsung

der DG1. (4.3) vom selben Wachstum wie eine zu A0(z) exponentiell-iterierte
Funktion. Das ist das normale Wachstum der Lôsungen von (4.3). Und es

existieren hochstens (n — k) linear-unabhângige part. Intégrale von subnor-
malem Wachstum.

Dièse Hôchstzahl wird erreicht.
Denn die DG1. (4.3) besitzt tatsâchlich (n — k) linear-unabhângige

Intégrale, die das Wachstum der allgemeinen Lôsung nicht erreichen. Die Lôsungen
der DG1.

uin-k) _|_ att_fc_1tt(t|-*-1) + + a^u1 + ao-u 0 (4.4)
das ist V 0

sind nâmlich auch Lôsungen der DG1. (4.3). Verglichen mit der allgemeinen
Lôsung dieser DG1. sind sie aber subnormal, da die Koeffizienten von (4.4)
von wesentlich schwâcherem Wachstum sind als jene von (4.3) mit Index
<n — k, welche AQ enthalten. Und unter ihnen gibt es genau (n ~k)
linear-unabhângige.

Allgemein kann der Satz (3.18) also nicht mehr verschàrft werden.
Bei der Untersuchung bestimmter Differentialgleichungen zeigt sich aber,

da6 die an sich môglichen subnormalen Lôsungen nur selten auftreten. In
vielen Fâllen nâmlich, wo nach dem Satz (3.18) solche môglich wâren, sind
weitere, spezielle Bedingungen erfullt, die hinreichen, subnormale Lôsungen
auszuschlieBen.

Zum Beispiel kann eine DG1. 2. Ordnung

wtt + QfW' + aQ-w 0 a0, % ganz, transzendent, (4.5)

nach Satz (3.18) ein (und nur 1) subnormales Intégral besitzen, wenn die cha-
rakteristische Funktion von a0 nicht wesentlich grôBer ist als jene von ax.
Dann gilt fur eine allgemeine, das heiBt normal wachsende Lôsung w von (4.5)

r, w) „
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Fur eine subnormale Lôsung w0 ist mindestens einer dieser Limites gleich 0.
Aber wegen (3.11) heiBt die Ungleichung (3.9) fur (4.5)

T(r, a0) < 0 [log T(r, w)] + T(r, ax) fur aUe r (4.7)

Das heiBt aber fur eine subnormale Lôsung w w0

^'a»j<l oder l^^T() -
Also fuhrt im einen Fall die Annahme Km ?—^- > 1 im andern

Fall schon die Existenz einer Folge rx, r2,..., rn,... mit lim rn oo, auf
Tir a) W=BO°

welcher w?—~ grôBer als 1 + e, e > 0, ist, zum Widerspruch.
¦L Vn > al)

Zum AusschluB eines partikularen Intégrais endlicher Ordnung genûgt nach
(4.7) sogar schon

T{rn, a0) > T{rn, ax) + i-log rn h beliebig groB,

auf einer Folge rx, r2,..., rn,..., lim rn oo.
n= oo

Deutlich zeigt auch die Schar der Differentialgleichungen

w" + e-*.ti/ + <x-w 0 (4.8)

a =£ 0 konstant (vgl. Beispiel S. 209, a — 1)

daB subnormale Lôsungen nur in Ausnahmefàllen auftreten. Nach dem ver-
schàrften Hauptsatz (3.18) kônnten dièse Differentialgleichungen nâmlich je
eine subnormale Lôsung besitzen - wie das Beispiel S. 209 -, aber wir kônnen
beweisen, daB bei den Differentialgleichungen (4.8) dann und nur dann ein
subnormales Intégral auftritt, wenn oc —n2, n eine natûrliche Zahl.

Eine weitere Bestàtigung dieser Vermutung fanden wir bei der Unter-
suchung der Schar

w" + e«'zt.w' + P(z)>w=0 P(z) Polynom, a^05 konst. (4.9)

Damit dièse Differentialgleichungen je ein partikulâres Intégral von sub-
normalem Wachstum besitzen kônnen, muB das Polynom P(z) mindestens
vom 2. Grad sein. Ob es in der Schar (4.9) eine DG1. gibt, fur welche dièse

Bedingung fur die Existenz eines subnormalen Intégrais hinreicht, ist mir nicht
bekannt.
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