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Uber Extremalliingen auf geschlossenen Flichen

Von CHRISTIAN BLATTER, Basel

§ 1. Problemstellung und Ergebnisse

1.1. Sei T eine geschlossene differentialgeometrische Fliche vom Typus
des Torus. Dann gilt nach LoeEwNER der folgende Satz!): Ist A4 der Fldchen-
inhalt von ¥ und ! das Infimum der Léngen aller nicht nullhomologen Zyklen
auf I, so gilt

I2 2
LSV

In der vorliegenden Arbeit soll dieser Satz auf geschlossene Fliachen belie-
bigen Geschlechts g > 1 verallgemeinert werden. Hiezu l1af3t sich allerdings das
Beweisverfahren LoOEWNERs nicht heranziehen ; denn es benutzt wesentlich die
Tatsache, daBl die geschlossenen Riemannschen Flichen vom Geschlecht
g = 1 eine kontinuierliche Gruppe konformer Automorphismen besitzen. Wir
werden unser Ergebnis vielmehr mit Hilfe eines allgemeinen Satzes iiber Ex-
tremalldingen auf geschlossenen Riemannschen Flidchen herleiten.

Wir geben zuniichst eine eingehende Ubersicht iiber unsere Methoden und
Satze.

(1.1)

1.2. Unter einer differentialgeometrischen Fliche §§ verstehen wir eine zwei-
dimensionale orientierte differenzierbare Mannigfaltigkeit der Klasse C* (n > 3),
auf der durch das Linienelement

ds =V &g (1.2)
eine Differentialgeometrie festgelegt ist. Dabei bezeichnet
Oy = Edu? 4 2Fdudv + Gdv?; E, F,Q e C?

eine positiv definite und gegeniiber zulissigen Parametertransformationen in-
variante quadratische Differentialform.

Wir machen im folgenden entscheidend Gebrauch von der Tatsache, daf
@y auf der Fliche § eine konforme Struktur induziert, vermoge welcher §
zu einer Riemannschen Fliche Ry wird. Das Linienelement (1.2) erscheint
in den lokalen konformen Parametern ¢ von Ry als

ds = og(8) 14|, g(0)>0, pgeCt. (1.3)
1) Unpubliziert; vgl. [1], p. 71.

11 CMH vol. 85
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Hieran schliet sich folgende Definition: Eine reelle, nichtnegative stetige
quadratische Differentialform @ auf einer Riemannschen Fliche R heifBit

eine konforme Metrik auf R, wenn ds = V@ in den lokalen Parametern ¢
von R die Form

ds=()|dl|, e(l)=0, peC°
annimmt.

1.3. Sei R eine geschlossene Riemannsche Fliche vom Geschlecht ¢ > 1,
sei M die Gesamtheit der konformen Metriken @ auf R und 3, ein Element

der Homologiegruppe H von R.
Ist fiir eine konforme Metrik ® e M A, der Flicheninhalt von R und

L¢(3o) = inf j'ds

30€30 30
die minimale Linge aller Zyklen 3, aus 3,, so heiflt

Ly
A(30)—sup 2203 (1.4)
PeM P

nach ABLFORS und BEURLING [2] die Extremallinge der Zyklen aus 3,. Gilt
fiir eine Metrik @, ¢ M die Beziehung

L2
28 _ 330, (1.5)

8o heit @, Eaxtremalmetrik zur Klasse 3,.
1.4. Es ist trivialerweise A(0) = 0. Wir beweisen in den §§ 2—4 den

Satz 1. Ist o das zur Klasse 3, % 0 duale harmonische Differential auf
R, so gilt
A(3o) =l @]]®; (1.6)
und die konforme Metrik
b= |owo+i*xw|? (1.7)

ist (bis auf einen konstanten Faktor) die einzige Extremalmetrik zur Klasse
30?)-
1.5. Aus Satz 1 ergibt sich als Korollar noch der folgende

Satz 2. Ist A, die zur Klasse 3, =[3,], 4, die zur Klasse 3, = [3,]
gehorige Extremallédnge, so gilt

MAy = (31030).

%) Fiir die Notation verweisen wir auf [3].
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Beweis. Sind o, und w, die zu 3, und zu J, dualen harmonischen
Differentiale, so folgt nacheinander
Mg =l o ||? || @ [|2 = |l @ || ]| — * @a||? = (@1, — * 0)*
= [0y, 0,]* = (3,034)% .

1.6. Den Schliissel zur Lésung unseres urspriinglichen Problems bildet nun

Satz 3. Es gibt nur von g abhingige Konstanten ¢, mit der folgenden Eigen-
schaft: Auf jeder geschlossenen Riemannschen Fliche R vom Geschlecht
g > 1 gibt es eine Klasse 3,eH, 3o # 0, mit

M3o) <o, - (1.8)

1.7. Beweis. Seien
{31’“"327} (1~9)
eine kanonisch konjugierte Homologiebasis auf R und w,,..., w,, die zu

den Basiszyklen dualen harmonischen Differentiale. Das zum Zyklus

29
3=Zng, n ganz (1 <i<2g)

§=1
duale harmonische Differential  ist dann gegeben durch
%

0w =2nw,
=1

und somit die Extremalldinge zur Klasse 3 = [3] durch

20
AMIJ)=lo||2= 2 nn (o, wy) . (1.10)

i, k=1

1.8. Nach MinkowsKI?) gibt es eine nur von g abhingige Zahl o,,

O<o< l/(g ! ge‘),

mit der folgenden Eigenschaft: Zu jeder positiv definiten quadratischen Form
¥(x,,..., ®y,) in 2g Variablen der Determinante det ¥ = 1 gibt es einen
Gitterpunkt (n,,...,ny,) # (0,...,0) mit ¥(n,,...,n,y,) < g,.

Es geniigt daher, zu zeigen, daB die Matrix 2 = ((w,;, w;)) die Voraus-
setzungen dieses Satzes von MiNnkowsKI erfiillt.

Ist 8 = (s;,) die Schnittmatrix der Basis (1.9), so gilt

Se=%o=%w, (1<, k<29). (1.11)

3) Siehe zum Beispiel [4], p. 23.
4) Diese Abschitzung stammt von BLICHFELDT; vgl. [4], p. 24.
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Ferner gehort zur Basis (1.9) die die Transformation x erzeugende Matrix
= (t;;) : Fiir jedes harmonische Differential ¢ ist

2¢

Jexp =2t 3,0 (1 <0< 29). (1.12)

Im=1

Wegen (w;, wg) = [, * @] = 3; * 0, folgt nun aus (1.12) mit ¢ = w,
und (1.11)

29 29
(g, wy) =12 113 0k =z{t"8"‘ 1<,k < 29),
-1 -
das heiB3t aber
Q=T8. (1.13)

Aus der speziellen Gestalt der Schnittmatrix zur Basis (1.9) ergibt sich
einerseits unmittelbar det S = 1; anderseits folgt aus *x¢ = — ¢, das
heit 7%= — E, die Relation det7T = 4+ 1. Da 2 nach (1.10) positiv
definit ist, folgt mit (1.13): det 2 = 1.

1.9. Aus Satz 3 ergibt sich nun unmittelbar die angekiindigte Verallgemei-
nerung des obigen Satzes von LOEWNER:

Satz 4. Ist § eine geschlossene differentialgeometrische Fliche vom Ge-
schlecht g > 1, ist A der Flidcheninhalt von § und ! das Infimum der
Léngen aller nicht nullhomologen Zyklen auf §, so gilt

2
_A—. < g, .
Hierin ist (1.1) enthalten; denn es ist ¢, = 72_?3— 5). Aus unserer Herleitung

geht allerdings nicht hervor, daB die Abschitzung (1.1) scharf ist®).

1.10. Zum Beweis von Satz 4 betrachten wir auf der Riemannschen Fliche
Rg eine durch (1.8) charakterisierte Homologieklasse 3,. Wegen (1.3) ist
@y e M, so daBl mit (1.4) folgt

3(30) ,
Aoy %

anderseits gilt trivialerweise

! = inf ng(3) ng(-So)

3en

§) Vgl [4], p. 24.

¢) Fiir den Torus von konstanter Kriimmung 0, den man aus einem euklidischen Rhombus
vom Innenwinkel 60° durch paarweise Identifizierung der Gegenseiten erhiilt, gilt in (1.1) er-
sichtlich die Gleichheit.
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1.11. Die Sétze 1 und 4 dieser Arbeit wurden (ohne Beweis) bereits in den
Comptes Rendus [5] veroffentlicht.

Ich danke Herrn Prof. Dr. H. HuBER fiir zahlreiche Hinweise und Verbes-
serungen.

§ 2. Die durch w erzeugte Zerlegung von R

2.1. Im folgenden bezeichne durchwegs R eine geschlossene Riemannsche
Fliche vom Geschlecht g > 1,  das zur Homologieklasse 3, #% 0 duale
harmonische Differential auf R und 3, einen Zyklus aus 3,.

Ist das Gebiet G c R einfach zusammenhingend und p e @, so vermit-
telt das Integral

’

z=2,)=flo+ixw) @ <), pe@ (2.1)

S e, vy

(die Integrationswege sollen in G verlaufen) eine konforme Abbildung von
G in die z-Ebene, z = x + ¢y. Jede Abbildung (2.1) hei}t eine kanonische
Darstellung von @.

2.2. Die Punkte, in denen ® nicht verschwindet, heilen gewohnliche
Punkte von w; jeder gewohnliche Punkt p ¢ R besitzt eine Umgebung ¥V (p),
die durch die kanonische Darstellung z, uniformisiert wird.

Die Nullstellen von  heilen kritische Punkte; sie bilden eine endliche
Menge @ = {¢;},<i<,- Die Funktion z,(p’) besitzt bei p’ = ¢, eine
Nullstelle der Ordnung =»; > 1. Es gibt daher eine Umgebung V(g,), die
durch den Parameter £, mit

2a; (p,) = t?i (p’) (p, € V(qi): 1 <i < 8) (2‘2)
uniformisiert wird.

.3. Das System X = {V(p)},en bildet offenbar eine Uberdeckung von
R. Fiihrt man in jedem V(p) ¢ X z, als Parameter ein, so erhalten die Uber-
lappungsrelationen durchwegs die Form

2,,0") =2, (@) + ¢ (@ V()N V(p)) . (2.3)

Dabei miissen wir allerdings stets im Auge behalten, dafl die kanonische

Darstellung 2,, von V(g,) (¢; €Q) nach (2.2) im Ursprung einen n,fachen
Windungspunkt besitzt.

2.4. Die Uberlappungsrelationen (2.3) ermoglichen folgende Definition:
Ein 2-Simplex 4 ¢ R heiBt euklidisches Dreteck, wenn es in der kanonischen
Darstellung als schlichtes euklidisches Dreieck erscheint.
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Wir konstruieren nun auf R eine aus euklidischen Dreiecken bestehende
Triangulation T = {4,};c;<ny- In der Nidhe der kritischen Punkte g¢,e¢@
verfahren wir dabei folgendermaBen: Wir betrachten die n,-blittrige kano-
nische Darstellung 2z, von V(g,) und wihlen den Punkt z = 0 sowie in
jedem Blatt die vier Punkte z = 4+ 8, 4 70 (fiir ein hinreichend kleines
0 > 0) als Eckpunkte, in jedem Blatt die verbindenden Achsenabschnitte
sowie die Strecken |z |+ |y|= 6 als Kanten der Triangulation. Dann
wird ¢, von 4n; euklidischen Dreiecken umgeben. Die Triangulierung der
Restfliche bietet keine Schwierigkeiten, da dort die kanonische Darstellung
im kleinen schlicht ist.

Die Triangulation T sei dabei so fein, daB fiir die euklidische Lidnge der
Kanten 7, gilt

|7, | < 1 (1<k<—3%). (2.4)

2.5. Durch o =0 (2.5)
wird auf R — @ ein Richtungsfeld erklirt. Seine Integralkurven nennen wir
die Feldlinien von o, sie sind nichts anderes als die Niveaulinien der zu
gehorigen harmonischen Integralfunktionen. Die Schar der Feldlinien bezeich-
nen wir mit I'.

Es gilt fiir den Parameter z, wie man leicht an (2.1) verifiziert,

w=dr, x0o=dy. (2.6)

Die Feldlinien erscheinen somit in der kanonischen Darstellung als Geraden
x = const.; wegen der Gestalt (2.3) der Uberlappungsrelationen ist ihnen
damit ein positiver Richtungssinn sowie die Léngenmessung der z-Ebene in-
variant aufgeprigt:

ds = |dy| . (2.7)

2.6. Um das Verhalten des Feldes in der Ndhe eines kritischen Punktes
¢, zu untersuchen, betrachten wir die kanonische Darstellung z,, von ¥ (q,).
Man sieht sofort, daB in jedem der =, Blétter die positive imagindre Halb-
achse eine in ¢, beginnende und die negative imaginire Halbachse eine in
q; endende Feldlinie darstellen. Alle andern Feldlinien gehen an ¢, vorbei.

Feldlinien, die in einem ¢, e@ beginnen bzw. enden, heilen links bzw.
rechis singulir; wir denken sie uns durch das betreffende ¢; (einseitig) abge-
schlossen. Alle iibrigen Feldlinien heilen reguldr; sie lassen sich in eindeutiger
Weise auf R nach beiden Richtungen unbeschrinkt fortsetzen.

2.7. Die Komponenten des Durchschnitts der Feldlinie y mit dem Drei-
eck A4,eT heilen die Spuren von y in diesem Dreieck. Offenbar bildet die
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Menge der durch die Feldlinien erzeugten Spuren in jedem A4; eine Parallel-
schar.

2.8. Lemma 1. Jedes y e I' erzeugt in jedem A4,e T hochstens eine Spur.

Beweis. Erzeuge y etwa im Dreieck 4, zwei verschiedene Spuren. Wir
wihlen auf der ersten Spur einen Punkt p,, auf der zweiten einen Punkt p,
und verbinden p, mit p, durch einen in 4, verlaufenden Querbogen, so
daf wir zusammen mit dem von p; nach p, laufenden Wegstiick von y
einen Zyklus 3’ erhalten. Da lings y stets w = 0 ist, folgt

Jo= ?lw : (2.8)
3 P2

Hier stellt der Betrag der rechten Seite nach (2.6) den euklidischen Abstand
d der beiden Spuren, gemessen in dem Parameter z, dar. Nun ist einerseits
wegen (2.4) d < 1; anderseits aber ist die linke Seite von (2.8) gleich 3’ o3,
und daher ganz. Somit ist d = 0. Dies widerspricht aber unserer Voraus-
setzung ; denn verschiedene Spuren in 4; haben positiven Abstand.

2.9. Satz A. Jedes y ¢ I' ist entweder beidseitig singulér oder geschlossen.

Beweis. Es geniigt offenbar, folgendes zu zeigen: Jedes y e I', das sich
unbeschrinkt auf R etwa in positiver Richtung fortsetzen 1i8t, ist geschlos-
sen.

In der Tat: Da die Feldlinie » jedes A4;e T glatt durchsetzt, kann sie ins-
besondere immer in ein nichstes A4,,, ¢/ 7 7, fortgesetzt werden. Wegen der
Endlichkeit der Triangulation folgt hieraus, dal p wenigstens ein 4; zwei-
mal durchsetzt. Wenden wir Lemma 1 auf y und 4; an, so ergibt sich die
Behauptung.

2.10. Eine regulire Feldlinie heiflt in der Folge ein Feldzyklus. Fiir jeden
Feldzyklus 3 ist nach (2.6) und nach Definition des positiven Richtungssinns

3*xw>0; (2.9)

die Feldzyklen sind daher insbesondere nicht nullhomolog.

2.11. Wir denken uns nun die Fliche R lings der singulidren Feldlinien
oder aber, wenn solche fehlen, lings eines beliebig herausgegriffenen Feld-
zyklus aufgeschnitten. Es entstehen offene Teilflichen R, (1 <1< m),
m > 1, die je eine singularititenfreie Schar I'; von Feldzyklen 3, tragen.

2.12. Lemma 2. Jedes R, (1 <1 << m) besitzt eine kontinuierliche Gruppe
G konformer Automorphismen.
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Beweis. Fiir jedes reelle s wird durch die folgende Vorschrift ein Auto-
morphismus 7', von R; erklirt: Jeder Punkt p ¢ R; soll auf der durch p
gehenden Feldlinie um die Lidnge |s| in der durch sgn s gegebenen Rich-
tung verschoben werden.

Nun ist p mit seinem Bild p’ verkniipft durch die Relation

>

f(w 4+t %) =18,

r
die man durch Trennung von Real- und Imaginarteil an (2.5) bzw. (2.6) und
(2.7) leicht verifiziert. Hieraus ergibt sich aber nach (2.1) fiir die zu p’ und
zu p gehoérigen Parameterdifferentiale: dz’ — dz = 0.

2.13. Lemma 3. Jedes R,;(1 <¢<m) ist einem Kreisring konform
dquivalent.

Beweis. Auf R, gibt es kompakte nicht nullhomologe Zyklen, nimlich die
3: € I';. Hieraus folgt mit Lemma 2 und einem bekannten Satz iiber die Auto-
morphismengruppe einer Riemannschen Fliche, da R; entweder einem
Kreisring oder dem punktierten Einheitskreis oder endlich der zweifach punk-
tierten Zahlenkugel konform dquivalent ist.

Es gibt daher eine konforme Abbildung 7', die R, in ein Ringgebiet

R = {tler<|t|<et}, —oo<K<a<b<K oo
der ¢-Ebene tiberfiihrt. Der Streifen

S;i={{=¢+in|la<i<b}

der (-Ebene wird vermoge ¢ = A({) = e universelle Uberlagerungsfliche
von R} und somit vermoge 7-1A universelle Uberlagerungsfliche von R,.
Die zyklische Gruppe der Decktransformationen von ©&; wird dabei erzeugt
durch die Translation

&=t 4 2mi. (2.10)

Anderseits ist * w ein auf R, exaktes Differential endlicher Norm, und zwar
ist *w auf R, nicht cohomolog null, wenn anders (2.9) gelten soll. Erscheint
daher o auf &, in der Gestalt

w = P(&,n)dé + Q(&,n)dn , (2.11)
80 ist wegen (2.10)

2n
P, ndp=a#0 (a<&<D). (2.12)
0
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Wir erhalten nunmehr fiir die Norm von *w beziiglich R,;:

b 2n
27 || xo ||, = 27 [ § (P 4 Q%) dédy
0
b ¢ 2n b 2xn
> [(2n [Pdn)dé > [(fPdn)2déE,
a 0 a 0
nach (2.12) somit
27 || *w |5, = (b — a)a?,

woraus sich die Behauptung des Lemmas unmittelbar ergibt.

2.14. Es ist T(I') die Schar der konzentrischen Kreise; denn die 3, eI’
werden durch die Automorphismen 7',e¢ G in sich iibergefiihrt, und diese
Eigenschaft haben bei der entsprechenden Gruppe von R} genau die Kreise
| | = const.

In &; erscheinen daher die Feldlinien als Geraden & = const., so da mit
(2.5) und (2.11) folgt

w = P(&, n)dé.

Da o harmonisch ist und nicht identisch verschwindet, ergibt sich hieraus
fiir ein reelles ¢ £ 0:

w=cdét (LeB,).

2.16. Wir setzen nunmehr z = c¢{ + d; dann gilt bei geeigneter Wahl
von d.

Lemma 4. (I) R, wird reprisentiert durch einen rechteckigen Fundamen-
talbereich

B;,=fz=z+iy|l0<z<h;, O<y<l}. (2.13)
(1II) Dabei entspricht jedem 3,eI; eine Parallele zu den (senkrechten)
Léngsseiten von B;.
(IIT) Es gilt (2.6).
(IV) Es ist
I, =3 x0. (2.14)
Beweis. Die Behauptungen (I), (ITI) und (ITI) ergeben sich aus 2.13 und
2.14, (IV) folgt aus (II) und (III).

2.16. Der Inbegriff des in den Lemmata 3 und 4 ausgesprochenen Sachver-
haltes heiBe die durch w erzeugte Zerlegung der Fliche R. Mit Riicksicht auf
Lemma 4 (ITI) wollen wir ferner B, als kanonische Darstellung von R; be-
zeichnen 7).

?) Dies ist eine triviale Erweiterung der in 2.1 gegebenen Definition.
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2.17. Wir betrachten nun ein beliebiges auf R exaktes Differential ¢.
Erscheint ¢ in der kanonischen Darstellung (2.13) von R, als

¢ =a(z,y)dz + b(x, y)dy ,
so ist nach Lemma 4 (IT) fiir jedes 3; € I';

173
3i¢:§b(x:y)d?/ O<z<h.

Es ergibt sich daher i Ut
00 B¢

wie aus (2.6) und der Definition des duBleren Produkts unmittelbar folgt. Es
gilt somit
kisi(p = [w, ¢]§R¢ .

Durch Summation iiber alle R, (1 <7 < m) erhélt man

Eh3)g = [, ¢] (2.15)

i=1

und nach Definition des dualen Differentials somit

m
(2 h;3:) P = 309 -

i=1
Da dies fiir jedes exakte Differential ¢ gilt, erhalten wir den

Satz B. Ist w das zur Klasse 3, # 0 duale harmonische Differential, so
gilt fiir die durch o erzeugte Zerlegung von R:

‘Zlhigi ~ 3o - (2.16)

Setzt man in (2.15) speziell ¢ = *xw, so folgt noch zusammen mit (2.16)

hrxo=I|ol|?. (2.17)

§ 3. Topologische Hilfssitze

3.1. In diesem Paragraphen wird ein Zahlen-m-tupel (z,,..., 2,) jeweils
mit der zugehorigen Majuskel X abgekiirzt und als Vektor bezeichnet. Ein
Vektor X heit ganzzahlig, wenn die z; (1 <1 < m) ganz sind, positiv,
wenn X == 0 ist und alle z; > 0 sind. Die Anzahl der nicht verschwindenden
Komponenten von X heilt die Ordnung von X.
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3.2. Lemma 6. Ist {3;};<i<nm e€in System von paarweise punktfremden
und zusammen R nicht zerlegenden Riickkehrschnitten auf R, dann gibt
es ein System {3;}, ;< von Zyklen, so daB gilt

3io3;.=6,-, 1<, j<m). (3.1)

Bewers. Da die 3; die Fliche nicht zerlegen, 148t sich jedes p, ¢ R mit
jedem P, eR — py, Pe¢3: (1 <?v<<m) — durch einen Weg verbinden, der
kein 3, trifft. Zur Konstruktion von 3, wihle man nun in einer Umgebung
U c R, die von 3; durchsetzt wird, p, auf dem rechten, p, auf dem lin-
ken Ufer von 3,. Indem man zunichst p, mit p, durch einen in U ver-
laufenden, mithin 3; einmal schneidenden Weg y; verbindet und anschlie-
Bend p, mit p; durch einen zu allen 3, (1 <j < m) punktfremden Weg
4, erhilt man das gesuchte 3; als

3=+ 7.

3.3. Lemma 6. Ist {3,},;c;<m €in System von paarweise punktfremden
und homolog unabhingigen Riickkehrschnitten auf R, gilt ferner fiir einen
weiteren Zyklus 3, die Homologie

30 =21¢:3:, (3.2)

{=1

so ist der Vektor C = (¢, ..., ¢,) ganzzahlig.

Beweis. Die 3, zerlegen zusammen die Fliche nicht: Da sie einfach ge-
schlossen sind, kommen fiir eine Zerlegung von R jedenfalls nicht geschlos-
sene Teile der 3, in Frage. Aus der Unabhingigkeit der 3, selbst folgt aber

insbesondere m

Zeg 0 (ge{—1,0,1},E#0).
jm1
Nach Lemma 5 gibt es nunmehr Zyklen 3! (1 <¢ < m), fiir die (3.1) gilt.
Schneidet man die Relation (3.2) mit 3;, so folgt

03 =¢, (1<j<m)
und damit die Behauptung.

3.4, Lemma 7. Ist {3;},ci<m ein System von paarweise punktfremden
Riickkehrschnitten auf R und gilt fiir einen nicht nullhomologen Zyklus
30 und einen positiven Vektor C die Homologie

m
3o~ 2Ci3i s (3.3)

i=1
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so gibt es einen positiven ganzzahligen Vektor 4 = (a,,..., a,) mit
m
3o~2a;3;; o;,=0, wenn ¢;=0 (1<t m).
§=1

Es geniigt offenbar, den folgenden Reduktionssatz zu beweisen:

Lemma 7', Gilt fiir einen positiven Vektor C der Ordnung k <m die
Homologie (3.3) und ist C nicht ganzzahlig, so 148t sich C ersetzen durch
einen positiven Vektor C’ kleinerer Ordnung. Dabei ist insbesondere

c;=0, wenn ¢, =0 (1<i<m). (3.4)

3.6. Beweis. Ist C nicht ganzzahlig, so besteht nach Lemma 6, ange-
wandt auf die Summe der nicht verschwindenden Terme in (3.3), eine Relation

m
2b3,~0; b,=0, wenn ¢,=0 (1K<t <m), (3.5)
i=1
mit wenigstens einem positiven b;. Es gibt daher ein x> 0, so daB fiir ein
19, ¢;, > 0, gilt
cgo = c‘io —_”bio =0 ’
im iibrigen aber

Gi=c¢—pb; =0 (1<i<m). (3.6)
Mit (3.3) und (3.5) folgt nun

m m m ;
Jo~2c3 — 2 pbg~2e3, .
i=]1 fme] =1
Da 3, nicht nullhomolog ist, ist der Vektor C’ positiv. Ferner folgt aus
(3.5) und (3.6) die Relation (3.4); endlich ist ¢;, = 0, wihrend ¢; >0 war.

3.6. Wenn wir in jedem R, (1 <t <m) der durch « erzeugten Zer-
legung von R einen Feldzyklus 3, als Repridsentanten auswihlen, erhalten
wir ein System {3,;}, Q'Km von paarweise punktfremden Riickkehrschnitten
auf R. Fir diese 3, gilt die Homologie (2.16) von Satz B, und es ist nach
(2.17) und (2.9)

x>0 (0 <m). (3.7)

3.7. Wir verfeinern in § 4 die Zerlegung von R mit Hilfe des

Lemma 8. Es gibt positive ganzzahlige Vektoren A4, = (a,,...,a,,)
(1 <7 < ky) und Gewichte

ko
>0 (1<j<k), Zw=1, (3.8)
-]
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so daf} gilt m
Tag~g (1< <k, (3.9)
kg kg
j=1 jm=1

Es geniigt offenbar, den folgenden Reduktionssatz zu beweisen:

Lemma 8'. Gibt es fiir ein k,0 <k <m, positive ganzzahlige Vektoren
A= (an,...,84,) (1 <j<k) mit

m
Za;3:~3 (1<j<k (3.11)

tm=1

und positive Zahlen y,; (1 <j < k), so daB der Vektor

k
jm1
positiv ist8), dann gibt es einen positiven ganzzahligen Vektor 4,,, mit
m
2 Uy1,i3¢ ~ 3o
t=1

und ein p;,, > 0, so dal der Vektor

k+1
Ry, =H — .ZIMAJ
’-
entweder positiv ist, aber kleinere Ordnung besitzt als R,, oder verschwindet,
wobei gleichzeitig gilt

Z',u,—zl. (3.13)

j=1

3.8. Beweis. Mit (3.12) gilt

m m k m
13~ b3 — 2 (2 a3

=1 i=1 j=1 i=1

wegen (2.16) und (3.11) daher

m k
Zrgde ~ (1 — 2 uy)3o - (3.14)

=1 j=1

k
Da R, positiv ist, folgt wegen (3.7) 1 — 2 u; > 0 und somit

j=1
n r
3o N,Sl"“""g%”‘“?)i .
N — 2 py
je=1

————

8) Diese Voraussetzungen sind fiilr & = 0 trivialerweise erfiillt, da H positiv ist.
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Nach Lemma 7 existiert nunmehr ein positiver ganzzahliger Vektor A4,,,
mit

2 y1,i3i ~B05 Oryp,i =0, wenn 7, =0 (1< <<m). (3.15)
im1

Mit (3.14) folgt hieraus fiir zunéchst unbestimmtes u,,, die Homologie

m k+1
_Zl(rki — Prp1@py1,4)3 ~ (1 — _21.“5)50 . (3.16)
== § -

Nun kann wegen (3.15) p;,, >0 so bestimmt werden, daB} fiir ein <,
rki " > O, gllt

Tri1,i, = Thi, — Me41@k41,i, = 05
im iibrigen aber

Tr1,i = Tri — Pr41@r4a,¢ = 0 1<i<m).

Dann hat der Vektor R, ., kleinere Ordnung als R,. Ist nun R,., positiv,
so ist nichts mehr zu beweisen; ist aber R, ; = 0, so folgt aus (3.16) und
(3.7) die Relation (3.13).

§ 4. Beweis von Satz 1

4.1. Wir betrachten von neuem die in Lemma 4 beschriebene kanonische
Darstellung der R, (1 <t¢ << m) als Rechtecke (2.13).

Wir entnehmen nun Lemma 8 die j = 1 entsprechende Darstellung (3.9)
des Zyklus 3, und schneiden von jedem Rechteck B,;(1 <i<m) ay
Streifen der Breite u, ab. Dann legen wir diese Streifen (ohne sie zu drehen)
mit den Stirnseiten aneinander in eine Reihe und erhalten ein rechteckiges
Band der Breite pu,, seine Linge ist nach (2.14) und (3.9) gleich 3, * w.
Auf diese Weise verfahren wir fiir alle j (1 <j < k,); durch (3.10) ist dafiir
gesorgt, daBl dann die einzelnen B, gerade aufgebraucht werden.

4.2. Wir schieben nun sémtliche Binder mit den Léngsseiten aneinander
und erhalten wegen (3.8) ein Rechteck B der Liénge 3, * w und der Breite 1:

B ist bis auf eine Nullmenge das eineindeutige und konforme Bild der
Fliche R; mit Ausnahme endlich vieler entspricht dabei jeder Parallelen zu
den Lingsseiten von B auf R ein Zyklus der Klasse 3J,. Diese Zyklen
heiBen im folgenden Eaxtremalzyklen der Klasse 3.
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4.3. Sei nunmehr @ ¢ M eine beliebige konforme Metrik auf R. Wird
R in der eben beschriebenen Weise dargestellt, so ist @ = p?*(x,y) | dz |2
fast iiberall in B definiert.

Ist Ly = Ly(3,) die minimale Linge der Zyklen aus 3,, so gilt insbe-
sondere fiir die Extremalzyklen

jo ¥

s:ngyﬂy (f.a. z€[0,1]),

daher auch
o ¥w

1
<J J elzx,y)dydx.
0 0
Nach CAUucHY-SCHWARZ ist nun

(‘ng(x, y)dzdy)? < .ngzdxdy-‘ydxdy , (4.1)
so daB folgt
L} <Ay - 3o*x o,
wegen (2.17) daher
L2
Zo<llollr @eM). (4.2)
®

4.4. Betrachten wir anderseits die spezielle konforme Metrik (1.7), so gilt
fiir jeden Zyklus 3 € 3,:

fls=flotiro|>[|*o|>|fro|=3%0,
3 3 3 3

somit auch noch
Lo, = 30% 0.

Ferner gilt, wie man leicht nachrechnet,
A%=iywA*w=HwHﬁ
so dafl wir wegen (2.17) erhalten

Ly,
v P

Z|ell?.
(1]

Dies ergibt zusammen mit (4.2) einerseits (1.6), anderseits aber (1.5); das
heiBt, (1.7) ist in der Tat Extremalmetrik zur Klasse 3,. DaB &, (bis auf
einen konstanten Faktor) die einzige Extremalmetrik zur Klasse 3, ist,



168 CuRISTIAN Brarrer Uber Extremallingen auf geschlossenen Flachen

folgt unmittelbar daraus, daB} in (4.2) nach (4.1) das Gleichheitszeichen hoch-
stens dann gilt, wenn in B fast iiberall g(x, y) = const. ist.
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