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liber Extreniallângen auf geschlossenen Flâchen

Von Christian Blatter, Basel

§ 1. Problemstellung und Ergebnisse

1.1. Sei % eine geschlossene differentialgeometrische Flâche vom Typus
des Torus. Dann gilt nach Loewner der folgende Satz1): Ist A der Flâchen-
inhalt von % und l das Infimum der Lângen aller nicht nullhomologen Zyklen
auf %, so gilt

72 O

In der vorliegenden Arbeit soll dieser Satz auf geschlossene FJâchen belie-
bigen Gesehlechts g ^ 1 verallgemeinert werden. Hiezu làBt sich allerdings das
Beweisverfahren Loewners nicht heranziehen ; denn es benutzt wesentHch die
Tatsache, daB die geschlossenen Riemannschen Flâchen vom Geschlecht

g \ eine kontinuierliche Gruppe konformer Automorphismen besitzen. Wir
werden unser Ergebnis vielmehr mit Hilfe eines allgemeinen Satzes uber Ex-
tremallàngen auf geschlossenen Riemannschen Flâchen herleiten.

Wir geben zunâchst eine eingehende Ûbersicht liber unsere Methoden und
Sàtze.

1.2. Unter einer differentialgeometrischen Flâche % verstehen wir eine zwei-
dimensionale orientierte differenzierbare Mannigfaltigkeit derKlasse Cn (n ^ 3),
auf der durch das Linienelement

% (1.2)

eine DifEerentialgeometrie festgelegt ist. Dabei bezeichnet

0% Edu2 + 2Fdudv + Gdv*; E,F,Q€G2
eine positiv definite und gegeniiber zulâssigen Parametertransformationen
invariante quadratische Differentialform.

Wir machen im folgenden entscheidend Gebrauch von der Tatsache, daB

0$ auf der Flâche g eine konforme Struktur induziert, vermôge welcher g
zu einer Riemannschen Flâche 5R^ wird. Das Linienelement (1.2) erscheint
in den lokalen konformen Parametern £ von 91^ als

l) Unpubliziert; vgl. [1], p. 71.
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154 Christian Blatteb

Hieran sehlieBt sich folgende Définition : Eine réelle, nichtnegative stetige
quadratische Differentialform 0 auf einer Riemannschen Flâche 91 heiBt

eine konforme Metrilc auf 91, wenn ds v0 in den lokalen Parametern f
von 91 die Form

d8 Q{t)\dC\, q(0>0, qcC»
annimmt.

1.3. Sei 91 eine geschlossene Riemannsche Flâche vom Geschlecht g > 1,
sei M die Gesamtheit der konformen Metriken 0 auf 9î und 3o ein Elément
der Homologiegruppe H von 91.

Ist fur eine konforme Metrik 0 € M A# der Flàcheninlialt von 91 und

So€3o 3o

die minimale Lange aller Zyklen j0 aus 3o> so hei

(1.4)

nach Ahlfors und Beurling [2] die Extremallànge der Zyklen aus 3g • Grilt

fur eine Metrik 0O € M die Beziehung

so heiBt 0Q Extremalmetrik zur Klasse 3o-

1.4. Es ist trivialerweise A(0) 0. Wir beweisen in den §§ 2-4 den

Satz 1. Ist a) das zur Klasse 3o 7^ 0 duale harmonische Differential auf
91, sogilt

und die konforme Metrik
0O= |o> + i*o>|2 (1.7)

ist (bis auf einen konstanten Faktor) die einzige Extremalmetrik zur Klasse

1.5. Aus Satz 1 ergibt sich als Korollar noch der folgende

Satz 2. Ist Ax die zur Klasse 3i==[3i]> h die zur Klasse 3î ft$«]

gehôrige Extremallànge, so gilt

f) Fût die Notation verweisen wir auf [3].
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Beweis. Sind eox und a>2 die zu 3i un^ zu 3* dualen harmonischen
Differentiale, so folgt nacheinander

Kh II «H ||i || co2 ||t || co, ||i || - * <o2 ||« > (oh, - * <o2)*

1.6. Den Schlûssel zur Lôsung unseres ursprûnglichen Problems bildet nun

Satz 3. Es gibt nur von g abhângige Konstanten og mit der folgenden Eigen-
schaft: Auf jeder geschlossenen Riemannschen Flâche 31 vom Gesehleeht

g ^ 1 gibt es eine Klasse 3o € "> 3o ^ ^

1.7. Beweis. Seien

{&>•.. >8if} (1.8)

eine kanonisch konjugierte Homologiebasis auf 31 und co^,..., <o2a die zu
den Basiszyklen dualen harmonisehen Differentiale. Das zum Zyklus

l, w< ganz (l<i<2gr)i-l
duale harmonische Differential a> ist dann gegeben durch

2g

t-i
und somit die Extremallânge zur Klasse 3 [3] durch

»,,©»). (1.10)

1.8. Nach Minkowski3) gibt es eine nur von g abhângige Zahl ag,

mit der folgenden Eigenschaft : Zu jeder positiv definiten quadratischen Form
^P(x1}..., x2g) in 2(7 Variablen der Déterminante det ïP" 1 gibt es einen

Gitterpunkt (n1?..., n2g) ^ (0,..., 0) mit W(nti..., nu) ^ a,.
Es genligt daher, zu zeigen, da8 die Matrix Q ({(oi9 cok)) die Voraus-

setzungen dièses Satzes von Minkowski erfullt.
Ist S (slk) die Schnittmatrix der Basis (1.9), so gilt

(!<*> fc^2g).(1.11)
8) Siehe zum Beispiel [4], p. 23.
*) Dièse Abschâtzung stammt von BiiiOHFBLDT; vgl. [4], p. 24.
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Ferner gehôrt zur Basis (1.9) die die Transformation * erzeugende Matrix
T (tu) : Fur jedes harmonische Differential q> ist

Wegen (o><5 cok)

und(l.ll)
(«>*•>

das heiBt aber

<*>*)

oi9 *
s

^

a

ig

ml l

>*] 3< * <*>k

2g

Z-l

folgt

i < 2jr).

nun aus

(1 <i,Jfc

(1. 12) mit

(1.

9>

12)

cok

Q TS. (1.13)

Aus der speziellen Gestalt der Schnittmatrix zur Basis (1.9) ergibt sich
einerseits unmittelbar det S 1 ; anderseits folgt aus * * <p — ç?, das
heiBt T2=—E, die Relation det T ± 1. Da Q nach (1.10) positiv
définit ist, folgt mit (1.13) : det Q 1.

1.9. Aus Satz 3 ergibt sieh nun unmittelbar die angekiindigte Verallgemei-
nerung des obigen Satzes von Loewner :

Satz 4. Ist Ç eine geschlossene differentialgeometrische Flâche vom Ge-

schlecht g ^ 1, ist A der Flâcheninhalt von g und l das Infimum der
Langen aller nicht nullhomologen Zyklen auf 5, so gilt

2
Hierin ist (1.1) enthalten; denn es ist ax =—p^5). AusunsererHerleitung

F3

geht allerdings nicht hervor, daB die Abschâtzung (1.1) scharf ist6).

1.10. Zum Beweis von Satz 4 betrachten wir auf der Riemannschen Flàche
5Rg eine durch (1.8) charakterisierte Homologieklasse 3o- Wegen (1.3) ist
0% e M, so daB mit (1.4) folgt

anderseits gilt trivialerweise

8) Vgl. [4], p. 24.
*) Fur den Torus von konstanter Krûmmung 0, den man ans einem euklidischen Khombus

vom Innenwinkel 60° durch paarweise Identifizierung der Gegenseiten erhâlt, gilt in (1.1) er-
sichtlich die Gleichheit.
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1.11. Die Sâtze 1 und 4 dieser Arbeit wurden (ohne Beweis) bereits in den
Comptes Rendus [5] verôffentlieht.

Ich danke Herrn Prof. Dr. H. Hxjbee fur zahlreiche Hinweise und Verbes-

serungen.

§ 2. Die durch œ erzeugte Zerlegung von 9t

2.1. Im folgenden bezeichne durchwegs 91 eine geschlossene Riemannsehe
Flâche vom Geschlecht g ^ 1, a> das zur Homologieklasse 3o ¥=" 0 duale
harmonische Differential auf 9t und 30 einen Zyklus aus 3o*

Ist das Gebiet G c 91 einfach zusammenhângend und p € 0, so vermit-
telt das Intégral

s MP7) $(a> + i*<o) (p' €<?), peO (2.1)
p

(die Integrationswege sollen in 0 verlaufen) eine konforme Abbildung von
0 in die z-Ebene, z x + iy. Jede Abbildung (2.1) heiBt eine kanonische
Darstellung von 0.

2.2. Die Punkte, in denen co nicht verschwindet, heiBen gewôhnliche
Punkte von co ; jeder gewôhnliche Punkt p € 91 besitzt eine Umgebung V(p),
die durch die kanonische Darstellung zp uniformisiert wird.

Die Nullstellen von co heiBen kritische Punkte; sie bilden eine endliche
Menge fe}i^i^,. Die Funktion zQi(pf) besitzt bei p! qi eine
Nullstelle der Ordnung ni>l. Es gibt daher eine Umgebung V(qt), die
durch den Parameter ti mit

« 1<»<«) (2.2)

uniformisiert wird.

2.3. Das System i7= {V(p)}P€9i bildet offenbar eine Ûberdeckung von
9î. Pûhrt man in jedem V(p) *S zp als Parameter ein, so erhalten die Ûber-
lappungsrelationen durchwegs die Form

**&) z^P') + <> (Pf € F(ft) n F(p,)) (2.3)

Dabei miissen wir allerdings stets im Auge behalten, daB die kanonische
Darstellung zqi von F(g<) (qitQ) nach (2.2) im Ursprung einen n<-faohen
Windungspunkt besitzt.

2.4. Die tïberlappungsrelationen (2.3) ermôglichen folgende Définition:
Ein 2-Simplex A c 91 heiBt euklidisches Dreieck, wenn es in der kanonischen
Darstellung als schlichtes euklidisches Dreieck erscheint.
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Wïr konstruieren nun auf 91 eine aus euklidischen Dreiecken bestehende

Triangulation T {Ai}1^i<N, In der Nâhe der kritischen Punkte q{€Q
verfahren wir dabei folgendermaBen : Wir betrachten die nt-blâttrige kano-
nische Darstellung zQi von F(gi) und wâhlen den Punkt z 0 sowie in
jedem Blatt die vier Punkte z ± ô, ±id (fur ein hinreichend kleines
ô > 0) als Eekpunkte, in jedem Blatt die verbindenden Achsenabschnitte
sowie die Strecken | x \ + | y | ô als Kanten der Triangulation. Dann
wird q{ von 4% euklidischen Dreiecken umgeben. Die Triangulierung der
Restflâehe bietet keine Schwierigkeiten, da dort die kanonische Darstellung
im kleinen schlicht ist.

Die Triangulation T sei dabei so fein, dafi fur die euklidische Lange der
Kanten rk gilt fM\ (2.4)

2.5. Durch
K.(o 0 (2.5)

wird auf 91 — Q ein Richtungsfeld erklàrt. Seine Integralkurven nennen wir
die Feldlinien von eo, sie sind nichts anderes als die Niveaulinien der zu co

gehôrigen harmonischen Integralfunktionen. Die Schar der Feldlinien bezeich-
nen wir mit F.

Es gilt fur den Parameter z, wie man leicht an (2.1) verifiziert,

co dx * co dy (2.6)

Die Feldlinien erscheinen somit in der kanonischen Darstellung als Geraden

x const. ; wegen der Gestalt (2.3) der Ûberlappungsrelationen ist ihnen
damit ein positiver Richtungssinn sowie die Làngenmessung der z-Ebene
invariant aufgeprâgt :

ds \ây\. (2.7)

2.6. Um das Verhalten des Feldes in der Nâhe eines kritischen Punktes

qi zu untersuchen, betrachten wir die kanonische Darstellung zqi von V(q^.
Man sieht sofort, da8 in jedem der nf Blâtter die positive imaginâre Halb-
achse eine in qt beginnende und die négative imaginâre Halbachse eine in
qi endende Feldlinie darstellen. Aile andern Feldlinien gehen an q{ vorbei.

Feldlinien, die in einem q{ € Q beginnen bzw. enden, heifien links bzw.
rechts singulàr; wir denken sie uns durch das betreffende gt. (einseitig) abge-
schlossen. Aile ûbrigen Feldlinien heiBen regulâr; sie lassen sich in eindeutiger
Weise auf 91 nach beiden Richtungen unbeschrânkt fortsetzen.

2.7. Die Komponenten des Durchschnitts der Feldlinie y mit dem Drei-
eck At € T heiBen die Spuren von y in diesem Dreieck. Offenbar bildet die



Ûber Extremallàngen auf geschlossenen Flaehen 159

Menge der durch die Feldlinien erzeugten Spuren in jedem Ai eine Parallel-
schar.

2.8, Lemma 1. Jedes yeF erzeugt in jedem A{ e T hôchstens eine Spur.

Beweis. Erzeuge y etwa im Dreieck Ax zwei verschiedene Spuren. Wir
wàhlen auf der ersten Spur einen Punkt px, auf der zweiten einen Punkt p2
und verbinden p2 mit px durch einen in Ax verlaufenden Querbogen, so
daB wir zusammen mit dem von pi n&ch p2 laufenden Wegstlick von y
einen Zyklus 3' erhalten. Da lângs y stets cv 0 ist, folgt

Ja> J1ft>. (2.8)
3' v*

Hier stellt der Betrag der rechten Seite nach (2.6) den euklidischen Abstand
d der beiden Spuren, gemessen in dem Parameter z, dar. Nun ist einerseits

wegen (2.4) d < 1 ; anderseits aber ist die linke Seite von (2.8) gleich 3' o 30

und daher ganz. Somit ist d 0. Dies widerspricht aber unserer Voraus-
setzung ; denn verschiedene Spuren in At haben positiven Abstand.

2.9. Satz A. Jedes y c F ist entweder beidseitig singular oder geschlossen.

Beweis, Es genligt offenbar, folgendes zu zeigen: Jedes y* F, das sich
unbeschrânkt auf 5R etwa in positiver Richtung fortsetzen làfit, ist geschlossen.

In der Tat: Da die Feldlinie y jedes A{ e T glatt durchsetzt, kann sie ins-
besondere immer in ein nâchstes A{,, ir ^ i, fortgesetzt werden. Wegen der
Endlichkeit der Triangulation folgt hieraus, daB y wenigstens ein Aio zwei-
mal durchsetzt. Wenden wir Lemma 1 auf y und Aio an, so ergibt sich die

Behauptung.

2.10. Eine regulâre Feldlinie heiBt in der Folge ein Feldzyklus. Fur jeden
Feldzyklus 3 ist nach (2.6) und nach Définition des positiven Richtungssinns

3*a>>0; (2.9)

die Feldzyklen sind daher insbesondere nicht nullhomolog.

2.11. Wir denken uns nun die Flâche 91 lângs der singulâren Feldlinien
oder aber, wenn solche fehlen, lângs eines beliebig herausgegriffenen
Feldzyklus aufgeschnitten. Es entstehen offene Teilflâchen 9tf(l<i<m),
m > 1, die je eine singularitâtenfreie Schar Ft von Feldzyklen 3f tragen.

2.12. Lemma 2. Jedes 5Rt. (l<i<m) besitzt eine kontinuierliche Gruppe
G konformer Automorphismen.
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Beweis. Fur jedes réelle s wird durch die folgende Vorschrift ein Auto-
morphismus T8 von 9tf erklàrt : Jeder Punkt p e 9tf. soll auf der durch p
gehenden Feldlinie um die Lange \ s \ in der durch sgn s gegebenen Rich-
tung verschoben werden.

Nun ist p mit seinem Bild pr verknûpfb durch die Relation

+ i * co) is
p

die man durch Trennung von Real- und Imaginarteil an (2.5) bzw. (2.6) und
(2.7) leicht verifiziert. Hieraus ergibt sich aber nach (2.1) fur die zu pr und
zu p gehôrigen Parameterdifferentiale : dzr — dz 0.

2.13. Lemma 3. Jedes 9lt(l^i^m) ist einem Kreisring konform
âquivalent.

Beweis. Auf 9tt- gibt es kompakte nicht nullhomologe Zyklen, nâmlich die
3,. € F{. Hieraus folgt mit Lemma 2 und einem bekannten Satz iiber die Auto-
morphismengruppe einer Riemannschen Flâche, daB 3{{ entweder einem
Kxeisring oder dem punktierten Einheitskreis oder endlich der zweifach punk-
tierten Zahlenkugel konform âquivalent ist.

Es gibt daher eine konforme Abbildung T, die SRi in ein Ringgebiet

91* {t | ea < 111 < eb} — oo < a < b < oo

der ^-Ebene ûberfuhrt. Der Streifen

S,= {C l + i*i\a< i< b}

der f-Ebene wird vermôge t A(Ç) e& universelle tîberlagerungsflâche
von 5R* und somit vermôge T~XA universelle Ûberlagerungsflâche von 91^.

Die zyklische Grappe der Decktransformationen von Q{ wird dabei erzeugt
durch die Translation

(2.10)

Anderseits ist * co ein auf 9?^ exaktes Differential endlicher Norm, und zwar
ist * ça auf 9t| nicht cohomolog null, wenn anders (2.9) gelten soll. Erscheint
daher a> auf Qt in der Gestalt

r})dr,, (2.11)
so ist wegen (2.10)

f Ç<b). (2.12)
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Wir erhalten nunmehr fur die Norm von * co bezùglich 91* :

2n || *a> ||2K< 2n J /(P2 + Q2)dÇdrj
a 0

> J(2» JP»*?)rff ^ jfî
a o a o

nach (2.12) somit

woraus sich die Behauptung des Lemmas unmittelbar ergibt.

2.14. Es ist T(r{) die Schar der konzentrischen Kreise; denn die 3i e Ft
werden durch die Automorphismen T8e G in sich ubergefuhrt, und dièse

Eigenschafb haben bei der entsprechenden Gruppe von 9$* genau die Kreise
| £ | const.

In St- erscheinen daher die Feldlinien als Geraden | const., so da6 mit
(2.5) und (2.11)folgt

Da a) harmonisch ist und nicht identisch verschwindet, ergibt sich hieraus
fur ein réelles c ^ 0 :

co cdS (f € S,)

2.15. Wir setzen nunmehr z cf + d; dann gilt bei geeigneter Wahl
von d:

Lemma 4. (I) 5Ri wird reprâsentiert durch einen rechteckigen Fundamen-
talbereich

JB< {z x + iy | 0 < x < ht, 0 < y < l{} (2.13)

(II) Dabei entspricht jedem fc e F{ eine Parallèle zu den (senkrechten)
Lângsseiten von 33*.

(III) Es gilt (2.6).
(IV) Es ist

l< 3<*a>. (2.14)

Beweis. Die Behauptungen (I), (II) und (III) ergeben sich aus 2.13 und
2.14, (IV) folgt aus (II) und (III).

2.16. Der Inbegriff des in den Lemmata 3 und 4 ausgesprochenen Sachver-
haltes heiBe die durch co erzeugte Zerlegung der Floche 9Î. Mit Rûcksicht auf
Lemma 4 (III) wollen wir ferner 23* als kanonische Darstellung von 9tt- be-

zeichnen7).
7) Dies ist eine triviale Erweiterung der in 2.1 gegebenen Définition.
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2.17. Wir betrachten nun ein beliebiges auf 9$ exaktes Differential <p.

Erscheint <p in der kanonisehen Darstellung (2.13) von SR< als

<p a(x, y)dx + b(x, y)dy

so ist nach Lemma 4 (II) fur jedes 3^ c r{
u

(0 < x < hi)

Es ergibt sich daher h{ ti
hfa<P J $bdydz JJco A 9?,

00 $<

wie aus (2.6) und der Définition des âuBeren Produkts unmittelbar folgt. Es

gilt somit

Durch Summation iiber aile 5R^ (1 ^ i ^ m) erhâlt man

(rfei3i)9>=[<o,ç>] (2.15)

und nach Définition des dualen Differentials somit

Da dies fur jedes exakte Differential q> gilt, erhalten wir den

Satz B. Ist œ das zur Klasse 3o ^ 0 duale harmonische Differential, so

gilt fur die durch œ erzeugte Zerlegung von 91 :

Setzt man in (2.15) speziell q> *co, so folgt noch zusammen mit (2.16)

30*a) ||a>||3. (2.17)

§ 3. Topologiscke Hilfssâtze

3.1. In diesem Paragraphen wird ein Zahlen-m-tupel (%,..., xm) jeweils
mit der zugehôrigen Majuskel X abgekiirzt und als Vektor bezeichnet. Ein
Vektor X heiBt ganzzahlig, wenn die x4 (1 ^ i ^ m) ganz sind, positiv,
wenn X ^ 0 ist und aile x4 ^ 0 sind. Die Anzahl der nicht verschwindenden

Komponenten von X heiBt die Ordnung von X.
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3.2. Lemma 5. Ist (3*}x<-i«-w ein System von paarweise punktfremden
und zusammen 9t nicht zerlegenden Riickkehrschnitten auf 9t, dann gibt
es ein System {3i}i<t <TO von Zyklen, so da8 gilt

îi°ti à« (l<i,j<rn). (3.1)

Beweis. Da die 3t- die Flâche nicht zerlegen, lâBt sich jedes pz c 91 mit
jedem px e 91 — pt, p2$%i (1 ^ i ^ w&) - durch einen Weg verbinden, der
kein 3t- trifft. Zur Konstruktion von 3^ wahle man nun in einer Umgebung
U c 9t, die von 3t. durchsetzt wird, px auf dem rechten, p2 auf dem lin-
ken Ufer von 3^. Indem man zunàchst px mit p2 durch einen in U ver-
laufenden, mithin 3^ einmal schneidenden Weg yt verbindet und anschlie-
Bend p2 mit px durch einen zu allen 3^ (1 ^j ^m) punktfremden Weg
y2, erhâlt man das gesuchte 3^ als

3i 7i + Y* •

3.3. Lemma 6. Ist {3»}i<*<w ein System von paarweise punktfremden
und homolog unabhângigen Rûckkehrschnitten auf 91, gilt ferner fur einen
weiteren Zyklus 30 die Homologie

(3.2)

so ist der Vektor G (Cj,..., cm) ganzzahlig.

Beweis, Die 3,. zerlegen zusammen die Flâche nicht: Da sie einfach ge-
schlossen sind, kommen fur eine Zerlegung von 91 jedenfalls nicht geschlos-
sene Teile der 3^ in Frage. Aus der Unabhângigkeit der 3^ selbst folgt aber
insbesondere

m

Nach Lemma 5 gibt es nunmehr Zyklen 3^ (1 < i < m), fur die (3.1) gilt.
Schneidet man die Relation (3.2) mit 3^, so folgt

und damit die Behauptung.

3.4. Lemma 7. Ist (3t}i^i<m ein System von paarweise punktfremden
Riickkehrschnitten auf 91 und gilt fur einen nicht nullhomologen Zyklus
30 und einen positiven Vektor C die Homologie

3o~^,3|., (3.3)
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so gibt es einen positiven ganzzahligen Vektor A (%,..., am) mit
m

3o r^j Ea^ ; at 0 wenn ei 0 (1 < i < m)

Es genûgt offenbar, den folgenden Reduktionssatz zu beweisen :

Lemma 7'. Gilt fur einen positiven Vektor C der Ordnung k ^.m die
Homologie (3.3) und ist C nicht ganzzahlig, so làBt sich C ersetzen durch
einen positiven Vektor Gr kleinerer Ordnung. Dabei ist insbesondere

c^ 0, wenn ct 0 (l<i<ra). (3.4)

3.6. Beweis. Ist C nicht ganzzahlig, so besteht nach Lemma 6, ange-
wandt auf die Summe der nicht verschwindenden Terme in (3.3), eine Relation

m

ZbiZi ~ 0 ; bt 0 wenn c< 0 (1 < i < m) (3.5)

mit wenigstens einem positiven 6t.. Es gibt daher ein fi > 0 so daB fur ein
*"o><5<o>O, gilt

Ct'o CH - ^6<o ° '
im iibrigen aber

4 ct — pbi^O (l<i<m). (3.6)

Mit (3.3) und (3.5) folgt nun

i-»l t-1 i«l
Da 30 nicht nullhomolog ist, ist der Vektor Cf positiv. Ferner folgt aus
(3.5) und (3.6) die Relation (3.4) ; endlich ist cfio 0, wâhrend cio > 0 war.

3.6. Wenn wir in jedem 91^(1 ^i < m) der durch œ erzeugten Zer-
legung von 91 einen Feldzyklus fc als Reprâsentanten auswâhlen, erhalten
wir ein System {3<}i^i^m von paarweise punktfremden Rûckkehrschnitten
auf 5R. Fiïr dièse fc gilt die Homologie (2.16) von Satz B, und es ist nach
(2.17) und (2.9)

3i*o>>0 (0<ï<ra). (3.7)

3.7. Wir verfeinern in § 4 die Zerlegung von 91 mit Hilfe des

Lemma 8. Es gibt positive ganzzahlige Vektoren Ai — (aA,..., aim)
(1 < j < k0) und Gewichte

^>0 (1<j<40), i^=l, (3.8)
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so daB gilt w

^%3*~3o (1<?<*o), (3.9)

Z^n h (1 <* <w) bzw. EiijAj^H. (3.10)

Es geniigt offenbar, den folgenden Reduktionssatz zu beweisen :

Lemma 8'. Gibt es fur ein &, 0 ^ k < m, positive ganzzahlige Vektoren
A, (an,..., aim) (1 < j < 4) mit

und positive Zahlen [jlj (1 < j < i), so daB der Vektor
*

Rk H -ZfijAj (3.12)

positiv ist8), dann gibt es einen positiven ganzzahligen Vektor Ak+1 mit

und ein /^fc+1 > 0, so daB der Vektor

entweder positiv ist, aber kleinere Ordnung besitzt als jB&, oder verschwindet,
wobei gleichzeitig gilt k+1

=1. (3.13)

3.8. Beweis. Mit (3.12) gilt
m m A; m

wegen (2.16) und (3.11) daher

i-l 7-1

Da i?& positiv ist, folgt wegen (3.7) 1 — Ziii > 0 und somit
;-l

m if

8) Dièse Voraussetzungen sind fur k — 0 trivialerweise erfûllt, da H positiv ist.
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Nach Lemma 7 existiert nunmehr ein positiver ganzzahliger Vektor Ak+l
mit m

^a*+i»*3<~3o; «*+!,•= 0, wenn rw 0 (1 < t <m) (3.15)

Mit (3.14) folgt hieraus fur zunâchst unbestimmtes fik+1 die Homologie

m £+1

m 8o • (3.16)
i-i >-i

Nun kann wegen (3.15) fik+1 > 0 so bestimmt werden, daB fur ein i0,

r*i,>0, gilt
rki0 ~~

im ubrigen aber

Dann hat der Vektor i?fc+1 kleinere Ordnung als J?&. Ist nun Rk+1 positiv,
so ist nichts mehr zu beweisen; ist aber Ek+1 0, so folgt aus (3.16) und
(3.7) die Relation (3.13).

§ 4. Beweis von Satz 1

4.1. Wir betrachten von neuem die in Lemma 4 beschriebene kanonische
Darstellung der 9t€ (1 < i < m) als Rechtecke (2.13).

Wir entnehmen nun Lemma 8 die j 1 entsprechende Darstellung (3.9)
des Zyklus 30 und schneiden von jedem Rechteck 251- (1 ^ i ^ m) au
Streifen der Breite fa ab. Dann legen wir dièse Streifen (ohne sie zu drehen)
mit den Stirnseiten aneinander in eine Reihe und erhalten ein rechteckiges
Band der Breite fa, seine Lange ist nach (2.14) und (3.9) gleich 30*a).
Auf dièse Weise verfahren wir fur aile j (1 ^ j ^ k0) ; durch (3.10) ist dafur
gesorgt, daB dann die einzelnen 23* gerade aufgebraucht werden.

4.2. Wir schieben nun sâmtliche Bander mit den Lângsseiten aneinander
und erhalten wegen (3.8) ein Rechteck 93 der Lange 30 * o> und der Breite 1 :

58 ist bis auf eine Nullmenge das eineindeutige und konforme Bild der
Flâche 5R; mit Ausnahme endlich vieler entspricht dabei jeder Parallelen zu
den Lângsseiten von SB auf 91 ein Zyklus der Klasse 3o- Dièse Zyklen
heiBen im folgenden Extremalzyklen der Klasse 3o-
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4,3. Sei nunmehr 0eM eine beliebige konforme Metrik auf 9t. Wird
91 in der eben besehriebenen Weise dargestellt, so ist 0 Q2(x, y) \ dz |2
fast uberall in 23 definiert.

Ist L0 £<i>(3o) die minimale Lange der Zyklen aus 3o> so Q^> insbe-
sondere fur die Extremalzyklen

i*< J Q(*,V)dy (f.a. x e [0,1]),
o

daher auch
8o

J J q(x,y)dydx
o o

Nach Cauchy-Schwaez ist nun

so daB folgt

wegen (2.17) daher

(4.2)

4.4. Betrachten wir anderseits die spezielle konforme Metrik (1.7), so gilt
fur jeden Zyklus 3 e 3o :

33 s 3

somit auch noch

L*o > 3o * û> •

Ferner gilt, wie man leicht nachrechnet,

-4*0 JJ co A * co H co

so daB wir wegen (2.17) erhalten

Dies ergibt zusammen mit (4.2) einerseits (1.6), anderseits aber (1.5); das
heiBt, (1.7) ist in der Tat Extremalmetrik zur Klasse 3o- I)a^ ^o (bis auf
einen konstanten Faktor) die einzige Extremalmetrik zur Klasse 3o ^>
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folgt unmittelbar daraus, daB in (4.2) nach (4.1) das Gleichheitszeichen hôch-
stens dann gilt, wenn in 93 fast iiberall q(x, y) const. ist.
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