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Die Existenz geschlossener Geodâtischer
auf kompakten Mannigfaltigkeiten1)

Von R. Olivier, Erlangen

In dieser Arbeit wird die Existenz geschlossener Geodàtischer aufkompakten
RiEMANNschen Mannigfaltigkeiten bewiesen, die wenigstens dreimal dififeren-
zierbar sind. Als klassiseh und verhâltnismâBig einfach beweisbar darf man die
Existenz von geschlossenen Geodâtischen in den nicht-trivialen Homotopie-
klassen von Kurven ansehen. Sie ist wohl zum erstenmal von G. D. Birkhoff
in der Arbeit «Dynamical Systems...» 1917 bewiesen worden (Trans. Amer.
Math. Soc. 18). Birkhoff benutzt dabei eine Minimum-Méthode; er betrach-
tet die kiirzesten geschlossenen Kurven einer Homotopieklasse. Als Vorlâufer
dieser Méthode nennt er selbst Hadamard (1898) und Hilbert (1900). Weni-

ger naheliegend als dièse Minimum-Méthode ist die von Birkhoff angewandte
Minimum-Maximum-Methode, mit der er in derselben Arbeit von 1917 die
Existenz einer geschlossenen Geodâtischen auf einer geschlossenen Flâche vom
Geschlecht Null und 1927, in dem Buch «Dynamical Systems», auf einer zur
8n homôomorphen Mannigfaltigkeit bewies. M. Morse verwendete in seinem
Buch «Calculus of Variations in the Large» 1935 ebenfalls eine Minimum-
Maximum-Methode, auBerdem aber wesentlich Homologiebegrifïe. Mit ihrer
Hilfe konnte er zum Beispiel die Existenz unendlich vieler geodâtischer Ver-
bindungskurven zweier Punkte auf einer zur 8n homôomorphen Mannigfaltigkeit

beweisen; siehe [1]. R. Shizuma versuchte in seiner Arbeit [2] die Morse-
schen Methoden zu verallgemeinern und die Existenz einer geschlossenen
Geodâtischen auf einer beliebigen kompakten RiEMANNschen Mannigfaltigkeit zu
beweisen; sein Beweis enthâlt jedoch einen Fehler. Vor ihm hatte bereits A. I.
Fet in seiner Arbeit [3]2) den von Shizuma angestrebten Satz mit Hilfe der
BntKHOFFschen Méthode und Homotopiebegrifïen bewiesen. In der vorliegen-
den Arbeit werden, auBer in [1] dargestellten Deformations-Methoden, ebenfalls

nur Homotopiebegriffe benutzt. Das Ziel ist der folgende Satz (3.1):
Es sei M eine Jcompaicte RiEMANNSche Mannigfaltigkeit der Klasse Cz. Ist

fur ein k>\ die Grwppe nk(M) nicht trivial, so gibt es eine nullhomotope
geschlossene Geodâtische auf M.

Als Spezialfall erhâlt man (auf Grund des Isomorphiesatzes von Hxjrewioz)
den Satz: «In jeder einfach zusammenhângenden kompakten RiEMANNschen

x) Ûber den Inkalt dieser Arbeit wurde auf dem Internationalen Kolloquium uber Differential-
geometrie und Topologie, Zurich, Juni 1960, berichtet.

2) Fets Ergebnisse wurden mir erst nach der Niederschriffc dieser Arbeit bekannt.
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Mannigfaltigkeit gibt es eine geschlossene Geodâtische », der in der Arbeit von
Fbt enthalten ist.

Verschwinden auBer der Fundamentalgruppe aile Homotopiegruppen der
Mannigfaltigkeit, so braucht es iibrigens keine nullhomotopen geschlossenen
Geodàtischen zu geben, wie das Beispiel des euklidischen Torus zeigt. Die Vor-
aussetzungen in Satz 3.1 sind also notwendig.

Bezeichnungen und Deflnitionen

M sei eine kompakte differenzierbare Mannigfaltigkeit der Klasse C3 und
der Dimension n > 2. P, Q usf. seien Punkte von M. Auf M sei eine

beliebige RiEMANNsche Metrik definiert. Mit c(t), t e <0, 1> oder c bezeich-

nen wir stiickweise glatte Kurven auf M, mit C(c,t) den Punkt mit Para-
meter t auf c. Fur jede Kurve ist eine Lange definiert durch die RiEMANNsehe
Metrik. Sie werde fur eine Kurve c mit J(c) bezeichnet. Auf einer Kurve
làBt sich als Parameter insbesondere die sogenannte reduzierte Bogenlànge
einfuhren; dabei ist der Parameter proportional zu der vom Anfangspunkt
gemessenen Bogenlànge und gelit von 0 bis 1. Dieser Parameter wird gewôhn-
lich benutzt. Mit Dp bezeichnen wir die Menge der stiickweise glatten Kurven

mit Anfangs- und Endpunkt in P ; weiter sei Q U Qp. In der Menge

aller stiickweise glatten Kurven auf M lâBt sich eine Topologie einfuhren.
Man benutzt dazu die auf M durch die RiEMANNsche Metrik induzierte
Metrik. Sie ist so definiert: Als Abstand zweier Punkte P und Q nimmt
man die untere Grenze der Lângen aller sie verbindenden stiickweise glatten
Kurven. Wir bezeichnen dièse Metrik mit q und kônnen dann in Q eine
Metrik £ definieren.

max (e(C(c9t), C (c ,*))) + I J(c) - J(c) \

<>
Hierbei ist t die reduzierte Bogenlànge. (Zum Beweis, daB q und q

Metriken sind, siehe [1], Seite 44.) Die Metrik £ bestimmt eine Topologie im
Raum aller Kurven ; aus der Définition ergibt sich unmittelbar, daB J eine

stetige Funktionist. Das Aneinandersetzen von Kurven ist eine stetige Opération

in dieser Topologie. Mit Hilfe von J lassen sich gewisse Untermengen

von Q auszeichnen, wir definieren

Joc= {ceQ\ J(c) <oc} und J- {c€Q

Die Menge Jo ist die Menge der Punktkurven auf M, und in der durch q
induzierten Topologie homôomorph zu M selbst.

Die RiEMANNsche Metrik gestattet es, mit Hilfe der ersten Variation der
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Kurvenlânge geodâtische Linien auf M zu definieren. Es ist bekannt, da8
eine geodâtische Linie lokal eine kûrzeste Verbindung ist. Durch jeden Punkt
gibt es in jeder Richtung genau eine geodâtische Linie, man kann eine
geodâtische linie also fortsetzen. Auf kompakten Mannigfaltigkeiten gibt es dar-
ûber hinaus eine positive Zahl d mit den Eigenschaften :

1. Jede Geodâtische einer Lange kleiner oder gleich d ist kurzer als aile
anderen stûckweise glatten Verbindungskurven ihrer Randpunkte.

2. Zwei Punkte P,Q c M, fur die q(P,Q) <d ist, lassen sich durch eine
Geodâtische der Lange q(P,Q) verbinden; wegen 1. ist sie eindeutig be-

stimmt.
3. Es sei q(P Q) < d und c der eindeutig bestimmte geodâtische Verbin-

dungsbogen von P und Q. Ist t diereduzierte Bogenlânge auf c und C(c,t)
der Punkt auf c mit Parameter t, so sind die lokalen Koordinaten von C
zweimal stetig differenzierbare Funktionen der lokalen Koordinaten von P
und Q und dem Parameter t.

4. Die Lange von c ist eine stetige und fur P ^ Q zweimal stetig differenzierbare

Funktion der lokalen Koordinaten der Randpunkte P und Q.
Zum Existenzbeweis siehe [1], Seite 97.

Wir wâhlen eine solche Zahl d und nennen sie Elementarlânge. Eine
Geodâtische der Lange kleiner oder gleich d heiBt Elementarstrecke und eine

Kurve, die aus endlich vielen Elementarstrecken zusammengesetzt ist, ein
Elementarpolygon.

Eine Déformation D(t), t e <0, 1> von Q heiBt eine J-Deformation, wenn
fur aile ceD gilt: J(D(t)c) < J(c), t € <0, 1>.

Wir werden spâter eine Standard-J-Deformation D konstruieren.
Eine geodâtische Linie heiBt geodâtische Schleife, wenn sie eine geschlossene

Kurve ist, geschlossene Geodâtische, wenn sie auBerdem im Anfangspunkt
glatt ist.

Die Lange einer geschlossenen Geodâtischen heiBt ein stationârer Wert von

J, die geschlossene Geodâtische ein stationârer Punkt in Q.

§ 1. ïlomotopieeigenschaîten von QP und Q

Satzl.l. Ist jede stetige Abbildung h:Sk^1-^Qp nullhomotop, so ist
auch jede stetige Abbildung h: Sk-> M nullhomotop, h > 0.

Dièse Tatsache ist bekannt. Wir wollen einen Beweis skizzieren. Wir nehmen

an, daB P der Basispunkt in M fur die Abbildungen ist. h sei eine Abbildung
h:8k-+M. Wirdenkenuns h gegeben als Abbildung eines w-dimensionalen
Wûrfels Wk, dessen Rand dWk in P abgebildet wird. Wk sei dargestellt
als Produkt Wk~1x W1, (W^1, W1 Randwurfel). Als Standardzerlegung von



Die Existenz geschlossener Geodâtischer auf kompakten Mannigfaltigkeiten 149

Wk bezeichnen wir die Zerlegung von Wk in die Strecken X x W1, X e Wk"x.

Die Abbildung h induziert eine Abbildung h:Wk~1-*Qp, indem jedem
X c Wk~x der dem fe-Bild der Strecke X x W1 entsprechende Punkt in Dp

zugeordnet wird. h bildet dWk~1 in die Punktkurve P ab und ist stetig,
wenn h stetig ist3). JbW*-1 sei nullhomotop in QP und H(t) : Wk~1-^DP,
t € <0, 1), sei eine Nullhomotopie, das heiBt eine stetige Abbildungsschar mit
H(0) h, H(l) konstante Abbildung auf die Punktkurve P. Jeder

Abbildung H(t)Wk~1 lâBt sich eine Abbildung H(t)Wk zuordnen. Man bilde
dazu die Strecke X X W1 der Standardzerlegung von Wk auf diejenige Kurve
in M ab, die dem Punkt H(t)X in QP entspricht. Auf dièse Weise erhâlt
man eine stetige Schar von Abbildungen H (t) : Wk-+ M, t e <0, 1>. Es ist
H(0)Wk hWk und H(l)Wk P, und die Abbildung hWk ist infolge-
dessen nullhomotop.

Satz 1.2. Es sei Qp eingebettet in Q. Ist eine Abbildung h:Si-^Qp
nullhomotop in û, so ist sie auch nullhomotop in Dp, i > 0.

Der Beweis lâBt sich fuhren mit Hilfe der exakten Homotopiesequenz fur
Faserraume mit Dp als Faser, D als Totalraum und M als Basis. Wir wollen

spater noch eine weitergehende Eigenschaft der Déformation in D benutzen
und geben einen anderen Beweis.

Als Basispunkt fur die Abbildungen wâhlen wir wieder die Punktkurve P.
Es sei h:8i->DP und H(t), t e <0, 1>, eine Homotopie von h in D mit
H(0) h. Jeder Abbildung H(t):8i-^D lâBt sich eine Abbildung H(t):
Si -> Dp auf folgende Weise zuordnen. Es sei Q € Sk und man nehme die dem

Punkt hQeDp entsprechende Kurve c in if. Bei der Homotopie H wird
c in eine Kurve c deformiert, deren Anfangspunkt nicht mehr in P zu lie-
gen braucht. ct sei diejenige Kurve in M, die durch die Anfangspunkte

der Kurven H(s)c, s e <0, £>, definiert wird. Dann ist die Kurve
ct cj1 o H(t)c o ct eine in P geschlossene Kurve. Definiert man nun
H(t)Q ~ct € Dp, so erhàlt man die gesuchten Abbildungen H(t) : Si-> Dp,
te <0, 1>; dabei ist also H(0) h. Ist h nullhomotop in D, dann lâBt
sich eine solche Schar von Abbildungen H finden, daB H(l) P. H(l)8i
besteht dann aus den Kurven c^1 o ct, ersetzt man sie durch die Kurven
cjxoct und lâBt t von 1 bis 0 laufen, erkennt man, daB H(l)8i und also

h$* nullhomotop in Dp ist. Damit ist Satz 1.2 bewiesen.

8) Ist k > 1, so besteht der Teil von Qp, in den abgebildet wird, aus Kurven, die in M
nullhomotop sind, dasselbe gilt fur Abbildungen in Q.
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Wir kônnen aus dem Beweis noch mehr entnehmen. Nehmen wir an, 1/(1) $*

bestehe aus Punktkurven von Q. Dièse sind zugleich in M die Endpunkte
der Kurven cx. LâBt man jeden solchen Endpunkt iiber die zugehôrige Kurve
zum Anfangspunkt P laufen, und betraehtet ihn als Punktkurve in Q, so

erkennt man, daB H(l)Si nullhomotop in Q ist.
Kombiniert man dièses Ergebnis mit Satz 1.1 und Satz 1.2, so erhàlt man

das folgende Korollar :

Korollar 1.3. Gibt es in M eine nieht nullhomotope stetige Sk, k> 1,

dann gibt es in Q eine stetige Sk~1, die sich nicht in die Menge Jo deformie-
ren lâBt.

§ 2. Die Standard-J -Déformation

Es sei c eine geschlossene Kurve mit dem Anfangspunkt P und der Lange
J(c) <%. Der Parameter sei die reduzierte Bogenlànge. q sei eine natûrliehe
Zahl mit oc/q <.d. Teilt man c in g gleiche Teilbôgen, von P ausgehend,
so daB der Endpunkt des i-ten der Anfangspunkt des i + 1-ten ist, mit P
als erstem Anfangs- und letztem Endpunkt, so ist die Entfernung der beiden
Randpunkte eines beliebigen Teilbogens kleiner oder gleich d. Man kann
sie daher dureh eine Elementarstrecke verbinden. Den Teilbôgen von c

mit den Parameterwerten te^^t^} nennen wir c(£i,£2)> und es ^
c e(0, tx) + c{tx, t2) + • • • + c(£a_l5 1) ; ti ist der Parameter des i-ten
Teilpunktes. Fur einen Teilbôgen definieren wir eine Déformation d in fol-
gender Weise : Es sei

ti+1) e(ti, t{ + s(ti+1 - t<)) + c{tt + s(ti+1 - *<), ti+1) s € <0, 1>,

wobei e(ti9ti+1) die Elementarstrecke zwischen den Punkten C(c,^) und
C(c,ti+1) bedeutet. d ist eine stetige J-Deformation des Bogens c(ti9ti+1);
siehe [1], Seite 63. Eine stetige J-Deformation von c erhâlt man, wenn man
die Deformationen der Teilbôgen zusammensetzt.

d(8)e d(s)c(O, tj+ + d(s)c(tq^, 1), se <0, 1>

Auf dem erhaltenen Elementarpolygon wâhlen wir als neue Teilpunkte die

q Mittelpunkte der Elementarstrecken, aus denen es besteht. Sie seien

Qi • • • y Qq - Nach der Dreiecksungleichung ist der Abstand zweier aufeinander
folgender Mittelpunkte kleiner als d. Man kann nun auf zwei Weisen fort-
fahren. Entweder man wendet auf das Elementarpolygon mit den Teilbôgen

PQt, Q1Q2, • • • QqP die Déformation d an, dann gelangt man zu einem ge-
schlossenen Elementarpolygon mit Anfangspunkt P, die resultierende De-
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formation von c nennen wir Dqoù, oder man wendet die Déformation d auf
das Polygon mit den Teilbôgen QXQ2, Q8> Qs» • • • > QqQx an, dann gelangt man
zu einem geschlossenen Elementarpolygon, dessen Anfangspunkt nicht mehr
in P zu liegen braucht, die resultierende Déformation von c nennen wir
Dq a. Als Anfangspunkt von Dq ac wâhlen wir denjenigen Punkt, in den
P bei der Déformation ûbergegangen ist, wobei man auf dem Teilbôgen jeweils
die reduzierte Bogenlânge als Parameter wâhlt. Wenden wir Dq a bzw. Dq a
auf aile Punkte der Menge Ja bzw. Ja ^ Qp an, so erhalten wir eine stetige
Déformation von Ja bzw. Ja^ QP (siehe [1], Seite 63). Man erkennt ohne

weiteres, da6 bei DQt0C bzw. DQt<x nur geschlossene Geodatische bzw. geo-
dàtische Schleifen ungeândert bleiben, sowie die Punktkurven. Aile anderen
Kurven werden bei dem Verfahren verkûrzt. Ûber das Ma8 der Verkûrzung
gilt folgendes.

Hilfssatz 2.1. Es sei <%> 0 nicht stationâr und U c Ja eine Umgebung
aller stationâren Punkte von Ja sowie Jo c U. Dann hat die Differenz
J(c) — J(Dqocc), c c Ja — U, in Ja — U eine positive untere Grenze.

Zum Beweis nehme man eine Folge von Kurven c', c",... e Ja — U,
deren Verkûrzungen gegen Null streben. Man bilde aus ihnen die Polygone

d(l)cf c[, d(l)c" d[,... Aus ihnen lâBt sich eine gegen ein Grenzpoly-
gon c± konvergente Teilfolge auswahlen. Da die Verkûrzung stetig auf Ja
ist, ist die Verkûrzung von ct gleich Null und cx eine geschlossene Geodatische.

Die Lange der Kurven c',c",... konvergiert gegen J(c±), weil die
Verkûrzung gegen Null konvergiert ; daher konvergiert die Folge d, c",...
gegen cx. Wegen der Abgeschlossenheit von Ja — U ist daher cx e Ja — U
im Widerspruch zur Wahl von U. Pur die Einzelheiten des Beweises siehe

[1], Seite 64.

Aus dem Hilfssatz ergibt sich unmittelbar der folgende Satz.

Satz 2.2. Es sei #>0 und oc nicht stationârer Wert. ga sei die Menge der
stationâren Punkte in Ja. Ist ga leer, so gibt es eine J-Deformation von Ja
in Jo.

Zunachst làBt sich Ja in Jd deformieren, weil die Verkûrzung durch
Dq a in e/a — Jd eine positive untere Grenze besitzt. Die Menge Jd wird
sodann durch die Déformation {D2d)2 in die Menge Jo deformiert.

Anmerkung. Entsprechende Sàtze gelten fur den Raum Qp und die Men-

gen Jao QP, wenn man den Begriff «geschlossene Geodatische» durch
«geodatische Schleife» ersetzt und Dq a durch Dq a. Hilfssatz 2.1 wird in der-

selben Weise fur diesen Fall bewiesen; Satz 2.2 ebenfalls, nur fûhrt {D%df
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nicht Jdr^QP in J0^Qp tiber. Jedoch ist D2dc, ceJd, eine hin und
zurûek durchlaufene Elementarstrecke, die man stetig ûber sich selbst auf
einen Punkt deformieren kann.

§ 3. Die Existenz geschlossener Geodâtischer

Wir kônnen jetzt leicht den angekûndigten Satz beweisen.

Satz 3.1. Inder kompakten RiEMANNschenMannigfaltigkeit M derKiasse
Cz gebe es fur ein k > 1 ein stetiges nicht nullhomotopes Bild der Sk. Dann
gibt es auf M eine nullhomotope geschlossene Geodâtische.

Beweis. Nach Korollar 1.3 gibt es eine stetige S*"1 in Q, die nicht in
Jo deformierbar ist. <x sei das Maximum von J auf einer solchen 8k~l.
Ist oc stationârer Wert, so gibt es eine geschlossene Geodâtische der Lange
oc. Wâre ga, die Menge der geschlossenen Geodatischen in Ja, leer, so lieBe
sich Ja nach Satz 2.2 in Jo deformieren und daher auch die stetige Sk~x,

im Widerspruch zu Korollar 1.3. Da der Teil von Q, in dem wir die Abbil-
dung betrachten, aus Kurven besteht, die in M nullhomotop sind, ist der
Satz damit bewiesen.

Anmerkung 1. Aus Satz 2.2 làBt sich auch unmittelbar entnehmen, daB es

in jeder nicht trivialen Homotopieklasse geschlossener Kurven wenigstens
eine geschlossene Geodâtische gibt.

Anmerkung 2. Nach der Anmerkung in § 2 gilt in Qp ein analoger Satz

zu Satz 2.2. Ist h : Sk-> M, k > 1, eine nicht nullhomotope stetige Abbil-
dung in Jf, so gibt es nach Satz 1.1 eine nicht nullhomotope stetige S16'1

in Qp. Sie lâBt sich also nicht in Jo ^ QP P deformieren und dasselbe

Argument wie das fur Satz 3.1 benutzte ergibt ein entsprechendes Ergebnis
fur geodâtische Schleifen (bei beliebigem P). Das ist in der MoESEschen

Théorie bekannt.
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