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Die Existenz geschlossener Geoditischer
auf kompakten Mannigfaltigkeiten ")

Von R. OLivier, Erlangen

In dieser Arbeit wird die Existenz geschlossener Geodatischer auf kompakten
RiemanNschen Mannigfaltigkeiten bewiesen, die wenigstens dreimal differen-
zierbar sind. Als klassisch und verhéltnismiflig einfach beweisbar darf man die
Existenz von geschlossenen Geodéitischen in den nicht-trivialen Homotopie-
klassen von Kurven ansehen. Sie ist wohl zum erstenmal von G. D. BIRKHOFF
in der Arbeit «Dynamical Systems...» 1917 bewiesen worden (Trans. Amer.
Math. Soc. 18). BIRKHOFF benutzt dabei eine Minimum-Methode; er betrach-
tet die kiirzesten geschlossenen Kurven einer Homotopieklasse. Als Vorldufer
dieser Methode nennt er selbst HApAmMArD (1898) und HinserT (1900). Weni-
ger naheliegend als diese Minimum-Methode ist die von BIRKHOFF angewandte
Minimum-Maximum-Methode, mit der er in derselben Arbeit von 1917 die
Existenz einer geschlossenen Geodétischen auf einer geschlossenen Fliche vom
Geschlecht Null und 1927, in dem Buch «Dynamical Systems», auf einer zur
8™ homéomorphen Mannigfaltigkeit bewies. M. MORSE verwendete in seinem
Buch «Calculus of Variations in the Large» 1935 ebenfalls eine Minimum-
Maximum-Methode, aulerdem aber wesentlich Homologiebegriffe. Mit ihrer
Hilfe konnte er zum Beispiel die Existenz unendlich vieler geodétischer Ver-
bindungskurven zweier Punkte auf einer zur §* homéomorphen Mannigfaltig-
keit beweisen; siehe [1]. R. SHIZUMA versuchte in seiner Arbeit [2] die MORSE-
schen Methoden zu verallgemeinern und die Existenz einer geschlossenen Geo-
détischen auf einer beliebigen kompakten Riemannschen Mannigfaltigkeit zu
beweisen; sein Beweis enthiilt jedoch einen Fehler. Vor ihm hatte bereits A. I.
FET in seiner Arbeit [3]2) den von SHIZUMA angestrebten Satz mit Hilfe der
Birraorrschen Methode und Homotopiebegrifien bewiesen. In der vorliegen-
den Arbeit werden, auler in [1] dargestellten Deformations-Methoden, eben-
falls nur Homotopiebegriffe benutzt. Das Ziel ist der folgende Satz (3.1):

Es set M eine kompakte Riemannsche Mannigfaltigkeit der Klasse C®. Ist
far ein k> 1 die Gruppe mn, (M) nicht trivial, so gibt es eine nullhomotope
geschlossene Qeoddtische auf M .

Als Spezialfall erhilt man (auf Grund des Isomorphiesatzes von HUREWIOZ)
den Satz: «In jeder einfach zusammenhingenden kompakten RreMaxnNschen

1) Uber den Inhalt dieser Arbeit wurde auf dem Internationalen Kolloquium iiber Differential-

geometrie und Topologie, Ziirich, Juni 1960, berichtet.
%) FeTs Ergebnisse wurden mir erst nach der Niederschrift dieser Arbeit bekannt.
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Mannigfaltigkeit gibt es eine geschlossene Geodétische», der in der Arbeit von
FET enthalten ist.

Verschwinden aufler der Fundamentalgruppe alle Homotopiegruppen der
Mannigfaltigkeit, so braucht es iibrigens keine nullhomotopen geschlossenen
Geodétischen zu geben, wie das Beispiel des euklidischen Torus zeigt. Die Vor-
aussetzungen in Satz 3.1 sind also notwendig.

Bezeichnungen und Definitionen

M sei eine kompakte differenzierbare Mannigfaltigkeit der Klasse €% und
der Dimension n > 2. P, usf. seien Punkte von M. Auf M sei eine
beliebige RIEMANNsche Metrik definiert. Mit c(¢), t € <0, 1> oder c¢ bezeich-
nen wir stiickweise glatte Kurven auf M, mit C(c,t) den Punkt mit Para-
meter ¢ auf c¢. Fiir jede Kurve ist eine Lange definiert durch die RiEmANNsche
Metrik. Sie werde fiir eine Kurve ¢ mit J(c) bezeichnet. Auf einer Kurve
148t sich als Parameter insbesondere die sogenannte reduzierte Bogenlinge
einfiihren ; dabei ist der Parameter proportional zu der vom Anfangspunkt
gemessenen Bogenlidnge und geht von 0 bis 1. Dieser Parameter wird gewdhn-
lich benutzt. Mit £2p bezeichnen wir die Menge der stiickweise glatten Kur-

ven mit Anfangs- und Endpunkt in P; weiter sei 2 =PUM.QP. In der Menge
€.

aller stiickweise glatten Kurven auf M a3t sich eine Topologie einfiihren.
Man benutzt dazu die auf M durch die RiemanNsche Metrik induzierte
Metrik. Sie ist so definiert: Als Abstand zweier Punkte P und @ nimmt
man die untere Grenze der Lingen aller sie verbindenden stiickweise glatten

Kurven. Wir bezeichnen diese Metrik mit ¢ und koénnen dann in £ eine
Metrik g definieren.

(e, ¢) = max (o(C(c,?),C(c, 1))+ |J(c) — J(c)|.

te{0,1)

Hierbei ist ¢ die reduzierte Bogenlinge. (Zum Beweis, daB ¢ und g
Metriken sind, siehe [1], Seite 44.) Die Metrik g bestimmt eine Topologie im
Raum aller Kurven ; aus der Definition ergibt sich unmittelbar, da§ J eine
stetige Funktion ist. Das Aneinandersetzen von Kurven ist eine stetige Opera-
tion in dieser Topologie. Mit Hilfe von J lassen sich gewisse Untermengen

von (2 auszeichnen, wir definieren
J,={ce|J)<a} und Jr = {ce|J(c)<a}, xe<0,o0).

Die Menge J, ist die Menge der Punktkurven auf M, und in der durch g
induzierten Topologie homéomorph zu M selbst.
Die Riemannsche Metrik gestattet es, mit Hilfe der ersten Variation der
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Kurvenlinge geoditische Linien auf M zu definieren. Es ist bekannt, dafl
eine geoditische Linie lokal eine kiirzeste Verbindung ist. Durch jeden Punkt
gibt es in jeder Richtung genau eine geoditische Linie, man kann eine geo-
diitische Linie also fortsetzen. Auf kompakten Mannigfaltigkeiten gibt es dar-
iiber hinaus eine positive Zahl d mit den Eigenschaften:

1. Jede Geoditische einer Linge kleiner oder gleich d ist kiirzer als alle
anderen stiickweise glatten Verbindungskurven ihrer Randpunkte.

2. Zwei Punkte P,Q e M, fiir die o(P, Q) < d ist, lassen sich durch eine
Geoditische der Linge o(P,@) verbinden; wegen 1. ist sie eindeutig be-
stimmt.

3. Essei o(P,Q) <d und c¢ der eindeutig bestimmte geodétische Verbin-
dungsbogen von P und . Ist t die reduzierte Bogenlinge auf ¢ und C(c,?)
der Punkt auf ¢ mit Parameter ¢, so sind die lokalen Koordinaten von C
zweimal stetig differenzierbare Funktionen der lokalen Koordinaten von P
und ¢ und dem Parameter ¢.

4. Die Linge von c ist eine stetige und fiir P # ¢ zweimal stetig differen-
zierbare Funktion der lokalen Koordinaten der Randpunkte P und @.

Zum Existenzbeweis siehe [1], Seite 97.

Wir wihlen eine solche Zahl d und nennen sie Elementarlinge. Eine Geo-
ditische der Léange kleiner oder gleich d heifit Elementarstrecke und eine
Kurve, die aus endlich vielen Elementarstrecken zusammengesetzt ist, ein
Elementarpolygon. N

Eine Deformation D(t),%e<0,1> von 2 heillt eine J-Deformation, wenn
fiir alle ¢ e 2 gilt: J(D(t)c) < J(c),te<0,1).

Wir werden spiter eine Standard-J-Deformation D konstruieren.

Eine geoditische Linie heifit geodétische Schleife, wenn sie eine geschlossene
Kurve ist, geschlossene Geoditische, wenn sie auBlerdem im Anfangspunkt
glatt ist.

Die Lénge einer geschlossenen Geodétischen heiflt ein stationdrer Wert von

J, die geschlossene Geoditische ein stationidrer Punkt in Q.

P~

§ 1. Homotopieeigenschaften von 2, und 2

—

Satz 1.1. Ist jede stetige Abbildung b4 :8%¥-!— Qp nullhomotop, so ist
auch jede stetige Abbildung %:8%— M nullhomotop, k> 0.

Diese Tatsache ist bekannt. Wir wollen einen Beweis skizzieren. Wir nehmen
an, dafl P der Basispunkt in M fiir die Abbildungen ist. A sei eine Abbildung
h:S8c— M. Wir denken uns % gegeben als Abbildung eines n-dimensionalen
Wiirfels W%, dessen Rand oW* in P abgebildet wird. W* sei dargestellt
als Produkt W¥*-1x W, (Wk-1, W' Randwiirfel). Als Standardzerlegung von
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W* bezeichnen wir die Zerlegung von W* in die Strecken X x W', X ¢ Wk-1,
Die Abbildung A induziert eine Abbildung h: W15 Qp, indem jedem
X ¢ Wkt der dem h-Bild der Strecke X x W! entsprechende Punkt in Qp
zugeordnet wird. h bildet aW* in die Punktkurve P ab und ist stetig,
wenn h stetig ist?3). RWkE-1 gei nullhomotop in £2p und H (¢): Wk-1— Qp,
t e <0, 1> sei eine Nullhomotopie, das heiBt eine stetige Abbildungsschar mit
H(0 (0) = h,H(1 (1) = konstante Abbildung auf die Punktkurve P. Jeder Ab-

bildung Hi(t YWk-1 1ifit sich eine Abbildung H (¢)W* zuordnen. Man bilde
dazu die Strecke X x W1 der Standardzerlegung von W¥ auf diejenige Kurve

in M ab, die dem Punkt H ()X in Qp entspricht. Auf diese Weise erhilt
man eine stetige Schar von Abbildungen H(t): Wr— M, t € <0, 1>. Es ist

HO)W* = hW¥* und H(1)W* = P, und die Abbildung AW* ist infolge-
dessen nullhomotop.

54

Satz 1.2. Es sei Q2p eingebettet in 2. Ist eine Abbildung h:S8i—> Qp

nullhomotop in £, so ist sie auch nullhomotop in £p, 2 > 0.
Der Beweis 148t sich fithren mit Hilfe der exakten Homotopiesequenz fiir

Faserrdume mit Qp als Faser, .{5 als Totalraum und M als Basis. Wir wollen

spiter noch eine weitergehende Eigenschaft der Deformation in Q benutzen
und geben einen anderen Beweis.

Als Basispunkt fiir die Abblldungen wiahlen wir wieder die Punktkurve P.
Es sei h:S%—Qp und H(t (), te€<0,1>, eine Homotopie von h in Q mit
H(0 (0) = k. Jeder Abbildung H (t): 8t~ Q 1aBt sich eine Abbildung E(t):
8t — Qp auf folgende Weise zuordnen. Es sei Q ¢ S* und man nehme die dem

Punkt %Q « Qp entsprechende Kurve ¢ in M. Bei der Homotopie H wird
¢ in eine Kurve ¢ deformiert, deren Anfangspunkt nicht mehr in P zu lie-
gen braucht. ¢, sei diejenige Kurve in M, die durch die Anfangspunkte

der Kurven H(s)c,se<0,ty, definiert wird. Dann ist die Xurve
ct = ¢y 1 H(t (t)coc, eine in P geschlossene Kurve. Definiert man nun
H (t)Q = ¢, € 2p, so erhilt man die gesuchten Abbildungen H(t ( ): St — Qp,
te<0,1>; dabei ist also H (0) = h. Ist h nullhomotop in Q dann 148t

sich eine solche Schar von Abblldungen H finden, daB H (1 (1) =P. H(1)8:
besteht dann aus den Kurven c¢;'oc,, ersetzt man sie durch die Kurven

¢;'oc, und laBt ¢ von 1 bis 0 laufen, erkennt man, daB H (1)8* und also
k8t nullhomotop in 2p ist. Damit ist Satz 1.2 bewiesen.

8) Ist & > 1, so besteht der Teil von Qp, in den abgebildet wird, aus Kurven, die in M
nullhomotop sind, dasselbe gilt fiir Abbildungen in £2.
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Wir konnen aus dem Beweis noch mehr entnehmen. Nehmen wir an, H (1)8¢

bestehe aus Punktkurven von £. Diese sind zugleich in M die Endpunkte
der Kurven c¢,. LdBt man jeden solchen Endpunkt iiber die zugehorige Kurve

zum Anfangspunkt P laufen, und betrachtet ihn als Punktkurve in 2, so

erkennt man, daf3 H (1)S* nullhomotop in Q ist.
Kombiniert man dieses Ergebnis mit Satz 1.1 und Satz 1.2, so erhidlt man
das folgende Korollar:

Korollar 1.3. Gibt es in M eine nicht nullhomotope stetige Sk, k> 1,

dann gibt es in Q eine stetige S*-1, die sich nicht in die Menge J, deformie-
ren laf3t.

§ 2. Die Standard-J -Deformation

Es sei ¢ eine geschlossene Kurve mit dem Anfangspunkt P und der Linge
J (c) = . Der Parameter sei die reduzierte Bogenldnge. ¢ sei eine natiirliche
Zahl mit «/q < d. Teilt man ¢ in ¢ gleiche Teilbogen, von P ausgehend,
so dal der Endpunkt des i-ten der Anfangspunkt des ¢ -4 1-ten ist, mit P
als erstem Anfangs- und letztem Endpunkt, so ist die Entfernung der beiden
Randpunkte eines beliebigen Teilbogens kleiner oder gleich d. Man kann
sie daher durch eine Elementarstrecke verbinden. Den Teilbogen von ¢
mit den Parameterwerten ¢e<f,,?,> nennen wir c(¢;,¢,), und es ist
c=1c¢(0,8)4+c(ty,t) + --- +c(tmy, 1); t; ist der Parameter des ¢-ten
Teilpunktes. Fiir einen Teilbogen definieren wir eine Deformation @ in fol-
gender Weise: Es sei

a(s)e(t;, tipy) = e (b, b + sty — t)) + c(t; + sty — t), tipq), s€<0, 1),

wobei e(t;,t;,,) die Elementarstrecke zwischen den Punkten C(c,?¢,) und
C(c,t;,,) bedeutet. 0 ist eine stetige J-Deformation des Bogens c(t,, t;,4);
siehe [1], Seite 63. Eine stetige J-Deformation von ¢ erhilt man, wenn man
die Deformationen der Teilbdgen zusammensetzt.

3(s)c = 3(s)e(0,8,) 4 -+ + 8(8)e(teen, 1), $€<0,1).

Auf dem erhaltenen Elementarpolygon wéhlen wir als neue Teilpunkte die
g Mittelpunkte der Elementarstrecken, aus denen es besteht. Sie seien
@:,...,@Q,. Nach der Dreiecksungleichung ist der Abstand zweier aufeinander
folgender Mittelpunkte kleiner als d. Man kann nun auf zwei Weisen fort-
fahren. Entweder man wendet auf das Elementarpolygon mit den Teilbogen

~

PQ,,0.Q,,...,Q,P die Deformation ¢ an, dann gelangt man zu einem ge-
schlossenen Elementarpolygon mit Anfangspunkt P, die resultierende De-
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formation von ¢ nennen wir D, ,, oder man wendet die Deformation 9 auf
das Polygon mit den Teilbogen @,Q,, @, ¥;,. .., ¥,&, an, dann gelangt man
zu einem geschlossenen Elementarpolygon, dessen Anfangspunkt nicht mehr
in P zu liegen braucht, die resultierende Deformation von ¢ nennen wir
D, ,. Als Anfangspunkt von D, ,c wihlen wir denjenigen Punkt, in den
P bei der Deformation iibergegangen ist, wobei man auf dem Teilbogen jeweils

die reduzierte Bogenlénge als Parameter wihlt. Wenden wir D, , bzw. D, .
auf alle Punkte der Menge J, bzw. J, ~ £2p an, so erhalten wir eine stetige
Deformation von J, bzw. J, ~ Qp (siehe [1], Seite 63). Man erkennt ohne

weiteres, dall bei D, , bzw. D, , nur geschlossene Geoditische bzw. geo-
ddtische Schleifen ungeéndert bleiben, sowie die Punktkurven. Alle anderen
Kurven werden bei dem Verfahren verkiirzt. Uber das MaB der Verkiirzung
gilt folgendes.

Hilfssatz 2.1. Es sei « > 0 nicht stationér und U ¢ J, eine Umgebung
aller stationdren Punkte von J, sowie J, ¢ U. Dann hat die Differenz
J(c) —J (D, ¢), ceJ, — U, in J, — U eine positive untere Grenze.

Zum Beweis nehme man eine Folge von Kurven ¢',¢",...eJ, — U,
deren Verkiirzungen gegen Null streben. Man bilde aus ihnen die Polygone
d(1)¢’ = ¢}, 3(1)¢" = ¢”,.... Aus ihnen 1Bt sich eine gegen ein Grenzpoly-
gon ¢, konvergente Teilfolge auswihlen. Da die Verkiirzung stetig auf J,
ist, ist die Verkiirzung von ¢, gleich Null und ¢, eine geschlossene Geoditi-
sche. Die Linge der Kurven ¢',c¢”,... konvergiert gegen J(c,), weil die
Verkiirzung gegen Null konvergiert; daher konvergiert die Folge ¢, ¢”,...
gegen c¢,. Wegen der Abgeschlossenheit von J, — U ist daher ¢, eJ, — U
im Widerspruch zur Wahl von U. Fiir die Einzelheiten des Beweises siehe
[1], Seite 64.

Aus dem Hilfssatz ergibt sich unmittelbar der folgende Satz.

Satz 2.2. Essei o« > 0 und & nicht stationdrer Wert. g, sei die Menge der
stationdren Punkte in J,. Ist g, leer, so gibt es eine J-Deformation von J,
in J,.

Zunidchst 148t sich J, in J,; deformieren, weil die Verkiirzung durch
D,, in J, — J, eine positive untere Grenze besitzt. Die Menge J,; wird
sodann durch die Deformation (D, ,)? in die Menge .J, deformiert.

Anmerkung. Entsprechende Sitze gelten fiir den Raum Qp und die Men-
gen J, ~ Qp, wenn man den Begriff «geschlossene Geodétische» durch «geo-

détische Schleife» ersetzt und D, , durch D, ,. Hilfssatz 2.1 wird in der-
selben Weise fiir diesen Fall bewiesen; Satz 2.2 ebenfalls, nur fiihrt (D, ,)?
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nicht J,~ Qp in Jyn Qp iiber. Jedoch ist Dj 4¢, ceJ,, eine hin und
zuriick durchlaufene Elementarstrecke, die man stetig iiber sich selbst auf
einen Punkt deformieren kann.

§ 3. Die Existenz geschlossener Geodéitischer
Wir konnen jetzt leicht den angekiindigten Satz beweisen.

Satz 3.1. In der kompakten RiemaNNschen Mannigfaltigkeit M der Klasse
C?® gebe es fiir ein £ > 1 ein stetiges nicht nullhomotopes Bild der S*. Dann
gibt es auf M eine nullhomotope geschlossene Geoditische.

Beweis. Nach Korollar 1.3 gibt es eine stetige S*-1 in 55, die nicht in
J, deformierbar ist. « sei das Maximum von J auf einer solchen S*-1,
Ist « stationdrer Wert, so gibt es eine geschlossene Geoditische der Lange
«. Wire g,, die Menge der geschlossenen Geoditischen in J, leer, so liele
sich J, nach Satz 2.2 in J;, deformieren und daher auch die stetige S*-!,

im Widerspruch zu Korollar 1.3. Da der Teil von Q, in dem wir die Abbil-
dung betrachten, aus Kurven besteht, die in M nullhomotop sind, ist der
Satz damit bewiesen.

Anmerkung 1. Aus Satz 2.2 148t sich auch unmittelbar entnehmen, daf} es
in jeder nicht trivialen Homotopieklasse geschlossener Kurven wenigstens
eine geschlossene Geodétische gibt.

Anmerkung 2. Nach der Anmerkung in § 2 gilt in Qp ein analoger Satz
zu Satz 2.2. Ist h: S — M, k> 1, eine nicht nullhomotope stetige Abbil-
dung in M, so gibt es nach Satz 1.1 eine nicht nullhomotope stetige S*-!
in Qp. Sie 1Bt sich also nicht in Jy~ 2p = P deformieren und dasselbe
Argument wie das fiir Satz 3.1 benutzte ergibt ein entsprechendes Ergebnis
fiir geoditische Schleifen (bei beliebigem P). Das ist in der MorsEschen
Theorie bekannt.
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