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Cobordism of Pairs

By C. T. C. WaLL), Princeton, N.J. (USA)

This paper extends the results of ordinary cobordism theory to cobordism
of pairs of manifolds (a pair is a pair (V, M) of closed differentiable manifolds,
with ¥V a submanifold of M). We first reduce the cobordism problem for the
pair to separate problems for V, M; for V, however, a new structural group
must be considered (e.g. O, %X Oyn). We then evaluate cobordism theory for
the new structural groups. Our more precise results include the following:

In the general case (groups unrestricted); or if ¥V and M are supposed
oriented ; or if M is weakly almost complex and the normal bundle of V
in M is reduced to the unitary group; the characteristic numbers of V and
M determine the cobordism class. The characteristic numbers of M are as
usual ; those of ¥V are mixed products of characteristic classes of the tangent
bundle of V, and of the normal bundle of V in M, evaluated on V. These
have coefficient groups Z, (in the first case), Z (in the third), or both (in
the second). Correspondingly, the cobordism groups are direct sums of copies
of these groups. Their additive structure is completely determined.

Corresponding extensions of these results also hold for n-tuples (defined as
chains V,c V,c ... ¢ V,., € M of submanifolds) but appear rather
less interesting. Products of various kinds can be defined; the most natural
one appears to be

WxM,V)y>(W XM, W xV)

which establishes the cobordism group above as a free module over the usual
cobordism group (in cases 1 and 3 only).

1. Cobordism over a sequence of groups

A cobordism theory is defined using a sequence of groups @, such that
(i) @, is a subgroup of the orthogonal group O,, (ii) @, is a subgroup of
G,., (using the usual imbedding of O, in O,,,). (A similar formulation has
been suggested by MILNOR). It is possible to consider the more general situa-
tion in which we have maps @¢,— O,,, G, — G, ., not required to be inclusions,
but we shall adhere to the simpler version.

1) The results of this paper were announced in a lecture to the International Colloquium on
Differential Geometry and Topology, Ziirich, June 1960.
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A manifold M, is said to be endowed with G-structure, or called a G-
manifold, if for some imbedding M,—> S"+K a reduction of the normal
bundle to Gy is given. We shall identify a GQ-structure with those induced
from it by suspension (adding a trivial bundle preserves a natural G-structure
in virtue of the inclusions above). It is known (STEENROD [12]) that a G-
structure may be specified by a homotopy class of cross-sections of the bundle
associated to the normal bundle of M and with fibre Ok/Gk.

Two closed G*-manifolds are G-cobordant if together they form the bound-
ary of another G-manifold, and its G-structure induces theirs. A little care is
needed here: we regard the normal bundle of the boundary as the direct sum
of the normal bundle of the manifold and the normal bundle of the boundary
in the manifold, where the latter must be counted as pointing respectively
inwards and outwards for the two manifolds on the boundary. This convention
will allow us to show that G-cobordism is an equivalence relation, in view of
Lemma 1.

We must now explain ‘pasting and straightening’, as introduced by MILNOR
[7]. We shall adopt different, but equivalent definitions to his. Let M,, M.
be two differentiable manifolds, and let V,_, be a submanifold of the bound-
ary of each. Write L = M + M', identified along V; we shall show that
L has a natural differentiable structure. Near its boundary M is locally a
product, also M'. Fixing a differentiable product structure allows us to
define a differentiable structure on the union, except on 9V. Now a neigh-
bourhood of 9V in oM or odM’' is also a product with an interval, so a
neighbourhood of oV in L is a product of oV with Fig.1. L is made
differentiable by giving a homeomorphism of this with Fig.2, diffeomorphic
except on 9V . (This is easy.) We can then form Fig. 3, showing how copies,
M, M, of M, M' can be imbedded in L, and a copy L, of L differen-
tiably in M, v M, without change of differentiable structure.
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Similar diagrams can also be drawn in the case when one or both of M,
M’ has already a corner along 9V ; for our application, M will be straight
and M’ have a right angle there.

Lemma 1. Suppose M, M' are G-manifolds, and induce the same G-structure
on V. Then L admits a G-structure inducing the given G-structureson M, M'.

Proof. Suppose N so large that the normal bundle of an n-manifold in
S¥+n jg independent of the choice of imbedding (e.g., n < N, WHITNEY [15]).
Take an imbedding of L in SN+n; this induces imbeddings of the submani-
folds M,, M ; , whose normal bundles are reduced to Gy. Hence we have
cross-sections of the associated Opy/Gy-bundles. The two structures induce
the same G-structure on V,, so the restrictions of the suspended bundles
with fibre On,,/Gn,, to V, are homotopic. Extending a homotopy on V,
to one on M,, we can find a cross section over M, + M ; , and thus reduce
the bundle to Gn,,. But this is the suspended bundle, which is the same as
the normal bundle for the suspended imbedding in S¥+1. Hence L, has a
G-structure, and it is clear from its construction that the corresponding G-
structure on L induces the given ones on M, M'.

Note. The structure is not unique; we had to make a choice of a homotopy

on V,, and the difference between two such structures can be described by
a bundleon SV.

Corollary. G-cobordism is an equivalence relation.

For we may paste together manifolds giving G-cobordisms of U to V and
of V to W to find one giving a cobordism of U to W.

Examples of sequences (G,) are O,, SO, (Trom[13], MiLNOR [8], AVER-
BUCH [4] and WALL [14]), Uj. (MiLNoOR [8] and Novikov[10]), 1 (PoNTR-
JAGIN [11] and KERVAIRE) Spi, (Novikov[10]), SUp., and O, x 0, 4,
which suggests a general type which we will study below.

2. The reduction lemma

In accordance with the spirit of the first paragraph, we now make the
following definitions. (M, V) is a (Q, Ly)-pair if M is a G-manifold, and
¥V a submanifold with normal bundle reduced to L,. Two closed (@, L,)-
pairs (M, V), (M', V') are (Q,L,)-cobordant if there is a (G, L,)-pair
(N, W) such that N =M v M', oW = V v V' and the (G, L,)-structure
of (N, W) induces the given (@, L,)-structures of (M, V) and (M', V’).

Now if (M, V) is a (@, L,)-pair, we may choose an imbedding of M in
a sphere with normal bundle reduced to Gx. But then the normal bundle of
V is reduced to L,Xx Gy, so V has a natural H-structure, where H is
defined by H,,n = L; X Gy (the definition of H, for ¢ <k does not matter,
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but could be made by H, =1 or by H,= L,~ 0,;). We then see that if
(¥, W) provides a (G, L,)-cobordism of (M, V) with (M', V'), W pro-
vides an H-cobordism of ¥V with V’'. We can now state the reduction lemma.

Lemma 2. Two (G, L,)-patrs (M, V), (M', V') are (G, L,)-cobordant if
and only if M, M' are G-cobordant and V, V' are H-cobordant.

Proof. We have just seen the necessity of the condition. Now suppose it
satisfied. Let W provide an H-cobordism of ¥V, V'. Choose an imbedding
of W in a sphere with normal bundle reduced to H; 5. A neighbourhood
of W is diffeomorphic to the associated bundle with fibre E*+N = Ek x EN
(a small cell) and the subset E* of this is stable under the operations of the
group H; y = L, X Gy, so we can select a corresponding submanifold with
boundary X, whose normal bundle, we note, is reduced to Gy, and the

normal bundle of W in which is reduced to L,. Now form the manifold
P=MxI+X+M xI.

M’

‘V'

Since by definition X induces the correct G-structure of a neighbourhood
of V in M, we may apply Lemma 1 to deduce that P (with corners rounded
as in the figure) is a G-manifold. If M"” denotes the middle components of
the boundary of P, P induces a G-structure on it, and provides a G-cobordism
of M" (endowed with this @-structure) to M v M', hence, since M is Q-
cobordant to M’ and G-cobordism is transitive, M" is Q-cobordant to zero.
If @ provides this @-cobordism, P + @ = R, which by Lemma 1 may be
endowed with @-structure inducing the given structures on P, ¢, provides
a G-cobordism of M to M', and contains the submanifold Y=V x I +
+ W + V' x I whose normal bundle is reduced to L, by construction, so
that (R,Y) provides the required (&, L,)-cobordism.

This lemma reduces the general problem of cobordism of pairs to the con-
sideration of a single cobordism theory. It is now easy to see that by the same
method we can now provide similar reductions for the problem of cobordism
of n-tuples M, c M, c ... c M,, with (if we so desire) assigned structural
groups at each stage. For suppose inductively a cobordism given for M, _,
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(and the smaller manifolds); then this gives also (as above) a cobordism of
the neighbourhood of M,_;, in M,, and a glueing argument as above extends
this to a cobordism of M, as well. It is with this application in mind that
we keep both G and L, quite general.

In subsequent paragraphs we shall compute many of these groups of cobord-
ism classes. We close this section by noting that the lemma has direct conse-
quences such as the following:

The only obstruction to extending a cobordism W of V to one of M 1is the
obstruction to extending the normal bundle of V in M to a bundle on W .

For once this extension is made, the above method will give an extension
of W.

3. Algebraic Preliminaries

We now wish to compute cobordism theory for certain groups, which results
of TroM [13] reduce to computing certain stable homotopy groups. These we
shall evaluate using the homology of the appropriate spaces and the Apams
spectral sequence. For this we must study certain modules over the STEENROD
algebra. Our main tool will be the following lemma.

Lemma 3. Let A be a connected graded Hoprr algebra over a field k, F a
free graded A-module, and M any graded A-module. Then F Q, M 1is a free
A-module. If (f,) isan A-base for F, and (m,) a k-base for M, then (f, @ m,)
18 an A-base for F Q M.

Proof. Let (a;) be a k-base for A. Then by hypothesis (a;f,) is a k-base
for F. Hence (a;f, ® m,) is a k-base for F ® M. The lemma states that
(a;(f, ® m,)) is a k-base for F' @ M. To prove this we filter F ® M by
C,=2YF,® M. Then prove by induction on p that the a,(f, ® m,) with
dim (a;f,) < p form a base for C,. For p = 0 this is trivial, 4 being con-
nected.

Suppose it true for p — 1. Now if dim (a;f,) = p,

a’i(fn ® m,) = za,fn ® a"m,
5 a’ifn ® m,- (mOd 09_1)

(using what we know about the diagonal homomorphism for A4), and as it is
clear that the (a,f, ® m,) with dim (a;f,) = p form a base of C, modulo
C,.,, the result follows.

Complement. Let A, be the Steenrop algebra over Z,, G an A,-module
on one generator x and one relation Sq*xz = 0, and M any A,-module. Then
G M 1is a direct sum of a free module, and modules of type Q.

Proof. A,, with the differential operator induced by right multiplication
by Sgq!, is a free chain complex (first shown by ApxmM [2], but also follows
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from general results about Hopr algebras and subalgebras [9]; we have a
base consisting of elements a,, a;8¢', and the a,x form a base of G.

M, with the differential operator induced by Sgq!, is also a chain complex.
We take it in normal form, i.e. take a homogeneous base (I,, m;, n,) of ele-
ments such that

Sqllszo, Sqlmtznt, Sqlntzo.

We now assert that G @ M is the direct sum of free modules on the x ® m,
and modules of type G on the z ® [,. In fact, a,x is a base of G,
a;8q'(x ® l;) = O; and the top terms of a,(z ®1l,), a;(x ® m,) and
a;Sq (x @ m,) = a;(x @ ny) with respect to the same filtration as used in the
proof of the lemma are a,z ®1I,, a,x ® m,, and a,x ® n, respectively, so
the same inductive argument as before shows that we have a base of G @ M.

Let us call an A,-module simple if it is the direct sum of a free module and
modules of type G.

Corollary. If F isa simple graded Ay,-module, and M any graded A,-module,
then F @ M s simple.

This follows at once from the lemma and complement, on taking direct sums.

4. Application of THOM theory

It follows from the work of TroM [13], (which we shall suppose known),
that cobordism groups for the structural group G, are given by the homotopy
groups of M(G,). Now in all the cases with which we shall be concerned,
{G,} satisfies a certain stability condition. We shall denote the classifying
space of a group L by B(L); over it there is a canonical L-bundle [5]. Given
a linear representation of L, we may form the associated vector bundle over
B(L); its one point compactification is the THOM space M (L).

{@,} is said to be stable if for each » there exists a ¢ such that forqg <p
the induced cohomology map H™(B(@®,)) - H"(B(G,)) is an isomorphism.
H"(B(Q,)) is called a stable group, and denoted by H"(B(®)).

Now @G, is a subgroup of O,, so we have a linear representation ready
to hand, and can define M(G,). Suspending the representation has the
effect of suspending the THOM space [3], so the inclusion of G, in G, de-
fines a natural map of SM(G, to M(G,.,) which, since the cohomology
groups of a THOM space are isomorphic to those of the classifying space, but
with a dimensional shift, induces an isomorphism of cohomology in dimen-
sion n 4+ ¢ + 1. Or supposing, as we clearly may, that ¢ is chosen to increase
with », we have an isomorphism up to dimension » + q + 1. By the Uni-
versal Coefficient Theorem, we have an isomorphism of homology up to

10 CMH wvol. 35
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dimension # + ¢, and by a theorem of J. H. C. WHITEHEAD, of homotopy
up to dimension n + ¢ — 1. Thus we have homotopy groups of the M(G,)
which become stable (for as M (G,) is ¢g-connected, its homotopy groups up
to dimension 2¢g — 2 are stable under suspension [13]). We shall refer to
these as stable homotopy groups of M (G). We may now state the following
corollary of THOM theory.

Proposition. If {G,} s stable, the cobordism groups for G are the stable
homotopy groups of M (G).

We also note that the stability of cohomology of M (@,) allows us to define
stable cohomology groups H* (M (Q@)), and that since the isomorphisms are
defined by induced homomorphisms and the suspension isomorphism, we can
define stable cohomology operations acting in H* (M (G)) .

We now consider Hy,, = L, X Gy. Since B(Hy.;) = B(L;) X B(Gn),
the KUNNETH relations show that if G is stable, sois H. By [3], M (Hwy,)
is the collapsed product M (L,) # M (Gn). Hence for any coefficient field K,
using reduced cohomology, we have

H* (M (Hy,y), K) = H* (M (Ly), K) ® H* (M (Gx), K) (1)

and if K = Z,, the two sides of this equation are even isomorphic as modules
over the STEENROD algebra A4,, as its action on an algebraic tensor product,
using the diagonal homomorphism, was originally defined from the topological
product (or cup product, which is the same thing) [6].

Before mentioning special cases, we shall define characteristic numbers in
the general case. These we define as invariants of cobordism class directly;
in fact given a map of a sphere SN into a THOM space M ((G,) defining a
class, the corresponding characteristic numbers are the inverse images of
classes in HN(M(Q,)), evaluated on the fundamental homology class of
S¥. To see the connection with the usual definition of characteristic numbers,
we recall THOM’s procedure ; given a manifold V, we take a classifying map
for its normal bundle in some S¥, and extend to a map of a tubular neigh-
bourhood of ¥V into the associated vector bundle; the rest of S¥ is then
mapped to the point at infinity. Hence the inverse image of the class in
H¥N (M (Q,)), which can be regarded as a class on the tubular neighbourhood
of V, is the result of lifting the inverse image of the corresponding class in
H®(B(@,)) in V,. But this is the usual definition of characteristic classes;
take a classifying map for the normal bundle of ¥V, and evaluate the inverse
image of a class on B(Q@,) on the fundamental class of V.

We are now ready to consider the orthogonal group. Note that in (1), there
is a module multiplication by H* (M (Gw), K); this is the algebraic counter-
part of the module multiplication mentioned in the introduction.
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The Orthogonal Group

We now take @, = O,. It is well known that H* (M (0)) is zero over
any field K of characteristic not 2, and H* (M (0), Z,) is a free A,-module
(TeEOM [13]). By Lemma 3, H*(M (H), Z,) is also a free A,-module, and we
know how to choose a base. Hence there is a map of M (H) to a product of
E1rLENBERG-MACLANE spaces K (Z,,r) inducing an isomorphism of mod 2
cohomology, and hence also of integer homology since (by the analogue of(1)
for Z as coefficient group) this consists entirely of torsion of order 2. Since
the spaces are both simply connected, by the theorem of WHITEHEAD already
mentioned, the map induces also an isomorphism of homotopy.

This determines the cobordism groups for the sequence Hy_ ; = L, X Oxy.
The full cobordism group is the graded direct sum of the cobordism groups
in the various dimensions. Using the remark at the end of the previous para-
graph, and the A,-base constructed in Lemma 3, we may now enunciate

Theorem 1. The cobordism groups for the sequence H are all of exponent 2.
The cobordism class of a manifold is determined by its characteristic numbers.

The full cobordism group is a free N-module, with a base corresponding to a
Zy-base of H*(B(Ly), Z,) .

The Unitary Group

We now take @,, = G,,,, = U,. It is convenient to work only with groups

L, satisfying a certain condition:
(B) H*(B(L,)) s torston free, and zero in odd dimensions. We note that (B)
holds if L, itself is a unitary group, or a product of such. If (B) holds only
up to a certain dimension, or modulo a certain set of primes, then our results
will also hold up to nearly that dimension, or modulo those primes; such
refinements we leave to the reader.

We shall now follow the arguments of MiLNoOR [8]. Now H*(By) is itself
torsion free. Hence H*(My,Z,) has a BOCKSTEIN operator ), identically
zero, and hence can be considered as a module over the algebra A4,/(Q,),
quotient of the STEENROD algebra by the ideal generated by ¢,. We now use
the fundamental result of MILNOR [8], Theorem 2 to the effect that it is a
free module. By (B), H*(M(L,), Z,) also has zero BocksTEINs. We now
apply Lemma 3 to the Hopr algebra A4,/(Q,), the free module H* (M (U), Z,),
and the module H* (M (L,), Z,) to deduce that their product H* (M (H), Z,)
is again a free module.

Moreover, since the generators of the Z-module H*(B(L,)) are even-
dimensional, those of the A,/(Q,)-module H*(M (H), Z,) are also even-
dimensional.
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It now follows from MILNOR, loc. cit., Theorem 1, that the stable homotopy
groups are torsion free, and from the fact that the stable HurEWICZ homo-
morphism is an isomorphism mod finite groups we can deduce what the
groups are.

Finally, we consider the module multiplication by the unitary group. We
now know that the Apams spectral sequence [1] is trivial, so the fact that we
have a free module in the E,-term leads to one also in the E_-term, from
which we can see that we not only have the cobordism group as a free module
over the unitary one but also that all the divisibility conditions for charac-
teristic numbers are implied by this product structure. We can now sum up
our results in

Theorem 2. The cobordism groups for the sequence H are torsion free, and
zero in odd dimension. The cobordism class of a manifold s determined by its
characteristic numbers. The full cobordism group is a free module over the unitary
cobordism grouwp, with gemerators im (1 — 1) correspondence with a base for
H*(B(L,)). Characteristic numbers satisfy just those divisibility conditions
which are implied by the module structure.

The Speeial Orthogonal Group

The case G, = SO,, as for straight cobordism theory, presents features
which are a mixture of the two previous cases. The odd torsion behaves
precisely as in the case of the unitary groups: if H* (B(L;)) is free of odd torsion,
and in odd dimensions consists entirely of 2-torsion, the arguments of the
preceding section go through without modification (even the references are
the same) as fas as odd torsion is concerned. To make further progress, we
now require in addition that all torsion in H*(B(L;)) be of order 2. Using
the corollary to Lemma 3, and the fact that H* (M (S0), Z,) is simple
[14], we deduce that H* (M (H), Z,) is also simple. In fact, the G-type gener-
ators for H* (M (S0O)) correspond to the free part of £, hence, since the
I, of the complement to Lemma 3 are the mod 2 restrictions of the free gen-
erators of H*(B(L,)), the Q-type generators of H* (M (H)) stand in cor-
respondence with generators of the free part of stable homotopy (as determined
above by considering the odd primes). Take then generators of the free part
of H*(M(H)) and corresponding maps to EILENBERG-MACLANE spaces
K(Z,n); then we already know that the product map induces isomorphisms
of homotopy mod finite groups. Now these generators restrict mod 2 to pre-
cisely the generators of type @ of the simple A,-module. Choose a set of
free generators, and corresponding maps to EILENBERG-MACLANE spaces
K(Z,, m); then the map to the product of all these EILENBERG-MACLANE



Cobordism of Pairs 145

spaces induces mod 2 cohomology isomorphisms, and hence also mod 2 homo-
logy isomorphisms. We already know (using the above cited theorem of
WHITEHEAD) that the map induces isomorphisms of homology mod finite
groups; it now follows that it induces isomorphisms mod finite groups of odd
order. Hence again it does also for homotopy, so all the 2-torsion has order 2,
and is all captured by the homology.

Module multiplication follows as before ; however we no longer have a free
module unless H*(B(L,)) is completely torsion free; in the contrary case
the Z,-structure is different. (In fact, if we follow the appearances of all the
Z,’s, it would appear that we should have the direct sum of a free module
over Q, and one over the algebra MW of [14].)

Theorem 3. Cobordism groups for the sequence H are sums of free groups
(which all occur in even dimensions) and groups of order 2. The cobordism class
of @ manifold is determined by its characteristic numbers. The full cobordism
group contains a free 2-submodule, with generators corresponding to a base of
the free part of H*(B(L)), as direct summand, its complement having expo-
nent 2. Divisibility conditions (all by odd primes) are those implied by the
module structure.

Trinity College, Cambridge and Institute for Advanced Study, Princeton
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