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Convex Immersions of Closed Surfaces in E°?)

Non-orientable closed surfaces in £3 with minimal total absolute
GAUss-curvature

By Nicoraas H. Kuirer, Wageningen (Netherlands)

1. Introduction and theorems

If X, a compact connected closed C*-surface with EULER-POINCARE
characteristic y(X), has a RieMANNian metric, and if K is the GAuss-
curvature and du is the absolute value of the exterior 2-form which repre-
sents the volume, then according to the theorem of Gauss-BoNNET, which
holds for orientable as well as non-orientable surfaces,
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The total absolute Gavss-curvature of the surface is by definition:
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and equality is obtained from a constant GAuUss-curvature metricon X (which
is known to exist for any X).

Nowlet f: X — E® be a C*-immersion of X in euclidean three space Z3.
A C*-mapping is called a C*-immersion if it has maximal rank, here two, at
each point. In X we take the unique R1EMANNian metric for which f is locally
isometric. The integrals (1) and (2) can be split in a contribution from the sets
of points for which K > 0 and K < 0 respectively:

Kd Kd
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It can be shown that K > 0 at any point z for which f(x) lies on the

1) Lecture in the International Colloquium on Differential Geometry and Topology, Ziirich,
June 1960.
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convex envelope of f(X), and the contribution of the set of all points with

K >0, in the integral f Igiy is at least 2.

Then in view of (4) and (5) we have

Theorem 1. Compare [1,2, 3, 4,5]. If f: X — E® is an tmmersion of a
closed surface in euclidean three space, then

r<X)=f~'—%‘-f-§—'—>4—x(X). (6)

The immersion f: X% — E3 is called convex, and the surface f(X) is said
to have minimal total absolute Gauvss-curvature in case the minimum in (6) is
attained :

o(X) = 4 — 5(X) . (7)

For x(X)= 2 this minimum is attained by the convex surfaces in 3. In
[5] we studied convex immersed surfaces in E* and we obtained the following
result.

Lemma 1. Let f: X2 — E3 be convex. The smallest convex set which con-
tains fX is called: the convex hull Hf X, with boundary the convex envelope
dHfX. There exist two disjoint opensets U and V in X, such that X is
the union of U, ¥V and their common boundary, and such that:

1) The restriction of f to the set U is a homeomorfism onto the comple-

ment of a finite number of plane closed convex discs D,,...D, in dHfX.
2) K>0 for xeU; K0 forzeV.
3) Each of the convex discs D; ¢ = 1,...k contains the image under f

of some one-cycle in X that does not bound in X.
From this lemma it is not hard to deduce [5] the

Theorem 2. No convex immersion in E3® exists for the projective plane P
or the Krein-bottle B.
Hence if f is an immersion of X = P or X = B in E3, then

JL LN -
X

Examples of orientable surfaces with y =2 — 2k in E?® with minimal =
can be obtained in view of the lemma, by starting from a convex surface which
has at least two open plane parts in different planes, by deleting 2k convex
discs suitably chosen in these plane parts, and by gluing % connecting handles
on which K < 0 in a suitable manner. By a “handle’’ we mean the differen-
tiable surface which is the product space of a circle and an open interval. An
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example is the usual picture of the torus in
E3. An example with two handles (y=—2)
is given in fig. 1.

In this paper (§3) we give examples
of convex immersions in K3 for all non-
orientable closed surfaces X with
x(X) << — 2. This proves
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Theorem 3. For any orientable closed
surface, and for any mon-orientable closed surface X for which y(X) < — 2,
there exists a convex immersion in E3.

We know neither an example, nor non-existence for the case y(X) = — 1. In
§ 2 we exhibit an immersion of P? in E3?, which seems to be less complicated
then Boy’s surface (see HILBERT and COEN-VOSSEN, Anschauliche Geometrie).

N.B. We restrict our considerations to C*®-immersions of C*-manifolds.
The case of Ck-immersions with 2 <k < oo is not essentially different. It
seems likely that analytic convex immersions of closed orientable surfaces
can be found. On the other hand we have no idea about the existence of analytic
convex vmmersions of non-orientable closed surfaces in E3.

2. An immersion of the projective plane in £°

The projective plane P is the quotient of the two-sphere in E® with
equation say

2 2 2
2y + x5+ x5 =1
by the diametrical equivalence relation:
(xla Lo, .'L'3) N(xl: La, xa) ~ (_' Ly, — &g, — xs) .

The product xz,z, takes on the sphere the same value in diametrical points
and it therefore represents a function on P. This function has three critical
levels with the critical values — 1 (minimum), 0 (saddle point) and 1 (maxi-
mum). The maximal and minimal level sets are points. The levelset z,2, = 0
is the union of two differentiable circles (one-spheres) which have in P one
point in common. The non-critical levelsets in P are differentiable circles.
We exhibit an immersion in the euclidean three-space in which one coordinate
is called height, by first of all chosing the height proportional to z,z,, and
by exhibiting the intersections of the immersed surface with horizontal planes
at different heights. The only points at which the surface is assumed to have
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a horizontal tangentplane are the three critical points.
See fig. 2, and study in particular a neighborhood of the
saddle point and of the corresponding level.

Remark on reqular homotopy classes of immersions of
the two-sphere S? in E®. According to SMALE [6] any
> two immersions of 82 in K3 can be connected by a

e
[
)
| A
regular homotopy of immersions. This is in particular
=

therefore the case for the following two immersions:
~  (I) the identity map ¢(0) of an ordinary two-sphere
S in E3? onto itself, and (II) the reflection of S with

o @ respect to some plane through the centre. These two

' C: immersions have the same image pointset, but with

different orientations. H. HorF suggested to me that

@v an explicit regular homotopy could be obtained via an
immersion of P. This is indeed the case:

If f is the immersion of P given above and

Ej w:S — P is the covering map obtained from identi-

fying diametrical points of 8, then g¢(1)=fom is

an immersion of § which can be seen to be regularly

C?, homotopic to ¢(0). (Distinguish two sides on f(P),
;ig_ 9 pull them slightly apart and then pull the whole sur-

face out.) Let g(t), 0 <<t <1, be such a regular
homotopy and let v map any point of § onto its diametrical point. We put

he — | 9CY 0<i<4
g(2 — 2t) o7 1<t<.

Then hA(t), 0 <t <1, is a regular homotopy of § with the same image set
S for ¢t = 0 as for t = 1, but interchanging the orientations.

3. Examples of convex immersions of non-orientable surfaces

A. KLEIN-bottle with handles

In fig.3 a convex immersion f: X >E
of a KuEIN-bottle with one handle
2(X) = — 2 is exhibited. From the
picture it is clear that only the part
in the convex envelope of f(X) con-

tributes in f Kdp and it yields 2.

2n

E>0
Then the immersion is convex. Of
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course more handles can be constructed, each with non-positive Gauss-
curvature K, and so a convex immersion of the KLEIN-bottle with £ > 1
handles {y(X)= 0 — 2k} is obtained.

B. Projective plane with two handles

We first give a general idea about the construction. We want to obtain a
convex immersion of a surface X which is topologically a projective plane
with two handles y(X) = — 3. In order to do so we first construct an immer-
sion of a surface Y with x(Y) = — 1, which is a projective plane with one
handle, and we obtain this from the immersion f: P — E3 of the projective
plane, given in fig. 2 as follows. The intersection of f(P) with a horizontal
plane decreases to a point when the height A increases to the maximal value
h =1 as well as when the height decreases to the minimal value —1. We
alter the image f(P) such, that for increasing height the differentiably im-
mersed circle at height A > 0, converges to a big convex curve (; in the
plane at height A = 1. Moreover we take care that the surface is at its bound-
ary C, tangent to the interior in the plane of C,.

We apply an analogous alteration to the immersed circles in the planes at
height A < 0, so that they converge to a big convex curve C_; in the plane
h = — 1. Also at this boundary the surface so obtained must be tangent
to the interior in the plane of C_,.

Next we attach a big outside handle H’ to this surface bounded by C, v C,.
We take for this handle the complement with respect to the plane interiors of
C, and C_; of a convex C*-surface which contains C;, and C_, as well as
their plane interiors. On this outside handle therefore the Gauss-curvature is
non negative: K > 0. This handle H’ will lateron completely take care of

the contribution f K dp in (5). We now have obtained an immersion

2n

K>0
g:Y — E® with g(H) = H' and we concentrate further on the part ¥ — H.

We try to arrange the immersion such that K <0 for xe¢Y — H.

We observe that for ruled surfaces at any rate the GAuss-curvature is non-
positive, and so we immerge large parts of ruled surface, and try to connect
these parts with each other and with C; and C_; by pieces of surface that
have also K < 0.

This however seems to be impossible. But we can succeed in finding an
immersion ¢g: Y — E3 such that K <0 for xe¢ Y — H— D, where Disa
small disc with K > 0 and ¢ (D) is a small part of a convex surface (a nap).
Assuming this for the moment we can now take out of Y a slightly bigger
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disc D' o D, and we can attach one end (component of the boundary) of a
handle on which K < 0, at the boundary of f(Y — D?).

It can be arranged so that the other end of this handle is attached to (the
inside of) the big outside handle f(H) along a convex curve contained in a
flat (= in a plane) part of f(H). Such a flat part can be assumed to be avail-
able on f(H). Finally the interior of this convex curve in this tangent plane
is deleted from f(H) and the required immersion is obtained.

We now give some more details of the construction. We begin with a pre-
liminary C°immersion f: X — E3. One coordinate in E3 will be called height
and denoted by 4. A will have the maximum A =1 and the minimum
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h= —1 on X. The intersection of f(X) with the planes at A =1 and
h = — 1 are big convex curves C, and C_,. C, and C_;, are boundaries
of a big C*-outside handle fH, H « X as mentioned above, on which K > 0.
For later use there will be a hole at a suitable place in fH, obtained by
deleting a plane convex dix. One end of a handle will be attached to this hole.

The rest of the surface will consist of six C*®-parts, four of which are parts
of ruled surface and hence have K <{ 0. The seven parts are attached to
each other along their boundaries which are plane curves, such that a C°-
immersion of X results. (Under a more general definition of curvature the
C°-immersion so obtained will be convex.)

We will give the description of the surface so obtained, but remark before
that the required convex C*-immersion of X in K3 is then easily seen to
be obtainable by smoothing processes in the neighborhoods of the boundaries
of the seven parts.

In fig. 4 the ruled surface f(X — H)~ (0,3 <h <1) is given by its
orthogonal projection on a horizontal plane. The projections of the rules are
indicated. The upper boundary (at height 1) is drawn fat.

Figures 6, 8 and 9 refer analogously to ruled surfaces at heights:

fig. 6 0,1 <h<02
fig.8 —02<h<—0,1
fig. 9 —1 <h<—0,2

In the interval 0,2 <<k < 0,3 the extra handle going to the outside handle
is attached (fig. 5), whereas in the remaining part in most points the tangent
planes are vertical. This however is not true in the neighborhood of the line
CD, where the surface is non vertical, because otherwise we would have to
get K >0 when we want to pull the part of the horizontally immersed
circle close to D out to the right at a lower stage.

In the interval — 0,1 <k < 0,2 the saddle (fig. 7) occurs in a saddlepoint
at height h = 0.

We finally remark that a convex immersion of a surface Z with yx(Z) =
=1 — 2k for k> 2, can be obtained from the above convex immersion of
X by attaching & — 2 handles on which K < 0, in a suitable manner.

Remark. Instead of considering the set of all immersions of a closed surface
X in E3, one can also ask for lower bounds of 7(X,f) with f in a given
regular homotopy class of immersions. For example if X is the torus and f
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belongs to the class of the 2 x 2-fold covering of the standard imbedding of
the torus in B3, then (X, f) > 6.

Landbouwhogeschool Wageningen Netherlands
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