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On excision and principal fibrations1)

By P. J. Hilton, Birmingham (England)

The object of this note is to show how the homotopy exact séquences of
[2] and the operator theory of [4] may be used to study the excision maps
which arise in a fibre or cofibre triple2) (see [3]). In the case of the cofibre
triple the conclusion of Theorems 1' and 2' are well-known; in the dual case,
on which we put the greater weight, they appear not to be so familiar. But
in any case we wish to stress that our interest lies in exhibiting the elementary
and automatic procédure whereby Theorems 1 and 2 follow from Propositions
2 and 3 rather than in the actual conclusions of those theorems. The foliowing
theorem then expresses the main content of this note.

/ vTheorem. Let F -> X -> Y be a fibre triple over a connectée, base such that

v**:Hm(Y) -+Hm(X,F)

is an isomorphism (with any coefficient group) if m < k and a monomorphism
if m Je + 1. Then if B is l-connectedz) the excision mapping

e:IT(Y,B) -+11^,3)
is onto if 7Zi(B) 0, i >k + l, and has zéro kernel if n^B) 0, i > k + 2.

As a conséquence we dérive a theorem on principal fibrations which has
been announced by Ganea (Lemma 2.1 of [5]).

We study the category of spaces4) of the homotopy type of CW-eomplexes.
Let

FUX^>Y (1)
be a differential triple and let

(2)

J V

nn{F,B)—*nn{j,B)

x) The content of this note was presented as a talk to the International Colloquium on
Differential Geometry and Topology, Zurich, June 1960.

2) The question was suggested in a letter of F. P. Peterson.
3) It is sufficient that B be n-simple for ail w.
4) With given base-point.
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78 P. J. Hilton

be the associated transgression square, where ex, e2 are the (generalized)
excision maps (see [3]). Then it is known that the square (2) anticommutes if
n > 1. By embedding (2) in a map of exact séquences with the excisions
flanked by identity maps of 77* (X, B) it is easy to deduce that

Proposition 1. // n > 2, then

(a) // £l : nn(p, B) -+ITn(F, B) isontoand s, : ITn^(p, B) ->IIn^(F, B)
has zéro kernel, then e2 : /^.^(F, B) -> IIn(j, B) is onto;

(b) if e2 : nn_x(Y, B) ->i7n(?\ B) is onto, then et : IIn(p, B) -*/7n(F, B)
is onto;

(c) if s1:nn(p,B)^nn(F,B) is (1,1), then e2'.nn_1(Y, B) -+IIn(j9 B)
m (1,1);

(d) if ez:nn^(Y,B)^nn{j,B) is (1,1) and e2:17n(Y, B)-+IIn+1(j, B)
is onto; then ex : IIJp, B) ->IIn(F, B) is (1,1).

Notice that in case (a) above we ask that sx hâve zéro kernel ; if n 2,

Iln^ip, B) does not admit, in gênerai, a natural group structure. We will
henceforth call a transformation with zéro kernel a monomorphism, so that
a monomorphism need not be (1,1).

We now specialize (1) to a fibre triple and will study conditions under which
ex and e2 are onto or monomorphic. We will consider particularly the case

n=l. Let B be the Eilenbeeg-MacLane complex K(O,m). Then
€2:II(Y,B) -^n^j, B) may be identified with

p** : Hm(Y; -> H™(X, F; G)

We thus hâve Serre's theorem [6]

Proposition 2. // Y is (p — l)-connected and F is (q — I)-connected,

2>>2,g>l, then e2:II(Y, K(G,m))-+II1(j, K(G,m)) ,m > l, is an
isomorphism if m < p + q — 1 and a monomorphism if m p + q.

We may immediately infer from Proposition 1 (a) and (c)

Proposition 3. // Y is (p — l)-connected and F is (q — l)-connected,

P>2,q>l, then e1:II1(p, K(G,m)) -^IT^F, K(G,m)), m > 1, is an
isomorphism if m < p + q — 1 «^ « monomorphism if m p + q-

Let Z bethespace Y^PCX obtained by attaching CX to Y bymeans
of p : X -> Y. Then 2F, the suspension of F, is embedded in Z by the
obvious map i : ZF -> Z and it is easy to see that e1 : nx{p, B) ->771(J', B)
may be identified with the restriction map



On excision and principal fibrations 79

Similarly, let D X ^0CF and extend p to q: D -> Y by mapping
CF to the base-point. Then it is easy to see that e2:II(Y, B) -*nt(j, B)
may be identified with

q*:II(Y,B)->n(D,B).

Our main resuit is the following

Theorem 1. // Y is (p — l)-connected and F is (q — l)-connected, p > 2,
q > 1, and if nt(B) 0, i > p + q, then

and e

are onto.
m

We deal in détail with the assertion about sx and prove a crucial lemma.

Lemma 1. Let u: U -> F bethefibrationinducedbyamap g: V->K(Gim)i
m ^ P + Ç and suppose we hâve a diagram

IF

T

Z

may

h
>

k

find

> U

u

F —
l: Z->

> K(G,m)

U with U c^. n i// /~*>~t Z*
IV } 14/1/ 1-=1 tVwith ki ~uh

Proof of Lemma. Now gki ~ guh c-d 0. Thus by Proposition 3, gk ^ 0

so that i may be lifted to s:Z->U with us k. Then usi~uh. Thus
by Proposition 4.6 of [4], (si)* ^ A for some map t : EF -> K(G, m — 1) ;

hère we use the opération of K (G, m — 1) QK(G, m) on Î7 to induce an
opération of Map (A, K(G, m — 1)) on Map (.4, U) as in [4]. But, again
by Proposition 3, t ^ di for some d: Z ->K(G,m — 1). Put Z $d. Then
U ($i)<w ~ (si)* ~ h and wZ c^. us &.

Proof oî Theorem. Under the hypothèses of the theorem the spaces ZF,
Z,D, and Y are ail 1-connected. Thus in proving the theorem we may
suppose that B is 1-connected. Take a Postnikov décomposition of B. We
then hâve the diagram
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(,_1, p + q)

Z * ->K(tz2j 3)

We wish to define a map l : Z -> B with U ~h. We apply the Lemma to
lift the constant map Z -> * successively through the terms of the Postnikov
décomposition. This proves the assertion about e1. The assertion about e2

is proved in exactly the same way ; we merely replace i : SF ->Z by q:D -> Y
and invoke Proposition 2 in place of Proposition 3.

We now complète the generalization of Propositions 2 and 3 by proving

Theorem 2. // Y is (p — l)-connectedand F is (q — l)-connected, p > 2,
q > 1, and if nt(B) 0, i >p -\- q + l, ihen

and e

are monomorphisms.
We again express the essential step in the proof in the form of a lemma.

Lemma 2. Let u: U -> F beihefibrationinducedbyamap g: V->K(G,m)y
m < p + q + 1, and let nt{V) 0, i > p + q + 1. TAm i/ sx : /Mp, F) ->
^U^F, F) is a monomorphism, so is e1 :nx{p, U) -^IT^F, U).

Proof of Lemma. Let l: Z -> U be a map. We must show that li^O
implies l c*. 0. Now if Zi ~ 0 then uli ~. 0 : ZF -> F. Thus by hypothesis
ul cm 0, so that l ~ les, where h : K(G, m — 1) -> U is the embedding of
the fibre and s is a map s: Z -> JT (G, m — 1). Then &si ^0 so that
si ~ (%)£' for some tf :ZF ->QV. Now by Theorem 1, i* : i7(Z, Q F) ->
->II(ZF,QV) is onto so that «'^ Si for some £:Z-».GF. Then
si ^ (iig)ti : 27jF -> Z((?, m — l) so that, by Proposition 3, 5^ (Og)t. But
then l ~ les ~ k{Qg)t ~ 0 and the Lemma is proved.
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Proof of Theorem, Again we may suppose B 1-connected and take a
Postntkov décomposition of B. We are given a map l : Z -> B such that
H ~ 0 and the Lemma enables us to deduce successively that the projections
Z -> Bir), r 2,3,... 9p-\- q, of l are nullhomotopic ; the final,,projection"
is of course just l itself. The changes necessary to prove the resuit for e2 are
obvious.

We may apply Theorem 1 to obtain conditions under which a fibration
with QQ in the fibre is induced by a map of the base into Q. The resuit may
be expressed by

j pTheorem 3. Let QQ -> X~> Y be a fibre triple where Y is (p — l)-con-
nected, p > 2, and Q is l-connected with the homotopy groups of Q zéro
outside a band of width p — 1. Then the fibre triple is équivalent to one induced
by a map Y ->Q.

Proof. Suppose that the groups 7i{(Q) are zéro except perhaps if
q-\-l<i<q + p — 1. Then QQ is (q — l)-connected, q > 1, and we

may apply Theorem 1 to deduce that e1:II1(p,Q) ->IJ^QQyQ) is onto.
Thus, there exists a commutative diagram

QQ X Y

\u \v \w

QQ > EQ Q

with u ~ 1. It is now a standard resuit that the given fibre triple is équivalent

to that induced by w : Y -> Q, in the sensé that we hâve a commutative
diagram

QQ > X > Y

where the lower triple is that induced by w.
The duals of thèse results appear to hâve an independent interest ; we state

the results in a form which emphasizes the duality, but perhaps disguises their
familiarity. Let

fXxXy {V)
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be a differential triple and

the associated (covariant) transgression square. There is then the obvious dual
of Proposition 1. We specialize (1') to a cofibre triple. Now if A is the Moore
çomplex Kf(G,m) then e1:II1(A,i)-^TI^A, F) may be identified with

so that, by an évident extension of the Blakebs-Massey theorem [1], we hâve

Proposition 3'. // Y is (p — l)-connected and F is (q — l)-connected,

P>2,q>2, then et : II^K'iG, m), i) -*II1(K'(G, m), F) is an isomor-
phism if m < p + q — 4 and onto if m p + q — 3. // G is free then

s± is an isomorphism if m p + q — 3 and onto if m p + q — 2.
We infer (from Proposition 1', which we leave implicit)

Proposition 2'. // Y is (p — l)-connected and F is (q — l)-connected,
P > 2, q > 2, then e2:II(Kr(G, m), Y) ->i^(Z'(<?, m), g) is an isomorphism

if m <p + q — 4 and onto if m p + q ~~ 3. // G is free then

e2 is an isomorphism if m p + q — 3 and onto if m p -\- q — 2.
Let Z be the space Y <^{EX, the fibre space over Y induced by the

map i. There is then an évident projection p of Z onto QF, and
sx : IIX (A, i) -> JJX (A, F) may be identified with

Similarly if D X<^qEF, then i lifts canonically into j: Y ->D and
Y) ->II1(A, q) may be identified with

Then we may prove

Theorem V. If Y is (p — l)-connected and F is (q — l)-connected,

if A is 1-connected and ^(A) 0, i >p -\- q — 1,

and s2: 77(^1, 7)
are i
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We must explain that we are demanding the vanishing of the cohomology
groups of A in dimensions > p + q — 1 with any coefficients. This is, of
course, équivalent to the requirement that the intégral homology groups of
A should vanish in dimensions > p -f q — 1 and that Hp+q_2(A) should
be free. A similar explanation was, of course, superfluous in the case of Theo-
rem 1 since the homotopy groups of B vanish in dimensions > p + q with
any coefficients if and only if they vanish in dimensions >p + q with in-
teger coefficients.

The proof of Theorem 1' proceeds by way of a homology décomposition5)
of A and employs the following lemma.

Lemma V. Let u : V -> U be the cofibration induced by a map
g : K'(G, m) ->V, m <p -\- q — 4± or m p + q — 3 and G free; and

suppose we hâve a diagram

with pk ~hu. Then we may find l\U->Z with pi ~h, lu ~k.
Similarly we prove

Theorem 2\ // Y is (p — l)-connected and F is (q -— l)-connected,

P, q ^ 2, and if A is 1-connected and ^(A) 0, i >p + q — 2, then

and e2:II(A, Y) -+II1(A,<l)

are monomorphisms.
q i

Now let ZQ +- X <- Y be a cofibre triple ; we obtain from Theorem 1'

conditions under which the cofibration is induced by a map Q -> F. Precisely
q i

Theorem 3'. Let ZQ<-X<- Y be a cofibre triple where Y is (p — 1)-
connected and Q is 1-connected with the homology groups of Q zéro outside a
band of width p — 1. Then the cofibre triple is équivalent to one induced by a
map Q -> Y.

Notice that we can tolerate the homology groups of Q occupying a band

8) If A is actually (p -\- q — 2)-dimensional we may replace the homology décomposition
by a cellular décomposition and dispense with the condition that A be 1-connected. In any
case the argument in this dual situation closely resembles a traditional obstruction argument.
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of width p provided that the top homology group is free and p ^ 2 ; with this
improvement Theorem 3' takes account of the important case of a space Q
with a single non-vanishing cohomology group6) G when G is finitely gen-
erated.
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•) With integer coefficients.
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