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On excision and principal fibrations')

By P. J. Hwrown, Birmingham (England)

The object of this note is to show how the homotopy exact sequences of
[2] and the operator theory of [4] may be used to study the excision maps
which arise in a fibre or cofibre triple2) (see [3]). In the case of the cofibre
triple the conclusion of Theorems 1’ and 2’ are well-known ; in the dual case,
on which we put the greater weight, they appear not to be so familiar. But
in any case we wish to stress that our interest lies in exhibiting the elementary
and automatic procedure whereby Theorems 1 and 2 follow from Propositions
2 and 3 rather than in the actual conclusions of those theorems. The following
theorem then expresses the main content of this note.

Theorem. Let F > X5 ¥V bea fibre triple over a connected base such that
p** . H™"(Y) - H™"(X, F)

18 an isomorphism (with any coefficient group) if m < k and a monomorphism
if m=k -4+ 1. Then if B ts I-connected?®) the excision mapping

¢:II(Y, B) - I1,(j, B)

1sontoif n;(B) = 0,1 >k + 1, and has zero kernel if m;(B) = 0,1 >k + 2.
As a consequence we derive a theorem on principal fibrations which has
been announced by GANEA (Lemma 2.1 of [5]).

We study the category of spaces?) of the homotopy type of CW-complexes.
Let

rilxty (1)
be a differential triple and let
0
Hn(pa B) —> Hn—-l(Y’ B)
lel lez 2)

J
Hn(F’ B) —> Hn(j’ B)

1) The content of this note was presented as a talk to the International Colloquium on Dif-
ferential Geometry and Topology, Ziirich, June 1960.

?) The question was suggested in a letter of F. P. PETERSON.

3) 1t is sufficient that B be n-simple for all n.

%) With given base-point.
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be the associated transgression square, where ¢, ¢, are the (generalized) ex-
cision maps (see [3]). Then it is known that the square (2) anticommutes if
n> 1. By embedding (2) in a map of exact sequences with the excisions
flanked by identity maps of I7, (X, B) it is easy to deduce that

Proposition 1. If n > 2, then

(a) If &:1,(p, B)>11,(F, B) isontoand ¢,:1I,_,(p, B) = 1I,_,(F, B)
has zero kernel, then e, :1I, (Y, B) - II,(j, B) s onto;

(b) of &:1I, (Y, B) —1II,(j, B) 18 onto, then ¢,: 11, (p, B) = II,(F, B)
18 onto;

(¢) f &:I,(p, B) =>1II,(F,B) is (1,1), then ¢&:1I, (Y, B) -~ 1I1,(j, B)
8 (1,1);

(d) if &: T, y(Y, B) >1I,(j, B) is(1,1)and &: IT,(¥, B) > IT,,,(j, B)
18 onto; then ¢, :II (p, B) -1l ,(F, B) s (1,1).

Notice that in case (a) above we ask that ¢, have zero kernel; if n = 2,
II, ,(p, B) does not admit, in general, a natural group structure. We will
henceforth call a transformation with zero kernel a monomorphism, so that
a monomorphism need not be (1, 1).

We now specialize (1) to a fibre triple and will study conditions under which
g, and ¢ are onto or monomorphic. We will consider particularly the case
n=1. Let B be the EILENBERG-MACLANE complex K(G,m). Then
&:II(Y, B) —»1I1,(j, B) may be identified with

p**: HM(Y;@) > H™(X,F;G) .
We thus have SERRE’s theorem [6]

Proposition 2. If Y 4s (p — 1)-connected and F 1is (g — 1)-connected,
p=>2,q>1, then &:II(Y,K(G@,m)) -1I,(7,K(@,m)),m >1, i3 an
isomorphism if m < p 4+ q — 1 and a monomorphism if m = p + q.

We may immediately infer from Proposition 1 (a) and (c)

Proposition 3. If Y 14s (p — 1)-connected and F is (q — 1)-connected,
p>2,q>1, then ¢ :1I,(p, K(Q,m)) -I1I,(F,K(G,m)),m>1, is an
1somorphism if m < p + q¢ — 1 and a monomorphism if m = p + q.

Let Z be the space Y v,CX obtained by attaching CX to Y by means
of p: X - Y. Then XF, the suspension of F, is embedded in Z by the
obvious map 7:2F — Z and it is easy to see that ¢,:1I,(p, B) - II,(F, B)
may be identified with the restriction map

i*:I1(Z, B) > II(ZF, B).
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Similarly, let D= X v,CF and extend p to ¢: D — Y by mapping
CF to the base-point. Then it is easy to see that &, :71(Y, B) —II,(j, B)
may be identified with

¢*: (Y, B) - II(D, B) .
Our main result is the following

Theorem 1. If Y s (p — 1)-connected and F is (@ — 1)-connected, p > 2,
q=>1, andif n,(B)=0,1>p+ q, then

& : I (p, B) > II,(F, B)

and & :I1(Y, B) > 1I,(j, B)
are onto.
We deal in detail with the assertion about ¢, and prove a crucial lemma.

Lemma 1. Let w: U — V bethe fibration inducedbyamap g: V — K (G, m),
m < p + q and suppose we have a diagram

h
2F —— U

[yl

z "> v-9, k@,m

with ki ~uh. Then we may find 1:Z - U with li ~h, ul ~Fk.

Proof of Lemma. Now gkt ~ guh ~ 0. Thus by Proposition 3, gk ~ 0
so that £ may be lifted to s: Z - U with us = k. Then usi ~ uh. Thus
by Proposition 4.6 of [4], (st)! =~k for some map ¢:2F - K(G@,m — 1);
here we use the operation of K(G,m — 1) = QK(G,m) on U to induce an
operation of Map (4, K(G,m — 1)) on Map (A, U) as in [4]. But, again
by Proposition 3, ¢ ~ di for some d:Z — K(G,m — 1). Put I = s?. Then
It = (st)¥ ~ (si)! >~ h and ul >~ us==k%.

Proof of Theorem. Under the hypotheses of the theorem the spaces X'F,
Z,D, and Y are all 1-connected. Thus in proving the theorem we may

suppose that B is 1-connected. Take a PosTNIRKOV decomposition of B. We
then have the diagram
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Z'F————’IL—>B

|

B(p+q—2) g K(”p+q-—1’ D + q)

B(m——l) - K(nm: m + 1)

B(m-—2) AK(nm—-l’ m’)
By — K(n3, 4)
Z —> x > K(m,, 3) .

We wish to define a map 1:Z — B with I3~ k. We apply the Lemma to
lift the constant map Z — x successively through the terms of the PosTNikov
decomposition. This proves the assertion about &,. The assertion about e,
is proved in exactly the same way ; we merely replace ¢: XF —-~Z by q: D - Y
and invoke Proposition 2 in place of Proposition 3.

We now complete the generalization of Propositions 2 and 3 by proving

Theorem 2. If Y is (p — 1)-connected and F is (@ — 1)-connected, p > 2,
q=>1, and if 7;(B)=0,1>p+q+ 1, then

e : I, (p, B) —1I,(F, B)
and ¢,:1I1(Y, B) - 11,(j, B)

are monomorphisms.
We again express the essential step in the proof in the form of a lemma.

Lemma 2. Let w: U — V bethe fibration inducedbyamap ¢g: V— K(Q,m),
m<p+qg+1, andlet 7;(V)=0,t:>p+q+ 1. Thenif & :II,(p, V) —
—1IT,(F, V) is a monomorphism, so is ¢, :II,(p, U) - II,(F, U).

Proof of Lemma. Let [:Z — U be a map. We must show that 7~ 0
implies I ~ 0. Now if [¢ ~ 0 then uli ~ 0:2F — V. Thus by hypothesis
ul ~ 0, so that I ~ ks, where k: K(G,m — 1) - U is the embedding of
the fibre and s is a map s:Z - K(@,m — 1). Then kst~ 0 so that
81 ~ (2¢g)t' for some t': TF - QV. Now by Theorem 1, +*:II(Z,2V) —
—=II(XF,Q2V) is onto so that ' ~1¢1 for some ¢:Z —-QV. Then
81~ (2¢g)ti: 2F — K(G, m — 1) so that, by Proposition 3, s ~ (2¢)t. But
then | ~ ks ~ k(R2¢g)t ~ 0 and the Lemma is proved.
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Proof of Theorem. Again we may suppose B 1l-connected and take a
PostNiROV decomposition of B. We are given a map !:Z — B such that
It ~ 0 and the Lemma enables us to deduce successively that the projections
Z—->Bg,,r=2,3,...,p+q, of I are nullhomotopic; the final ,,projection”
is of course just [ itself. The changes necessary to prove the result for ¢, are
obvious.

We may apply Theorem 1 to obtain conditions under which a fibration

with 2@ in the fibre is induced by a map of the base into ¢. The result may
be expressed by

Theorem 3. Let QQ 5X2Y bea fibre triple where Y is (p — 1)-con-
nected, p > 2, and @ +is l-connected with the homotopy groups of @ =zero

outside a band of width p — 1. Then the fibre triple ts equivalent to one tnduced
byamap Y - Q.

Proof. Suppose that the groups =x,;(¢) are zero except perhaps if
q+1<i<qg+p—1. Then 2@ is (¢ — 1)-connected, ¢ > 1, and we
may apply Theorem 1 to deduce that ¢, :11,(p, Q) — I1,(2¢Q, Q) is onto.
Thus, there exists a commutative diagram

20— X ——> Y

Pk

with w ~ 1. It is now a standard result that the given fibre triple is equiva-
lent to that induced by w: Y — @, in the sense that we have a commutative
diagram

20 —> X ——> Y

L

QQ—— E,— Y,

where the lower triple is that induced by w.
The duals of these results appear to have an independent interest ; we state

the results in a form which emphasizes the duality, but perhaps disguises their
familiarity. Let

q )
F>X-—>Y (1)
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be a differential triple and

0
Hn(A’ 7’) —> Hn——l(As Y)

L

J
Hn(A’ F)—_—_) Hn(A: Q)

the associated (covariant) transgression square. There is then the obvious dual
of Proposition 1. We specialize (1') to a coftbre triple. Now if A is the MOORE
complex K'(G,m) then ¢,:1I,(4,¢) > 1II,(4, F) may be identified with

Tk * i1 (G5 X, Y) > 70,1, (G F)
so that, by an evident extension of the BLAKERS-MASSEY theorem [1], we have

Proposition 3'. If Y <4s (p — 1)-connected and F 1is (q — 1)-connected,
p>2,q9>2, then ¢ :II,(K'(G,m),7) - II,(K'(G,m), F) 1is an isomor-
phism if m <p+q—4 and onto if m=p+q— 3. If G is free then
g, 18 an tsomorphism if m = p 4+ q — 3 and onto if m = p + q — 2.

We infer (from Proposition 1’, which we leave implicit)

Proposition 2. If Y is (p — 1)-connected and F 18 (q — 1)-connected,
p=>2,9>2, then &:II(K'(G,m),Y) -II,(K'(G,m),q) is an isomor-
phasm if m <p+qg—4 and onto if m=p+q— 3. If G is free then
& s an 1somorphism if m = p + q — 3 and onto if m = p + q — 2.

Let Z be the space Y ~,EX, the fibre space over Y induced by the
map ¢. There is then an evident projection p of Z onto QF, and
g II,(A,7) ->II,(A, F) may be identified with

px (A, Z) ~1I(4, QF) .

Similarly if D = X ~ EF, then i lifts canonically into j: ¥ — D and
g:1I(A,Y)—~1I,(A, q) may be identified with

j (A, Y) > 1I(4, D).
Then we may prove

Theorem 1'. If Y is (p — 1)-connected and F 18 (q — 1)-connected,
p=>2,9>2, and if A is I-connected and H'(A) =0, 1 >p+q—1,
then

g :1I,(4,1) -1I,(4, F)

and e,:I1(A,Y)—>1I,(4,q)
are onto.
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We must explain that we are demanding the vanishing of the cohomology
groups of A in dimensions > p 4+ ¢ — 1 with any coefficients. This is, of
course, equivalent to the requirement that the integral homology groups of
A should vanish in dimensions >9p + ¢ — 1 and that H_ , _,(A4) should
be free. A similar explanation was, of course, superfluous in the case of Theo-
rem 1 since the homotopy groups of B vanish in dimensions > p + ¢ with
any coefficients if and only if they vanish in dimensions > p + ¢ with in-
teger coefficients.

The proof of Theorem 1’ proceeds by way of a homology decomposition 3)
of A and employs the following lemma.

Lemma 1'. Let wu:V —U be the cofibration induced by a map
g:K'G@,m)>-V, m<p+q—4 or m=p+q—3 and G free; and
suppose we have a diagram

h
QF «———U

/I

Z «—V «—— K'(G,m)

with pk ~ hw. Then we may find 1: U —~Z with pl~h, lu~k.
Similarly we prove

Theorem 2. If Y <¢s (p — 1)-connected and F is (q — 1)-connected,
p,q>2, and if A s I-connected and H*'(A) =0, 1 >p+ q — 2, then
g I, (A,7) =-1I,(A, F)

and &:I1I(4,Y)—>1I,(4,q)
are monomorphisms.

Now let 2Q L XY be a cofibre triple; we obtain from Theorem 1’
conditions under which the cofibration is induced by a map @ — Y. Precisely

Theorem 3'. Let Q< X< Y be a cofibre triple where Y is (p — 1)-
connected and @ s I-connected with the homology groups of @ =zero outside a
band of width p — 1. Then the cofibre triple is equivalent to one induced by a
map @ - Y.

Notice that we can tolerate the homology groups of @ occupying a band

§) If A is actually (p + ¢ — 2)-dimensional we may replace the homology decomposition
by a cellular decomposition and dispense with the condition that 4 be l-connected. In any
case the argument in this dual situation closely resembles a traditional obstruction argument.
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of width p provided that the top homology group is free and p > 2; with this
improvement Theorem 3’ takes account of the important case of a space @
with a single non-vanishing cohomology group®) G when G is finitely gen-
erated.
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¢) With integer coefficients.
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