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Minimal Surfaces in the Large’)

By RoBERT OSSERMAN, Washington (USA)

1. Introduction

The purpose of this paper is to give what seem to be the “correct’’ definitions
for the global study of minimal surfaces, and to derive a number of conse-
quences. We obtain, in particular, the following result:

A complete minimal surface whose normals omit a neighborhood of some direc-
tion must be a plane.

This theorem, with the additional hypothesis that the surface be simply
connected, was conjectured by NIRENBERG, and was proved in [3]. The proof
given there, however, is quite different from the present one. In fact the main
result of this paper is, in a sense, Lemma 5, in which we show that a certain
geometric problem concerning minimal surfaces is precisely equivalent to a
purely analytic problem concerning analytic functions in the unit circle. Once
this equivalence is established, the above result follows almost trivially.
Furthermore, we use it to disprove a second conjecture of NIRENBERG, in
which he suggests that one should be able to replace the assumption that the
normals omit a full neighborhood, by the weaker one that the normals omit
three distinct directions. The use of LiouviLLe’s Theorem in proving the first
conjecture, and a possibly analogous use of Picarp’s Theorem, made the
second conjecture quite plausible, but we shall in fact prove:

There exists a complete, simply-connected minimal surface whose normals omit
precisely four distinct directions.

This result, in combination with the previous one, leads one immediately to
ask if there is a best possible theorem of this type. For reasons which will

become apparent in the course of the proofs given below, we are led to make
the following guess.

Conjecture?). Given a closed point set E on the unit sphere, necessary and
sufficient that there exist a complete minimal surface whose normal map omits
precisely the points of K, is that E have logarithmic capacity zero.

1) This paper was presented as a talk to the International Colloquium on Differential Geometry
and Topology at Zurich, June 1960.

%) After this paper was written, L. ABLFORS pointed out that half of the above conjecture

(the necessity) follows easily from Lemmas 5 and 6 below. We have added a brief section at the
end of this paper giving the reasoning.
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The author wishes especially to thank Professor H. Hopr for a number of
extremely helpful comments.

2. Simply-connected minimal surfaces

Throughout this paper we shall use the following notation:

D will denote either the unit disk, | £ | < 1, or the entire complex {-plane,
| €] < oo.

E? will denote EUCLIDEAN 3 space.

x¥ will denote a point of E® with coordinates (x,, x,, x;), or the corre-
sponding vector.

Definition. A simply-connected minimal surface S is a mapping x, = h,({),
k=1,2,3, of D into E3, such that the functions 4,(() are harmonic
and satisfy the further conditions that if we set

oh . Oh :
() = GF —igk, C=ttin, 8)

then 3
a) Zgi(f)=0,

k=1

3 (2)
b) kfll pi(0) ]| #0,

forall ¢ in D.

Remark. From the fact that the functions %,({) are harmonic, it follows
that the functions ¢, () are analytic. Thus, to every simply-connected minimal
surface there corresponds by (1) a set of analytic functions ¢,({) satisfying
(2). Conversely, if we are given any three analytic functions ¢,(l) satisfying
(2), and ask for harmonic functions A4,(l) related to ¢,({) by (1), we have

h () = Re f@,(£)dE

which means that the functions %,(f) are determined up to an additive con-
stant, or more geometrically, that the analytic functions ¢,({) determine S
up to translation.

By way of justification of our definition, we note that in terms of the clas-
sical notation

E=x%, F=zxz%, G=x% (3)
we have the formulae 3
2ot =(E —G)— 2iF,
k=1

) (4)
gt =E+G.
ku=l
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Hence condition (2a) simply says that F = G, F = 0, which means that
(&, n) are isothermal coordinates. Condition (2b), in the presence of a), pre-
cisely guarantees that the JAcoBian matrix of the map of D into E2® has
everywhere (maximum possible) rank two. This latter condition implies that
each point has a neighborhood which is mapped one-to-one onto a piece of
surface 8’ in A3, and the fact that the coordinate functions =z, are har-
monic in terms of isothermal parameters is a well-known condition for 8’ to
be a minimal surface in the classical sense.

Conversely, if we start with a “general surface’’ S, defined by a mapping
of an abstract differentiable surface S, into E3, where we assume that the
JAcoBian matrix of the mapping has everywhere rank two, then the metric
in E?® induces a differential metric on §,, and a corresponding complex-
analytic structure (provided that S, is orientable, which it will be, in particu-
lar, if it is simply-connected). Namely, the admissible coordinates are those
which represent isothermal parameters with a given orientation. The condition
that the image surface in E?® be locally a minimal surface is, as mentioned
above, that the coordinate functions be harmonic in terms of isothermal
parameters. We are thus led back to conditions (1) and (2) in terms of arbitrary
isothermal parameters &,#. Finally S is said to be simply-connected if S,
is, and we can then, by the KoEBE uniformization theorem, choose a single
coordinate system on all of §,, and in fact choose this to be either the unit
disk or the plane. (The alternative of the sphere cannot occur here, for if S,
were compact, then all the coordinate functions, being harmonie, would be
constant.)

For all the classical local properties of minimal surfaces used here and in
the following, we refer to Chapter II, “Minimal surfaces in the small,” of the
book of Rapo [5].

We proceed further, as in the chapter just cited, by replacing the triple of

functions ¢, satisfying relation (2a) by a pair of essentially arbitrary func-
tions f,g.

Lemma 1. Given an arbitrary simply-connected mimnimal surface, and the
associated analytic functions @, (8) defined by (1), +f we set

[ =@ —1py (6)

9= @s/(@ — 190) , (6)
then f and g have the properties:

A. | s analytic throughout D; the zeros of f, tif any, are of even order.

B. ¢ ts meromorphic in D; poles of g correspond precisely to zeros of f,



68 ROBERT OSSERMAN

and more specifically, g has a pole of order m at a point where f has a zero
of order 2m.
The functions ¢, are expressed in terms of f and g by

¢ = 3f(1 —¢%)
?o =5 (1 + g7 (7)
®s = fg .

Proof. We note first that condition (2a) can be rewritten in the form

(1 — T@e) (@1 + ipg) = — 95 . (8)

Thus when f= 0 we have ¢, = 0, and the left-hand side of (8) must have
a zero of even order. But the two factors on the left cannot vanish simultane-
ously, since this would imply ¢, = ¢, = @3 = 0, contradicting (2b). Thus a
zero of @, — iy is always of the same order as the zero of ¢ at the same
point. This establishes A and B. Equations (7) follow immediately from
(5), (6), and (8).

Lemma 2. Given any two functions f and g in the domain D, satisfying
conditions A and B of lemma 1, the functions ¢, defined by (7) will satisfy (2),
and thus define a unique minimal surface up to translation.

Proof. Conditions A and B guarantee that the functions ¢, will be ana-
lytic throughout D. From (7) we have

Zlgplt=4111°0+ 1919 ©

and this cannot vanish because of B. Condition (2a) is a direct verification.

By virtue of lemmas 1 and 2, we see that the study of simply-connected
minimal surfaces reduces to the study of the two, essentially arbitrary, func-
tions f and g. The only restriction #s on their zeros and poles, as given in
A and B.

The reason why this particular pair of functions is better suited to studying
the surface than certain other pairs which might serve equally for its repre-
sentation, is that the functions f and ¢ have important geometric interpre-
tations. A special case is the following.

Lemma 3. The condition f = 0, or equivalently, g = oo, occurs precisely
at points where the normal to the surface S points in the direction of the positive
Zg-AXLS.

Proof. Using ¢, = i¢p,, we find that
X X%=1(0,0,|¢,|?) if f=0. (10)
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Lemma 4. If welet g = u + tv, we have for the unit normal n,

. 2u 2v lgl2 —1
=T T e 1A -
n=(0,0,1), if g= oo. (12)

Proof. (12) follows directly from (10). (11) follows from (7). More specif-
ically, we have

¥ =3(s(1 —u?+ %) + 2tuv, —t(l 4 u® — v?) — 25uv, 25u — 2{v)
%, = $(—t(1 — u? 4 v®) + 2suv, —s(1 4 u? — v?) + 2tuv, —2sv — 2iu)

and
XX ¥, = 3(s® + 8 (1 + w? + v?) (u, v, $(u® + v — 1)) (13)
=320+ |g[®)(u,v,3(g[®—1))

from which (11) follows.

Lemma 4 plays a key role in all that follows, the reason being that (11) is
precisely the formula for stereographic projection from the wu,v-plane onto
the unit sphere. We thus have the following crucial geometric interpretation
of the function ¢(¢):

The function g(l) defined by (6) may be obtained as the composition of three
mappings: the defining map of S from D into E3, followed by the Gauss
spherical map (by parallel normals) into the unit sphere, followed by stereo-
graphic projection from the point (0, 0, 1).

In particular, the geometric statement that the normals to S omit certain
directions is equivalent to the analytic one, that g({) omits certain values.

We turn next to the RiEmanNian metric induced on D by the surface S.
We have for the element of arc length ds, the formula

ds=%|fl(L+1g]*|dl] (14)

which follows either from (13), or from (4) and (9), in view of the fact that
for isothermal coordinates we have ds? = E | d¢ |2, and B = G = (E + G)/2.
We recall some standard definitions.

Definition. A path going to the boundary of a region is the continuous image
of the half-line ¢ > 0 such that for any compact subset K of the region
there exists #, such that the image of ¢ >{, lies outside of K.

Definition. A surface with a RiEmaNNian metric is complete if every path
going to the boundary has infinite length.

For a discussion of this notion of completeness, and its relation to non-
continuability, we refer to the classical paper of Horr-Rivow [1].
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Essentially what we have done up to this point is to show that an arbitrary
simply-connected minimal surface can be represented by a pair of functions
f, g, and to express some of the basic surface quantities, such as normal and
element of arc length, in terms of these functions. We are now in a position
to give a purely analytic formulation of the kind of geometric theorem we
wish to consider.

Lemma b. Let E be a point set on the unit sphere, containing at least three
points, and in particular, the point (0,0, 1). Then the following two statements
are equivalent.

I. A4 complete simply-connected minimal surface whose normal map omits the
points of E must be a plane.

II. Let f and g be arbitrary analytic functions in the unit disk || <1,
subject to the conditions that f is never zero, and g mnever takes on the values
which correspond to E wunder stereographic projection from (0,0, 1). Then
there is a path C going to the boundary of the unit disk for which

g|f|(1+|g|2)ld(§|<00- (15)

Proof. Suppose first that for a given point set F, the statement II is
false. Then there exists a particular pair of analytic functions f,g with
f % 0, such that

g|f|(1+I9|2)|dCl=<>0 (16)

for all paths C going to the boundary. Since f# 0 and ¢ # oo, these
functions automatically satisfy conditions A and B of lemma 1, and thus by
lemma 2 can be used to define a simply-connected minimal surface S. By
(14), we see that condition (16) means that S is complete. By lemma 4, the
fact that g omits the values corresponding to £ means that the normal map
of 8 omits the points of E. Finally, as will be proved in lemma 6, g could
not be constant, or else (16) would not hold for all paths C. The minimal
surface § would therefore not be a plane, it would be complete and its normal
map would omit the points of Z. Thus if II is false, I is also false.

Suppose next that II is true for a particular set Z. In order to show that
I is true, we start with an arbitrary simply-connected minimal surface S
whose normal map omits the points of E, and show that either it is a plane,
or else it is not complete. We have two cases to consider, according as the
domain D of definition of S is the whole plane or the unit disk.

Case 1. D is the whole plane, | {| < co. Since the set E contains at
least three points, we have by lemma 4 that the function g¢({) associated
with 8§ is a meromorphic function in the whole plane which omits three
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values, hence is constant. Again by lemma 4, this means that S has a single
normal direction, and if it is complete it must be a plane.

Case 2. D is the disk, | {| < 1. In this case the functions f and g as-
sociated with S satisfy the hypotheses of statement II, and hence (15) must
hold for some path C. But in view of (14), this says precisely that 8 is not
complete.

Thus if IT is true, I is also true, and the lemma is proved.

In the course of the above proof we made use of a purely function-theoretic
lemma, which also plays a key role in the proof of the main theorem. It is the
following.

Lemma 6. Let f({) be an arbitrary function analytic in | {| <1 subject
only to the condition that it is never zero. Then there exists a path C going
to the boundary of | {| < 1, such that

JIHO1d]| < oo
c

Proof. Let w = F(z) = [;f({)d{. Then F(z) maps |z|<1 onto a
RiemMANN surface which is not the whole plane and which has no algebraic
branch points. Such a surface must have a boundary point at finite distance.
More specifically, if we let z = G (w) be that branch of the inverse function
satisfying G(0) = 0, then since |G(w)| <1, there is a largest disk
|w| < R < oo in which @G(w) is defined. There must then be a point w,
with |w,| = R such that @Q(w) cannot be extended to a neighborhood of
wy. Let L be the line segment from 0 to w,, and let C be the image of L
under G(w). Then C must go to the boundary of |z | < 1, since otherwise
there would be a sequence w, —w, such that 2z, = G(w,) >z, with
| 20| < 1. But then F(z) = w,, and since F'(z,) = f(2,) # 0, F(z) would
map a neighborhood of 2, one-to-one onto a neighborhood of w,, so that
(/(w) would be extendable to a neighborhood of w,. Thus the path C goes
to the boundary of |z| < 1, and we have

i@ ]de| = Jldw|=R<oo.
c L

Combining lemmas 5 and 6, we arrive easily at our first main result.

Theorem 1. If the normals to a complete simply-connected minimal surface
S omit a full neighborhood of some direction, then S is a plane.

Proof. We may choose axes in E3 so that the normals omit a neighborhood
of the positive x;-axis. Then by lemma 5 we must show that (15) holds for
some path C', where in this case f 40 and |g| < M < co. But this is an
immediate consequence of lemma 6.
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Theorem 2. There exists a complete simply-connected minimal surface S
whose normals omit precisely 4 directions.

Proof. Denote by R the region consisting of the complex z-plane minus
the points 2nmi¢, where =» runs through all the integers. The function
G(z) = 1/(1 — ¢®) never assumes the values 0,1, co in R.

Denote by B the universal covering surface of R, which is known to be
conformally equivalent to the unit disk. Let &({) be a conformal map of

| ] <1 onto R and let IT be the projection map of R onto R. Then
F(§) =1(D(f)) is a locally one-to-one analytic map, and hence f({) =
=F'(£) £0. We set g¢(¢) =[G(F(¢))]¥, where we may choose either
branch of the square root. Then ¢({) omits precisely the values 0, 4 1, oo.
If we construct the simply-connected minimal surface S associated with
this particular choice of f, g, its normal map omits the four corresponding
points of the sphere. We now show that this surface is complete.

Let C be an arbitrary curve going to the boundary of | {| <1 and let
C’ be the image of C under z = F({). We then have

Cflf(i)l(1+lg(6)iz)ldil =05’(1+1G(Z)l)ldzl- (17)
We consider two cases.
Case 1. C' has infinite length. Then we have
JQ+16@1) |dz) > [dz] = co.

Case 2. C’ has finite length. Then ¢’ must tend to a specific point z,,
and since C goes to the boundary of | {| < 1,2, must be one of the points
2nmt. In a suitable neighborhood of z, we therefore have

l—e=(z—2)[1+}E—2) + ]
and
1

2|z — 20| °

|G(R) | =

If we let C” be the part of C’ lying in this neighborhood, we have
| dz|

= 00.
2 — 2|

JA+16@)]) |dz]| > 52'
o
The integral in (17) is therefore divergent for every path C going to the
boundary. Thus the surface is complete and the theorem is proved.
Before turning to the case of general minimal surfaces, there are several
comments which are worth making in the simply-connected case.
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Remark 1. If one observes closely the construction used in Theorem 2, it
becomes clear that what was actually done was to construct a non-simply-
connected minimal surface using the region R, and then use the somewhat
artificial device of the universal covering surface to obtain a simply-connected
surface with essentially the same properties. This is precisely the device which
makes it possible to omit the hypothesis of simple connectivity in Theorem 1,
as will be pointed out in the next section. However, one could contend that a
surface obtained in such a manner was not “truly” simply-connected. For
example, if we choose D to be the whole ¢{-plane in the definition of a simply-
connected minimal surface, and set

z; = Re {cosh {}
23 = Im {sinh {}
z, = Re {(},

then we obtain the ordinary catenoid
a? + 3 = cosh? x,

covered infinitely many times. The surface constructed in Theorem 2 can be
shown to be of this nature. However, without giving details, we state the
following result:

If we use the same function g¢(C) as in the proof of Theorem 2, but modify
the function f() slightly, then we obtain a complete simply-connected minimal
surface whose normals omit four directions, and which has the additional pro-
perty that no two neighborhoods in D map onto the same neighborhood in space.

Remark 2. By virtue of lemma 5 the geometric problems we have been
considering are reduced to the following analytic problem: given two analytic
functions f,g in || <1 such that f +# 0, what condition on g implies the
existence of a path C to the boundary such that §|f| (1 +|g|?)|dl| < oco?

c

What we have shown in Theorems 1 and 2 is that g bounded is such a
condition, while g omitting four values is not. A reasonable guess is that ¢
should be of bounded characteristic (beschrdnktartig). From a theorem of
NEVANLINNA ([2], p. 201) it follows that if E is a closed set of points in the
plane, then the necessary and sufficient condition that every meromorphic
function g(¢) in | {| <1 whose values omit the set E must be of bounded
characteristic is that E have positive capacity. It was this theorem that led
to the conjecture stated in the introduction.
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3. General minimal surfaces

Definition. A minimal surface 8 is a mapping of an abstract differentiable
surface S, into E3, such that each point of S, has a neighborhood in which the
complex parameter {, with | {| < 1, is an admissible parameter, and the
induced map of | {| < 1 into A3 defines a simply-connected minimal surface.

We may note briefly that in the case that S, is orientable we have an in-
duced conformal structure. The functions ¢, as well as f defined by (1) and
(5) depend on the local parameter and in fact, have the character of analytic
differentials. On the other hand, the function g defined by (6) is invariant,
and represents a meromorphic function on the whole surface, with the same
geometric interpretation as before.

In any case, even where 8, is not orientable, it will have an induced
RiEMANNian metric ds.

Definition. If a point p of 8§ corresponds to a point p, of S,, then we
define the distance from p to the boundary to be the number

d = inf fds
C

where C is an arbitrary path from p, to the boundary of S,.
In particular, § is complete if d = oo.
We also have a universal covering surface So of 8, which will be simply-

connected, and an induced metric ds on So.

Lemma 7. If the point P, of §0 projects onto the point p, of S,, then the
distance d from P, to the boundary equals the distance d from p, to the boundary.

Proof. Let C be any curve of finite length on :S’\o, and let C be its pro-
jection on S;. Then C has (the same) finite length, and either C goes to
the boundary of S, or else tends to a point p, of §,. In the latter case the

curve O tends to a point 7, and cannot go to the boundary of @,. Thus

if a curve C goes to the boundary of S,, then either it has infinite length,
A\

or else its projection goes to the boundary of 8,. In the definition of d we

need therefore consider only those curves ¢ whose projection goes to the
boundary of 8. Conversely, if C goes to the boundary of So, it can be

“lifted” to a curve C which must then go to the boundary of So Thus the
sets of numbers over which we form the infimum are identical, and we have
A\

= d.
Corollary. §0 18 complete if and only if S, is complete.
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We may now consider the simply-connected surface §o as a RIEMANN sur-
face which by the KoEBE uniformization theorem is conformally equivalent
to either | {| <1 or the whole {-plane, and the induced map into E3 de-
fines a simply-connected minimal surface. We may summarize as follows:

If S is an arbitrary minimal surface and p is a point of S whose distance

to the boundary 18 d, then there exists a stmply-connected minimal surface S
and a point P such that the distance from P to the boundary is d, the normal

direction at P 1is the same as at p, and the normal map of S covers the same
part of the sphere as the normal map of 8.

This is the result, referred to in a footnote in [4] which allows us to remove
the hypothesis of simple connectivity from all the theorems on GAvUss curva-
ture given in [4].

Finally, if we apply it to the case d = oo, we can remove the hypothesis
of simple connectivity in theorem 1, and we obtain the result stated in the
introduction:

A complete minimal surface whose normals omit a neighborhood of some
direction must be a plane.

4. Concluding remarks

If we choose D to be the entire plane and let f({)=1,¢9(¢) =, we
obtain the classical surface of ENNEPER which is a complete minimal surface
whose normals omit exactly one direction.

The catenoid, which may be parametrized as in the remark following
Theorem 2, is a complete minimal surface whose normals omit two directions.

By choosing ¢({) = G(F({)), in the notation of the proof of Theorem 2,
we obtain a complete minimal surface whose normals omit precisely three
directions.

The difficulty in constructing further examples may be summarized as
follows.

In the case where D is the whole plane, we may for example choose
() =1 and g¢g({) to be an arbitrary entire function. All the minimal sur-
faces so constructed will be complete, but by Prcarp’s Theorem, the normals
to the surface can omit at most two directions.

In the case where D is the unit disk, we can construct a minimal surface
whose normals omit an arbitrary closed set E provided only that E con-
tains at least three points, and that its complement R is connected. Namely,
we choose for g¢g({) the function which maps | {| <1 onto the universal
covering surface of R, and for f({) an arbitrary function which is analytic
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and different from zero in | {| < 1. These surfaces, however, will in general
not be complete, and the question then is to find a way to construct a suitable
function f({) which will make the surface complete, or to show that none
can exist.

5. On the conjecture in the introduction

As remarked in a footnote at the beginning of this paper, we have the
following result, the reasoning being due to AHLFORS.

Theorem. A complete minimal surface whose normal map omits a set of posi-
tive capacity 1s a plane.

Proof. As in section 3, we may construct a complete simply-connected
minimal surface 8§ whose normal map omits the same set of positive capacity.
By Lemma 5 we must show that whenever f and g are analytic functions
in the unit disk such that f+0 and g omits a set of positive capacity,
then (15) holds for some curve C. But as remarked at the end of section 2,
such a function ¢ is of bounded characteristic, and hence ([2], p. 178) can
be written as g = g,/g;, where |g,|<1,|g;|] <1, and g, # 0. We then
have

Cf(1+[9|2)lfl|d5|=éf(lgziz+lgll"’)

-g-fz—IIdCl<2§lf1HdC|
2 (o]

where we set f, = f/g2. The result follows immediately by applying Lemma 6
to the function f,.
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