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Minimal Surfaces in the Large1)

By Robert Osserman, Washington (USA)

1. Introduction

The purpose of this paper is to give what seem to be the '"correct" définitions
for the global study of minimal surfaces, and to dérive a number of
conséquences. We obtain, in particular, the following resuit:

A complète minimal surface whose normals omit a neighborhood of some direction

must be a plane.
This theorem, with the additional hypothesis that the surface be simply

connected, was conjectured by Nirenberg, and was proved in [3]. The proof
given there, however, is quite différent from the présent one. In fact the main
resuit of this paper is, in a sensé, Lemma 5, in which we show that a certain
géométrie problem concerning minimal surfaces is precisely équivalent to a
purely analytic problem concerning analytic functions in the unit circle. Once
this équivalence is established, the above resuit follows almost trivially.
Furthermore, we use it to disprove a second conjecture of Nirenberg, in
which he suggests that one should be able to replace the assumption that the
normals omit a full neighborhood, by the weaker one that the normals omit
three distinct directions. The use of Liotjvtlle's Theorem in proving the first
conjecture, and a possibly analogous use of Picard Js Theorem, made the
second conjecture quite plausible, but we shall in fact prove:

There exists a complète, simply-connected minimal surface whose normals omit
precisely four distinct directions.

This resuit, in combination with the previous one, leads one immediately to
ask if there is a best possible theorem of this type. For reasons which will
become apparent in the course of the proofs given below, we are led to make
the following guess.

Conjecture2). Given a closed point set E on the unit sphère, necessary and

sufficient that there exist a complète minimal surface whose normal map omits
precisely the points of E, is that E hâve logarithmic capacity zéro.

1) This paper was presented as a talk to the International Colloquium on Differential Geometry
and Topology at Zurich, June 1960.

2) After this paper was written, L. Ahlfobs pointed out that half of the above conjecture
(the necessity) follows easily from Lemmas 5 and 6 below. We hâve added a brief section at the
end of this paper giving the reasoning.
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The author wishes especially to thank Professor H. Hopf for a number of
extremely helpful comments.

2. Simply-connected minimal surfaces

Throughout this paper we shall use the following notation :

D will dénote either the unit disk, | f | < 1, or the entire complex f-plane,
|C|<oo.

Ez will dénote EircLiDEAisr 3 space.
X will dénote a point of Ez with coordinates (xx, x2, xz), or the corre-

sponding vector.

Définition. A simply-conneeted minimal surface S is a mapping xk hk(Ç),
k 1,2,3, of D into Ez, such that the functions hk(Ç) are harmonie
and satisfy the further conditions that if we set

*(0 -ir-•"-!?¦• C==l + ^' (1)

then 3

a) 27çî(f) O,

(2)

b) Z\<pl(Ç)\^0,
for ail f in D. *=1

Remark. From the fact that the functions hk(Ç) are harmonie, it follows
that the functions q>k (C) are analytic. Thus, to every simply-conneeted minimal
surface there corresponds by (1) a set of analytic functions <pk(Ç) satisfying
(2). Conversely, if we are given any three analytic functions <pk(Ç) satisfying
(2), and ask for harmonie functions hk{Ç) related to <pfc(£) by (1), we hâve

hk(C) Re $<pk(OdÇ

which means that the functions hk(Ç) are determined up to an additive
constant, or more geometrically, that the analytic functions <pk{t) détermine S

up to translation.
By way of justification of our définition, we note that in terms of the clas-

sical notation
E XfXS, F !(•*,, <? V*. (3)

we hâve the formulae 3

S<pl (E - G) - 2iF,
(4)
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Hence condition (2a) simply says that E 0, F 0, which means that
(|, rj) are isothermal coordinates. Condition (2b), in the présence of a), pre-
cisely guarantees that the jACOBian matrix of the map of D into Ez has

everywhere (maximum possible) rank two. This latter condition implies that
each point has a neighborhood which is mapped one-to-one onto a pièce of
surface Sf in EB, and the fact that the coordinate functions xk are
harmonie in terms of isothermal parameters is a well-known condition for Sr to
be a minimal surface in the classical sensé.

Conversely, if we start with a "gênerai surface" S, defined by a mapping
of an abstract differentiable surface So into Ez, where we assume that the
JACOBian matrix of the mapping has everywhere rank two, then the metric
in Ez induces a differential metric on So, and a corresponding complex-
analytic structure (provided that $0 is orientable, which it will be, in particu-
lar, if it is simply-connected). Namely, the admissible coordinates are those
which represent isothermal parameters with a given orientation. The condition
that the image surface in Ez be locally a minimal surface is, as mentioned
above, that the coordinate functions be harmonie in terms of isothermal
parameters. We are thus led back to conditions (1) and (2) in terms of arbitrary
isothermal parameters f, rj. Finally 8 is said to be simply-connected if 80

is, and we can then, by the Koebe uniformization theorem, choose a single
coordinate System on ail of So, and in fact choose this to be either the unit
disk or the plane. (The alternative of the sphère cannot occur hère, for if 80

were compact, then ail the coordinate functions, being harmonie, would be

constant.)
For ail the classical local properties of minimal surfaces used hère and in

the following, we refer to Chapter II, "Minimal surfaces in the small," of the
book of Rado [5].

We proceed further, as in the chapter just cited, by replacing the triple of
functions q>k satisfying relation (2a) by a pair of essentially arbitrary functions

f,g.
Lemma 1. Given an arbitrary simply-connected minimal surface, and the

associated analytic functions <pk(Ç) defined by (2), if we set

9

then f and g hâve the properties:

A. / is analytic throughout D; the zéros of f, if any, are of even order.

B. g is meromorphic in D; pôles of g correspond precisely to zéros of f,
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and more specifically, g has a pôle of order m at a point where f has a zéro
of order 2m.

The fonctions <pk are expressed in terms of f and g by

<Pz fg -

Proof. We note first that condition (2a) can be rewritten in the form

Thus when / 0 we hâve <pz 0, and the left-hand side of (8) must hâve
a zéro of even order. But the two factors on the left cannot vanish simultane-
ously, since this would imply çjj ç?2 ç?3 0, contradicting (2b). Thus a

zéro of (px — icp% is always of the same order as the zéro of <p\ at the same
point. This establishes A and B. Equations (7) follow immediately from
(5), (6), and (8).

Lemma 2. Given any two functions f and g in the domain D, satisfying
conditions A and B of lemma 2, the functions cpk defined by (7) will satisfy (2),
and thus define a unique minimal surface up to translation.

Proof. Conditions A and B guarantee that the functions cpk will be ana-
lytic throughout D. From (7) we hâve

^I9>*l2 il/l2(l + l9'li!)2 (9)

and this cannot vanish because of B. Condition (2a) is a direct vérification.
By virtue of lemmas 1 and 2, we see that the study of simply-connected

minimal surfaces reduces to the study of the two, essentially arbitrary, functions

/ and g. The only restriction te on their zéros and pôles, as given in
A and B.

The reason why this particular pair of functions is better suited to studying
the surface than certain other pairs which might serve equally for its
représentation, is that the functions / and g hâve important géométrie interprétations.

A spécial case is the following.

Lemma 3. The condition / 0, or equivalently, g oo, occurs precisely
at points where the normal to the surface S points in the direction of the positive
zz-axis.

Proof. Using <pt i(pt, we find that

X( X S, (0,0,| ç^l*) if / 0. (10)
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Lemma 4. If welet g u + iv, we hâve for the unit normal n,

tt= (0,0,1), if flr=oo. (12)

Proof. (12) follows directly from (10). (11) follows from (7). More specif-
ically, we hâve

X( |(5(1 — u2 + v2) + 2tuv, — t(l +u2 — v2) — 2suv, 2su — 2tv)
Xv £( — t(l —u2 + v2) + 2suv, —s(l + u2 — v2) + 2tuv, —2sv — 2tu)

and
+U2 + V2)(U, V, \(U2 + V2 - 1)) (13)

from which (11) follows.
Lemma 4 plays a key rôle in ail that follows, the reason being that (11) is

precisely the formula for stereographic projection from the u, v-plane onto
the unit sphère. We thus hâve the following crucial géométrie interprétation
of the function g(Ç) :

The function g(Ç) defined by (6) may be obtained as the composition of three

mappings: the defining map of 8 from D into Ez9 followed by the Oauss

spherical map (by parallel normals) into the unit sphère, followed by
stereographic 'projection from the point (0, 0, 1).

In particular, the géométrie statement that the normals to 8 omit certain
directions is équivalent to the analytic one, that g(Ç) omits certain values.

We turn next to the RiEMANisrian metric induced on D by the surface 8.
We hâve for the élément of arc length ds, the formula

which follows either from (13), or from (4) and (9), in view of the fact that
for isothermal coordinates we hâve ds2 E \ d£ |2, and E G (E + Q)f2.

We recall some standard définitions.

Définition. A path going to the boundary of a région is the continuous image
of the half-line t ^ 0 such that for any compact subset K of the région
there exists t0 such that the image of t ^ t0 lies outside of K.

Définition. A surface with a RiEMANNian metric is complète if every path
going to the boundary has infinité length.

For a discussion of this notion of completeness, and its relation to non-
continuability, we refer to the classical paper of Hopf-Rinow [1].
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Essentially what we hâve done up to this point is to show that an arbitrary
simply-connected minimal surface can be represented by a pair of functions
/, g, and to express some of the basic surface quantities, such as normal and
élément of arc length, in terms of thèse functions. We are now in a position
to give a purely analytic formulation of the kind of géométrie theorem we
wish to consider.

Lemma 5. Let E be a point set on the unit sphère, containing at least three

points, and in particular, the point (0, 0, 1). Then the following two statements
are équivalent.

I. A complète simply-connected minimal surface whose normal map omits the

points of E must be a plane.
IL Let f and g be arbitrary analytic functions in the unit disk | f | < 1,

subject to the conditions that f is never zéro, and g never tdkes on the values
which correspond to E under stereographic projection from (0,0, 1). Then
there is a path C going to the boundary of the unit disk for which

Jl/l(l + k|2)|df|<oo. (15)
C

Proof. Suppose fîrst that for a given point set E, the statement II is
false. Then there exists a particular pair of analytic functions f,g with
/ ^ 0, such that

J|/|(l + |fir|2)|dC| oo (16)
c

for ail paths C going to the boundary. Since / # 0 and g =£ oo, thèse
functions automatically satisfy conditions A and B of lemma 1, and thus by
lemma 2 can be used to define a simply-connected minimal surface S. By
(14), we see that condition (16) means that 8 is complète. By lemma 4, the
fact that g omits the values corresponding to E means that the normal map
of 8 omits the points of E. Finally, as will be proved in lemma 6, g could
not be constant, or else (16) would not hold for ail paths C. The minimal
surface S would therefore not be a plane, it would be complète and its normal
map would omit the points of E. Thus if II is false, I is also false.

Suppose next that II is true for a particular set E. In order to show that
I is true, we start with an arbitrary simply-connected minimal surface 8
whose normal map omits the points of E, and show that either it is a plane,
or else it is not complète. We hâve two cases to consider, according as the
domain D of définition of 8 is the whole plane or the unit disk.

Case 1. D is the whole plane, | f | < oo. Since the set E contains at
least three points, we hâve by lemma 4 that the function g(Ç) associated
with S is a meromorphic function in the whole plane which omits three
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values, hence is constant. Again by lemma 4, this means that 8 has a single
normal direction, and if it is complète it must be a plane.

Case 2. D is the disk, | f | < 1. In this case the functions / and g as-
sociated with S satisfy the hypothèses of statement II, and hence (15) must
hold for some path C. But in view of (14), this says precisely that 8 is not
complète.

Thus if II is true, I is also true, and the lemma is proved.
In the course of the above proof we made use of a purely function-theoretic

lemma, which also plays a key rôle in the proof of the main theorem. It is the
following.

Lemma 6. Let /(£) be an arbitrary function analytic in | £ \ < 1 subject
only to the condition that it is never zéro. Then there exists a path C going
to the boundary of | C | < 1 such that

s\nt)\\dc\<oo.
c

Proof. Let w F(z) JS/(f)rff. Then F(z) maps |z|<l onto a
Riemann surface which is not the whole plane and which has no algebraic
branch points. Such a surface must hâve a boundary point at finite distance.
More specifically, if we let z G (w) be that branch of the inverse function
satisfying G(0) 0, then since \G(w) \ < l, there is a largest disk
| w | < B < oo in which G(w) is defined. There must then be a point w0

with | wQ I R such that G(w) cannot be extended to a neighborhood of
w0. Let L be the line segment from 0 to w0, and let C be the image of L
under G (w). Then C must go to the boundary of | z \ < 1, since otherwise
there would be a séquence wn->iv0 such that zn G(wn) ->z0, with
|zo|<l. But then F(zo) wo, and since Fr(z0) f(z0) ^ 0, F(z) would
map a neighborhood of z0 one-to-one onto a neighborhood of wQ, so that
G (w) would be extendable to a neighborhood of wQ. Thus the path C goes
to the boundary of | z \ < 1, and we hâve

G L

Combining lemmas 5 and 6, we arrive easily at our first main resuit.

Theorem 1. // the normals to a complète simply-connected minimal surface
8 omit a full neighborhood of some direction, then 8 is a plane.

Proof, We may choose axes in J573 so that the normals omit a neighborhood
of the positive #3-axis. Then by lemma 5 we must show that (15) holds for
some path C, where in this case / ^ 0 and | g \ < M < oo. But this is an
immédiate conséquence of lemma 6.
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Theorem 2. There exista a complète simply-connected minimal surface 8
whose normals omit precisely 4 directions.

Proof. Dénote by R the région consisting of the complex 3-plane minus
the points 2nni, where n runs through ail the integers. The function
O(z) 1/(1 — ez) never assumes the values 0, 1, oo in JB.

/s.
Dénote by R the universal covering surface of R, which is known to be

conformally équivalent to the unit disk. Let #(£) be a conformai map of
| f | < 1 onto R and let 77 be the projection map of R onto R. Then
F(Ç) II(0(C)) is a locally one-to-one analytic map, and hence /(£)

Ff(C)^0. We set flr(Ç) [<?(#(£))]*> where we may choose either
branch of the square root. Then g(Ç) omits precisely the values 0, ± 1, oo.

If we construct the simply-connected minimal surface 8 associated with
this particular choice of /, g, its normal map omits the four corresponding
points of the sphère. We now show that this surface is complète.

Let G be an arbitrary curve going to the boundary of | f | < 1 and let
C be the image of C under z F(Ç). We then hâve

J | /(C) | (1 + | fir(f) I1) | dÇ | J (1 + I O(z)\) \dz\. (17)
c c

We consider two cases.

Case 1. Cf has infinité length. Then we hâve

f (1 + 1 G(2)|)| cb| > J|«fe| oo.
c c

Case 2. C has finite length. Then C must tend to a spécifie point z^
and since C goes to the boundary of | C | < 1, 30 raust be one of the points
2nni. In a suitable neighborhood of z0 we therefore hâve

and

If we let C" be the part of Cr lying in this neighborhood, we hâve

The intégral in (17) is therefore divergent for every path 0 going to the
boundary. Thus the surface is complète and the theorem is proved.

Before turning to the case of gênerai minimal surfaces, there are several
comments which are worth making in the simply-connected case.
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Remark 1. If one observes closely the construction used in Theorem 2, it
becomes clear that what was actually done was to construct a non-simply-
connected minimal surface using the région R, and then use the somewhat
artificial device of the universal covering surface to obtain a simply-connected
surface with essentially the same properties. This is precisely the device which
makes it possible to omit the hypothesis of simple connectivity in Theorem 1,

as will be pointed out in the next section. However, one could contend that a
surface obtained in such a manner was not "truly" simply-connected. For
example, if we choose D to be the whole £-plane in the définition of a simply-
connected minimal surface, and set

x1 Re {cosh £}

x2 Im {sinh £}

xz Re {£}

then we obtain the ordinary catenoid

x\ + x\ cosh2 x3

covered infinitely many times. The surface constructed in Theorem 2 can be
shown to be of this nature. However, without giving détails, we state the
following resuit :

// we use the same function g(Ç) as in the proof of Theorem 2, but modify
the function /(£) slightly, then we obtain a complète simply-connected minimal
surface whose normals omit four directions, and which has the additional pro-
perty that no two neighborhoods in D map onto the same neighborhood in space.

Remark 2. By virtue of lemma 5 the géométrie problems we hâve been

considering are reduced to the following analytic problem: given two analytic
functions f,g in | £ | < 1 such that / ^ 0, what condition on g implies the
existence of a path G to the boundary such that $ \ f \ {l -{- \ g \2) \ dÇ \ < ooî

c
What we hâve shown in Theorems 1 and 2 is that g bounded is such a

condition, while g omitting four values is not. A reasonable guess is that g
should be of bounded characteristic (beschrânktartig). From a theorem of
Nevanlinna ([2], p. 201) it follows that if E is a closed set of points in the
plane, then the necessary and sufficient condition that every meromorphic
function gr(f) in | £ | < 1 whose values omit the set E must be of bounded
characteristic is that E hâve positive capacity. It was this theorem that led
to the conjecture stated in the introduction.
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3. General minimal surfaces

Définition. A minimal surface 8 is a mapping of an abstract differentiable
surface 80 into i?3, such that each point of 80 has a neighborhood in which the
complex parameter f, with | f | < 1, is an admissible parameter, and the
induced map of | f | < 1 into Ez defines a simply-connected minimal surface.

We may note briefly that in the case that 80 is orientable we hâve an
induced conformai structure. The functions (pk as well as / defined by (1) and
(5) dépend on the local parameter and in fact, hâve the character of analytic
differentials. On the other hand, the function g defined by (6) is invariant,
and represents a meromorphic function on the whole surface, with the same
géométrie interprétation as before.

In any case, even where 80 is not orientable, it will hâve an induced
RiEMANNian metric ds.

Définition. If a point p of 8 corresponds to a point pQ of So, then we
define the distance from p to the boundary to be the number

d inf §ds
c

where C is an arbitrary path from p0 to the boundary of So.

In particular, 8 is complète if d oo.
We also hâve a universal covering surface 80 of So which will be simply-

connected, and an induced metric ds on 8Q.
/\

Lemma 7. // the point p0 of 80 projects onto the point p0 of 8Oi then the

distance d from p0 to the boundary equals the distance d from p0 to the boundary.

Proof. Let C be any curve of finite length on 80, and let C be its
projection on 80. Then G has (the same) finite length, and either C goes to
the boundary of $0 or else tends to a point px of So. In the latter case the

curve C tends to a point px and cannot go to the boundary of 80. Thus

if a curve C goes to the boundary of 80, then either it has infinité length,
/s.

or else its projection goes to the boundary of 80. In the définition of d we

need therefore consider only those curves G whose projection goes to the
boundary of $0. Conversely, if C goes to the boundary of 80, it can be

y\ /s.
"lifted" to a curve C which must then go to the boundary of So. Thus the
sets of numbers over which we form the infimum are identical, and we hâve

d d.

Corollary. 8Q is complète if and only if 80 is complète.
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We may now consider the simply-connected surface So as a Riemann
surface which by the Koebe uniformization theorem is conformally équivalent
to either | £ | < 1 or the whole £-plane, and the induced map into Ez de-
fines a simply-connected minimal surface. We may summarize as follows:

// S is an arbitrary minimal surface and p is a point of S whose distance

to the boundary is d, then there exists a simply-connected minimal surface S
and a point p such ihat the distance from p to the boundary is d, the normal

direction at p is the same as at p, and the normal map of 8 covers the same

part of the sphère as the normal map of 8.
This is the resuit, referred to in a footnote in [4] which allows us to remove

the hypothesis of simple conneetivity from ail the theorems on Gattss curva-
ture given in [4].

Finally, if we apply it to the case d oo, we can remove the hypothesis
of simple connectivity in theorem 1, and we obtain the resuit stated in the
introduction :

Â complète minimal surface whose normals omit a neighborhood of some
direction must be a plane.

4. Concluding remarks

If we choose D to be the entire plane and let /(£) 1, g(t) £, we
obtain the classical surface of Enneper which is a complète minimal surface
whose normals omit exactly one direction.

The catenoid, which may be parametrized as in the remark foliowing
Theorem 2, is a complète minimal surface whose normals omit two directions.

By choosing gr(£) G(F(Ç)) in the notation of the proof of Theorem 2,
we obtain a complète minimal surface whose normals omit precisely three
directions.

The difficulty in constructing further examples may be summarized as
follows.

In the case where D is the whole plane, we may for example choose

/(£) 1 and g(Ç) to be an arbitrary entire function. Ail the minimal
surfaces so constructed will be complète, but by Picard's Theorem, the normals
to the surface can omit at most two directions.

In the case where D is the unit disk, we can construct a minimal surface
whose normals omit an arbitrary closed set E provided only that E con-
tains at least three points, and that its complément R is connected. Namely,
we choose for g(Ç) the function which maps | £ | < 1 onto the universal
covering surface of B, and for /(£) an arbitrary function which is analytic
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and différent from zéro in | £ | < 1. Thèse surfaces, however, will in gênerai
not be complète, and the question then is to find a way to construct a suitable
fonction /(£) which will make the surface complète, or to show that none
can exist.

5. On the conjecture in the introduction

As remarked in a footnote at the beginning of this paper, we hâve the
following resuit, the reasoning being due to Ahlfobs.

Theorem. A complète minimal surface whose normal map omits a set of positive

capacity is a plane.

Proof. As in section 3, we may construct a complète simply-connected
minimal surface S whose normal map omits the same set of positive capacity.
By Lemma 5 we must show that whenever / and g are analytic functions
in the unit disk such that / ^ 0 and g omits a set of positive capacity,
then (15) holds for some curve G. But as remarked at the end of section 2,

such a function g is of bounded characteristic, and hence ([2], p. 178) can
be written as g gjg^, where | gx \ < 1, | g2 \ < 1, and g2 ^ 0. We then
hâve

I2)
9l

I dÇ | < 2
G

where we set fx f\g\. The resuit follows immediately by applying Lemma 6

to the function fx.
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