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On Geodesic Vector Fields
in a Compact Orientable Riemanvian Space

By KenTARO YANO and TapasaI Nagano, Tokyo?)

§ 1. KiLLING vectors and harmonic vectors

We consider an n-dimensional RIEMANNian space covered by a system of
coordinate neighborhoods (&*) and with a positive definite metric ds? =
= ¢,;(£)d&1d&t, where the indices h,¢,7,... runovertherange 1,2,...,n.
We denote the CHRISTOFFEL symbols by

h
= 400 + 0~ 00

and the covariant derivative of a tensor, say T'.*, by

-

J

where 9, represents the partial differentiation with respect to &. We denote
the curvature tensor by

it = anfif = i+ ) -

and the Ricor tensor and the curvature scalar by

K’-i == Kajia a'nd K —_ giini

h a
V,T*=09,T + {ja} T.° — { } T}

respectively.

A Kruring vector »*, that is, a vector defining an infinitesimal motion of
the space satisfies

Vv, + V,u;=0 and consequently V;v¢=0 (1.1)
and a harmonic vector w, satisfies
iji - Vi'w,-“——"— O, V,'wi——: . (1.2)

In case of KririNg vector, V7;v¢ = 0 is a consequence of V,v; + Vv, =0,
but in case of harmonic vector, V,w®= 0 1is not a consequence of
Viw, — V,w, = 0.

One of the present, authors [2]2) (See also [5]) proved

') Presented by K. YAnNo at the International Colloquium on Differential Geometry and
Topology, Ziirich, June 1960.
?) See the Bibliography at the end of the paper.
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Theorem 1.1. A necessary and sufficient condition for a vector field v* in
a compact orientable Riemannian space to be a KiLring vector is that

gy v+ Kri=0, Vt=0. (1.3)
On the other hand the following is well known.

Theorem 1.2. A necessary and sufficient condition for a vector field w, in
a compact orientable Riemannian space to be harmonic i3 that
gV w, — Kyiw;, = 0. (1.4)

In case of KmLriNGg vector V,v* = 0 is not a consequence of g/l ,v* 4

+ K*vi = 0, but in case of harmonic vector F,w’ = 0 is a consequence of
gjiV‘Viwh - K,,"w,- == O.

§ 2. Confravariant analyti¢ vectors and ecovariant analytie veetors

We consider a 2n-dimensional HErRMITian space covered by a system of
real coordinate neighborhoods (£*) with a complex structure F;* and with
a positive definite HErMITIan metric ds® = g,,(§)d&/d&t, where the indices

h,%,j,... run over the range 1,2,...,n, 1,2,...,n. The tensor F?
satisfies FjiFih — 4 2.1)
and Nt=0 (2.2)
where NP = FP0,FF — 0,F) — Ff(,F} — 3,F,Y) (2.3)

is the so-called N1JENHUIS tensor.
It is well known (A. NEWLANDER and L. NIRENBERG [1]) that the existence
of a tensor F;* satisfying (2.1) and (2.2) characterizes a complex space.
The HErMITian metric satisfies

FfFLg0 =gy - (2.4)

Now a KAeHLERian space is characterized as a HERMITIan space which has
ki 0, F o+ 8,Fyy + 0,F, =0, (2.5)
which is equivalent to V,Fy=0, (2.6)
where Fy=F;g, (2.7)

is a skew-symmetric tensor.
Suppose that our HErMITian space is covered by a system of complex co-
ordinate neighborhoods (z*), where the indices «, 4, u,... run over the
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range 1,2,...,n. Then a real vector or a self-conjugate vector v* has the
components of the form

’uh = (vK, ,vx) b}
where

¥ = p¥ .

When the components »* are functions of z* only and v* functions of
zA only the vector v" is said to be contravariant analytic. The condition for
v* to be contravariant analytic is written as

v, F P — F20,0% + F 29,05 = 0 (2.8)
in a real coordinate system. This is equivalent to

Fop v+ Frp 0% =0 (2.9)
in a KAEHLERian space.
A real vector or a self-conjugate vector w; has the components of the form

w; = (w/\’ w-):) ’
where —
wi = W) -

When the components w, are functions of 2* only and wy are functions
of 2z* only the vector w, is said to be covariant analytic. The condition for
w; to be covariant analytic is written as

(a,Fih i a,F’-h)’wh - Fja aiwa - Fia aaw’ (2. 10)
in a real coordinate system. This is equivalent to

F’o“V'-'wa——FiaVa'w,:O (2.11)
in a KAEHLERian space.
One of the present authors [3], [4] proved

Theorem 2.1. A necessary and sufficient condition for a vector field v* in a
compact Kararerian space to be contravariant analytic is that

giv,Voh + Krvi=0. (2.12)
On the other hand the following is well known.

Theorem 2.2. A necessary and sufficient condition for a vector field w; in
a compact Kararerian space to be covariant analytic 13 that

gjiV,V‘wh - .Khiwi ES O . (2. 13)

In case of KirrLing and harmonic vectors the duality between them was
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not complete, but in case of contravariant and covariant analytic vectors the
duality is complete as is seen from (2.12) and (2.13).

We defined the contravariant and covariant vector fields using the complex
structure of the space. But equations (2.12) and (2.13) do not depend on the
complex structure of the space. They depend only on the Riemannian structure
of the space.

So it m°ght be interesting to study the properties of a vector in a RIEMANNian
space which satisfies (2.12) or (2.13). But following Theorem 1.2 a vector in
a compact orientable RiEMANNian space satisfying (2.13) is a harmonic vector.

The purpose of the present paper is to study some of properties of a vector
satisfying (2.12) in a compact orientable RiEMANNian space.

§ 3. Geodesic vector fields

It is well known that a necessary and sufficient condition for an infinitesimal
point transformation TEh — b 4 oh(E)dE

to carry a geodesic &*(s) into a geodesic and to preserve the affine character
of the arc length s is that

dgi dé:i
(P, Vo + Kkjih”k)jd—g“ 25 =0 (3.1)
Thus for a unit vector A* at a point (&%), we call
gt = (V,V ;v + Kkjih”k))vui ) (3.2)

the geodesic deviation vector of A* with respect to v*.

Now, take 7 mutually orthogonal unit vectors l("a) (@=1,2,...,n) at
a point (£*) in an n-dimensional RiEmanwian space and take the mean of
geodesic deviation vectors g, of A%, with respect to o* then we get

1 1 L
'{b“zzﬂg(ha) = ',72:-=1(V5 Vi”h - Kk;'ihvk) lfa) :a)
or i )
—Zomillny = - GV, Vo + KM (3.3)
by virtue of

gt =2 :-llza)a('a) .

Thus the mean of these geodesic deviation vectors does not depend on the
choice of » mutually orthogonal unit vectors l("a). Thus we call (3.3) the
mean geodesic deviation vector at (&%) with respect to the vector field v*.
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A vector v* with respect to which the mean geodesic deviation vector
ish "
vamshes gy, Vb 4 Kbl =0 (3.4)

is called a geodesic vector field.
From this definition the following two theorems are evident.

Theorem 3.1. A KiLrine vector is a geodesic vector.

Theorem 3.2. A contravariant analytic vector in a KAEHLERIGM space 18 a
geodesic vector.

§ 4. Geodesic vector fields in a compact orientable RIEMANNian space

Let o* be a geodesic vector field in a compact orientable RIEMANNian
space, then v? satisfies

giv,V,vh 4+ K i = 0. (4.1)

The following integral formula is well known (K. Yawo [3], K. YanNo and
S. BoCHNER [5])

Jlg'w,V oh — Kih?)i)”h + 3 (Vi —Vid)(V;0,—V,v,) + (V)] do=0, (4.2)
where do denotes the volume element of the space.
Substituting Y,V = — Kb
into (4.2) we find
JKvivido = [[}(Vivt — Vi) (V0 — Vivy) + 3(Vv)?]do,  (4.3)

from which K vivide = 0.

If the equality sign occurs in the above inequality, then we have
Vivi— Vv, =0 Vvt =0,

that is, the vector v, is harmonic. Combining (4.1) and V,v* = 0, we see
following Theorem 1.1 that v* is a KiLriNg vector that is

Vivi+ Viv;=0.

Th
us V0, =0,
hence we have

Theorem 4.1. For a geodesic vector field v* in a compact orientable Riz-
MANN? P4
wan space we have [K vividoe = 0. (4.4)
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If the equality sign occurs in (4.4), then the geodesic vector field v* has vanishing
covariant derivative.
As a corollary to this theorem, we have

Theorem 4.2. If, in a compact orientable Riemannian space, the Ricor cur-
vature K, vivt is negative definite, there exists no geodesic vector field other
than the zero vector and if the Riccr curvature 18 megative semi-definite, then
the geodesic vector field has vanishing covariant derivative.

§ 5. Geodesic vectors in an EINSTEIN space

Let us consider a compact orientable EINSTEIN space with positive curvature
scalar, that is, a RIEMANNian space satisfying

Ky =cgy, (5.1)
where
¢ = -{;— >0. (5.2)

Then a geodesic vector v* satisfies
gV, v, o+ cvh =0 (5.3)
or g,V 0, + cv, = 0. (5.4)

We now introduce the following notations. We denote by d the operator
which operates to a p-form

1 ; :
VT Vgt LAEPAAELA L AdER (5.5)
and gives
1
dv: ITES Vi%pip sty = Vigliipy...iy —
o = Vi i) BE A AEPA LA dET (5.6)
and by & the operator which operates to a p-form (5.5) and gives
1 ,
ov: ‘G;—:—i-)—'— gﬁ va“p-l '”ildf""ll\ df""”/\ cee A dfil (5.7)
and put A=0dd+dd. (5.8)
Lo, vee e Adv = dAv,  Adv= é4v. (5.9)

If we define the global inner product of two p-forms

a: -{)IT @ipipy i BEPNAE I L AdES
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b: o7 Oipipy...i; BEPNAEPIN . AdED
by 1 . .
(a,b) = o7 J@ipiy ... 4,079 dg (5.10)
then we have
(du,v) + (u, dv) =0, (0u, v) + (u,dv) = 0 (5.11)
#n (Au, uw) + (du, du) + (6u, du) = 0. (5.12)
If we put v = v, dEh .
then we have . i %
Av: (g1 V,V v, — K, v,)dEr . (5.13)

Thus (4.2) is equivalent to (5.12).

When +* is a KmLLING, harmonic or geodesic vector, we call v,d&* a K-
LING, harmonic or geodesic form respectively.

Relation (5.13) becomes

Av: (g7V,V v, — cv,)dEr (5.14)
in case of EINSTEIN space. Thus (5.4) can be written as
dv = — 2¢v, (5.15)
v being a geodesic form, from which

Aév = — 2¢dv . (5.16)
Thus

Theorem 5.1. The divergence V,v* of a geodesic vector field in an EINsTEIN
space 18 a solution of the equation

Af = — 2¢f . (5.17)

If f="P,;v®*= 0 for geodesic vector field in a compact orientable EINSTEIN
space then a geodesic vector is a KiLriNg vector. Thus we have

Theorem 5.2. If the equation Af = — 2¢f admits no solution other than the
zero function in a compact orientable E1nsTeIN space, then a geodesic vector is a
Kriuine vector.

From (5.16), we find Addy = — 2¢ddw (5.18)

which shows that ddév is again a geodesic form.
Thus if we put

NI (5.19)
p=v-+ 35 dov ,
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then p = p,d& is a geodesic form. From (5.19) we obtain
8p = dv + %6(161) — o+ -21?(501 + d8)dv
— 0+ —— Ady = v + — (— 206) = 0 5.20
o 2¢ - 2¢ cov) = (5.20)

by virtue of dév = 0 and (5.16) and consequently p is a Kmring form.
From (5.19) we have

’U.::p—l-—df, (5.21)
where p is a Kmmuing form and f is a solution of
Af = — 2¢f . (5.22)

Conversely if p is a KiLrine form and f is a solution of (5.22) then

v=1p + df
is a geodesic form. Because
Av = Ap + Adf = Ap + dAf .
But we have
Ap = — 2¢p, dAf = — 2cdf
and consequently

Av = — 2¢p + (— 2¢df) = — 2¢v.
Moreover if a geodesic form v is decomposed as
v=1p+df,
where p is a Krmmring form and f is a solution of Af = — 2¢f, then this
decomposition is unique. In fact suppose that we had another decomposition
v=1p +df,

then we have from these two equations
p—p +dlf—f)=0.
This equation shows that the Kmwmring form p — p’ is a differential of a
scalar and consequently the coefficients p; — p; of p — p’ are components

of a parallel vector. But an EINSTEIN space with positive scalar curvature
does not admit a parallel vector field other than the zero vector. Thus we have

p=p',

a(f — f) =0

from which
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and consequently
f — [/ = constant.

Applying 4 to this equation, we find

—20(f —f) =0,
from which
f=1.

Thus we have

Theorem 5.3. A geodesic vector v* in a compact orientable EINsTEIN space
18 decomposed into the form

vh = ph + VRf, (5.23)

where p* is a KiLring vector and [ is a solution of Af = — 2c¢f and the
Kirring vector p* and the scalar f are uniquely determined.

§ 6. Vector space of geodesic vector fields

We denote by L the vector space of geodesic vector fields by L, the Lie
algebra of KiLriNg vector fields and by L, the vector space of gradients of

solutions of Af = — 2c¢f in a compact orientable EINSTEIN space: K,; = cg,
where c¢ is positive. Then we have
L=L + L,
the plus sign denoting the direct sum.
Now take a KiLriNg vector p* and a solution f of Af = — 2¢f and put
h=V.f.
Then we have
(2, fli=PVifs — fV;p; . (6.1)
Taking account of V,f,=V,f, and V,p,= — V,p,, we have from (6.1)
(2, fli =P Vif; + 1 Vip; = Vi(p'f,y) . (6.2)

On the other hand we have

VEV (P f;) = (PEV0)f; + 2(W%p7) (Vafs) + DI (VEVfy)
Substituting
Ve ,pP = —cp!  and Vv .f, = — cf;

in this equation and taking account of

Vkpi —_— e Vipk and ka; g Vifk
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we find

VeV (P'1) = — 2¢(p'f,) . (6.3)
Equations (6.2) and (6.3) show that
[Ly, L;] < Ly .
Take next a solution g of 49 = — 2¢g and put
9: =V, . (6.4)

Then we have

V.lf, 9l =Vf Vgt — g foi) = fiv; ngi — gV, Vift.

But
Viv,gt —VV.9' = Kyug* = cg,,
from which
ViV;9t = — cg,
by virtue of
Vigt =V Vg = — 2¢cg .
Similarly
vy,ft=—cf,.
Thus we have
V, [f’ g]i = 0.
Consequently we have
[Lz, L2] c L3 ’

where L, is the Lir algebra of the vector fields whose divergences are zero.
Thus we have

Theorem 6.1. In a compact orientable EINSTEIN space with positive curva-
ture scalar we have

L =L, + L,, (L, Ly] c Ly, [Ly, Ly] € Ly,

where L 1s the vector space of geodesic vector fields, L, Lik algebra of KiLLing
vector fields, L, vector space of gradients of the solutions of Af = — 2¢f and
L, the Liz algebra of the vector fields whose divergences are zero.
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