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Ûber Riemannsche Mannigfaltigkeiten
mit positiver Krummung

Von Wilhelm Klingenberg, Gôttingen

1. Zusammenstellung der Ergebnisse1)

1.1. Bekanntlich ist eine kompakte, einfach zusammenhângende Riemannsche

Mannigfaltigkeit M mit konstanter positiver Riemannscher Krûmmung
K homôomorph (ja sogar isometrisch) zur Sphàre S 8^mM (mit der ge-
wôhnlichen Riemannschen Metrik).

Es erhebt sich die Frage, ob man in diesem Satz die Forderung, daB K
konstant ist, absehwâchen kann zu der Forderung, daB K innerhalb gewisser
Schranken variiert. Da auf einer kompakten, einfach zusammenhângenden
Mannigfaltigkeit M notwendig Werte K> 0 vorkommen, kônnen wir annehmen,
daB die Metrik auf M so normiert ist, daB die Krummung K nur Werte < 1

annimmt.
Einen ersten Beitrag zu unserem Problem liefert der folgende Satz von

Rattch [5] : Falls auf einer kompakten, einfach zusammenhângenden Riemannschen

Mannigfaltigkeit M die Kriimmung K den Ungleichungen 0,74...
< K < 1 genûgt, so ist M homôomorph zu S SdlmM.

In der Note [3] haben wir dann gezeigt: Fur Mannigfaltigkeiten gerader
Dimension folgt der Satz von Raucu schon, wenn man nur die Ungleichungen
0,54... < K < 1 fordert. Fur den Beweis dièses Satzes hatten wir neue Me-
thoden entwickelt und uns insbesondere auf eine optimale Abschâtzung nach
unten fur den Abstand zwischen einem Punkt und seinem Schnittort gestlitzt,
vgl. Bemerkung 1 und 2 zu Theorem 2 unten. Da dièse Abschâtzung nur fur
Mannigfaltigkeiten gerader Dimension bewiesen werden konnte, muBten wir
uns bei der Verbesserung des Satzes von Rauch auf geraddimensionale
Mannigfaltigkeiten beschrânken.

Berger [1] gelang es dann, die in [3] benutzten Methoden wesentlich zu
verfeinern und damit zu beweisen : Eine kompakte, einfach zusammenhângende
Riemannsche Mannigfaltigkeit M gerader Dimension, deren Kriimmung K
den Ungleichungen 1/4 < K < 1 genûgt, ist homôomorph zur Sphâre S^mM.
Die hier auftretenden Schranken fur K kônnen nicht verbessert werden, da
die symmetrischen Râume vom Rang 1, die nicht homôomorph zur Sphâre
sind, mit ihrer gewôhnlichen Metrik der Beziehung 1/4 < K < 1 genûgen.

1.2. In der vorliegenden Note zeigen wir nun, daB das Ergebnis von Berger
auch fur Mannigfaltigkeiten ungerader Dimension richtig ist :

l) Der Verfasser hat die Hauptergebnisse dem Internationalen Kolloquium ûber Differential-
geometrie und Topologie, Zurich, Juni 1960, mitgeteilt.
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Theorem 1. Sei M eine kompakte, einfach zusammenhangende Riemannsche

Mannigfaltigkeit. Falls die Riemannsche KrUmmung K von M den Unglei-
chungen 1/4 < Jf < 1 (1)

genûgt, so ist M homoomorph zur Sphare S S^mM.2)

Bemerkungen. 1. Fur Mannigfaltigkeiten gerader Dimension > 2 ist das
vorstehende Ergebnis das bestmôgliche, wie wir gerade erwâhnt haben. Die
einzigen bekannten Mannigfaltigkeiten ungerader Dimension, die kompakt und
einfach zusammenhângend sind und eine Metrik mit K > 0 tragen, sind
homoomorph zu den Sphàren. Es erscheint daher nicht ausgeschlossen, daB
sich die Behauptung des Theorems fur Mannigfaltigkeiten ungerader Dimension

auch aus einer schwâeheren Ungleiehung als (1) herleiten làBt.
2. Fur dimJf gerade wurde Theorem 1 von Berger [1] bewiesen. Er

muBte sich auf diesen Fall beschrânken, da er seinen Beweis auf eine Ab-
schâtzung des Abstandes zwischen einem Punkt und seinem Schnittort stutzt,
die bisher nur fur gerade Dimensionen bewiesen worden ist, vgl. [3], Theorem

1. Wir zeigen nun in dieser Note, daB das in Rede stehende Ergebnis aus
[3] auch fur Mannigfaltigkeiten ungerader Dimension richtig ist, wenn man die
Voraussetzung (1) macht. Da im ûbrigen der Beweis von Berger unabhângig
ist von der Dimension, genûgt es also zum Beweis von Theorem 1, wenn wir
das benôtigte Ergebnis aus [3] fur Mannigfaltigkeiten mit der Eigenschaft (1)
fur den Fall beliebiger Dimension beweisen. Damit ist der Beweis von Theorem 1

zurûckgefûhrt auf den Beweis von

Theorem 2. Sei M eine kompakte, einfach zusammenhangende Riemannsche

Mannigfaltigkeit. Falls die Riemannsche Krilmmung K den Ungleichungen
(1) genûgt, so gilt2)

(a) Eine geschlossene Geodâtische hat die Lange > 2n.
(b) Falls zwei Punkte p und q auf M einen Abstand d(p,q) <n haben,

so gibt es genau ein geodatisches Segment der Lange d(p,q) von p nach q.
(c) Der Durchmesser d{M) von M, das heifît, der maximale Abstand, den

zwei Punkte auf M haben kônnen, ist > n.
Bemerkungen. 1. Die Eigenschaft (b) lâBt sich auch so formuHeren: Der

Abstand zwischen einem Punkt p von M und seinem Schnittort C(p) ist
> 7t. Zum Begriff des Schnittortes vgl. [3].

2) Anmerkung bei der Korrektur: Durch eine Verfeinerung der hier entwickelten Methoden
gelang es inzwischen, das Theorem 2 auch unter der schwâeheren Voraussetzung 1'), 1/4 < K < 1,

zu beweisen. Aus den Resultaten von Berger [1] folgt damit: Wenn man in Theorem 1 (1') an
Stelle von (1) fordert, so ist M homoomorph der Sphàre oder, falls dim M gerade und > 2,
isometrisch einem symmetrischen Raum vom Rang 1, ungleich der Sphâre. Siehe hierzu die
demnàchst erscheinende Arbeit «Ûber vollstândige Riemannsche Mannigfaltigkeiten mit nach
oben beschrânkter Krummung» in den Annali di Matematica.
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2. In [3] hatten wir die Behauptungen (a), (b), (c) fur Mannigfaltigkeiten
gerader Dimension aus der schwâeheren Forderung : 0 < K < 1 hergeleitet.
Es bleibt offen, ob dièses Ergebnis sich auch auf Mannigfaltigkeiten ungerader
Dimension ûbertrâgt.

1.3. Wir bezeichnen mit Q(p,q) den Raum der stuckweise glatten Kur-
ven, die von p nach q laufen. Nach Morse [4] heiBt q nichtentartet bezûglich

p, falls es in Q(pyq) nur endlich viele Geodâtische beschrânkter Lange gibt.
Ein wesentlicher Schritt bei dem Beweis von Theorem 2 besteht nun in dem

Beweis von

Theorem 3. Sei M eine kompakte, einfach zusammenhangende Riemannsche
Mannigfaltigkeit, fur die die Riemannsche Krummung K den Ungleichungen
(1) genûgt. Seien p und q zwei Punkte auf M so, dafi q nicht entartet ist
bezûglich p und so, dafi fur den Abstand d(pyq) gilt

0 < d(p, q)<2n — rc/j/min K (2)

Sei Go eine Geodâtische minimaler Lange d(p,q) in Q(p,q). Filr jede von
O0 verschiedene Geodâtische Gx aus Q(p,q) gilt dann die Beziehung

L(Gt) >2jt~- L(G0) > rc/ï/min K (3)

Hier bezeichnet L(H) die Lange der Kurve H.
Da nun jedes der Ungleichung (3) geniigende geodâtische Segment Q± einen

Index > n — 1 hat, n dim M, wâhrend Go wegen L(G0) d(p, q) < n
den Index 0 hat, so folgt nach Morse [4] (vgl. auch Berger [2]) sofort :

Korollar. M ist eine Homologiesphâre.

Bemerkungen. 1. Da jùngst bewiesen wurde, daB eine einfach zusammen-
hângende Homologiesphâre der Dimension > 7 homôomorph ist zur Sphâre
(Staixings), lâBt sich Theorem 1, jedenfalls fur dim if > 7, auch aus die-
sem Korollar erschHeBen.

2. Ira Laufe des Beweises von Theorem 3 ergibt sich unter anderem das
Folgende: Sei M eine kompakte, einfach zusammenhângende Riemannsche

Mannigfaltigkeit der Dimension > 3 mit der Eigenschaft (1), und seien p und q
und GQ gewâhlt une in Theorem 3. Dann lâfit sich jede Kurve H eQ(p,q) so
in GQ deformieren, dafi dabei die Lange nicht zunimmt.

3. Fur dim M gerade wurde das Korollar bewiesen von Berger [2], unter
wesentlicher Verwendung von Theorem 1 aus [3].

1.4. Ein wichtiges HiMsmittel fur den Beweis von Theorem 3 (und damit
auch fur den Beweis von Theorem 2 und 1) bildet das folgende

« CMH vol. 35
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Lemma. Sei M eine vollstândige Biemannsche Mannigfaltigkeit, deren Rie-
mannsche Krûmmung K < 1 ist. Seien p und q zwei Punhte auf M9 die
durch zwei verschiedene geodâtische Segmente GQ und Gx miteinander verbunden
sind. Sei ferner eine stetige Schar Ht, 0 < t < 1, von stilckweise glatten Kurven
Ht aus Q(p,q) gegeben so, da/3 HQ Go und H1 Gt. Wenn dann die
Lange L(Ht) von Ht < der Lange L(H^) von Hx Gx ist, so gilt die Bezie-
hung

L(G0) + L(GX) > 2n (4)

Bemerlcungen. 1. Man beachte, daB in diesem Lemma von der Krûmmung
K nur vorausgesetzt wird, daB sie < 1 ist, und daB von M nur gefordert
wird, daB M vollstândig ist. Schon in dem einfachen Falle, daB M eine
Flache ist, deren GauBsche Krûmmung K < 1 ist, verdient das Lemma
selbstândiges Interesse. Insbesondere ist auch p q, G0 p zugelassen.

2. Der Beweis des Lemmas stûtzt sich auf den Vergleichssatz von Rauch [5]
(vgl. auch die Darstellung in [2] oder [3]), der sich fur dim M 2 auf den
bekannten Vergleichssatz von Stuem reduziert.

3. Einen wesentlichen Beitrag zu der vorstehenden Formulierung des
Lemmas verdanke ich einem Gesprâch mit I. M. Singer.

2. Beweis des Lemmas

2.1. In diesem Abschnitt machen wir die im Lemma formulierten Voraus-
setzungen. Insbesondere folgt aus der Annahme K < 1, daB eine von p
ausgehende Geodâtische ihren ersten konjugierten Punkt frtihestens im Ab-
stand n hat.

Das Lemma ist jedenfalls richtig, falls L(GQ) L(H0) >n; denn dann
ist auch L(Hj) L(Gt) > n. Wir betrachten daher jetzt den Fall L(G0) < n.
Wir wâhlen ein e > 0 so, daB L(G0) < n — e.

2.2. Sei <p die Exponentialabbildung des Tangentialraumes Mv imPunkte
p auf die Mannigfaltigkeit M. Wenn wir ç> einschrânken auf eine geeignete

offene Umgebung der abgeschlossenen Kugel D(tz — e) vom Radius n — e

um den Ursprung o von Mp, dann ist <p ein lokaler Diffeomorphismus.
Damit kônnen wir das Anfangsstûck einer von p auslaufenden Kurve H,
die durch p(s), 0 < s < 1, gegeben sei, zusammen mit einer Umgebung des

Anfangsstûcks, durch q)-1 in eine von o auslaufende Kurve von D(n — e)

abbilden. Wir kônnen dièse Abbildung fur wachsende Parameterwerte s so-

lange fortsetzen, wie die stetig von s abhângenden, von p p(0) nach
p(s) laufenden geodatischen Segmente nicht langer werden als n -— e.

Falls insbesondere H ein von p ausgehendes geodatisches Segment der
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Lange < n — e ist, so wird bei dieser Abbildung aus H eine von o aus-
gehende Strecke derselben Lange wie H.

2.3. Wir behaupten, da6 es nicht môglich ist, anf die vorstehend beschrie-
bene Weise, mit Ho Go beginnend, die ganze Schar Ht, 0 < t < 1, auf
eine Sehar H'ti 0 < t < 1 in D(n — s) abzubilden, die wieder stetig von t
abhângt. Beginnen wir mit Ho — GQ. In D{n — e) wird daraus eine Strecke
H'o mit dem Endpunkt a. Aile geniigend zu Ho benachbarten Kurven Ht
gehen iiber in Kurven H't in D (n — e), die von o nach a laufen. LieBe
sich dièse Abbildung fortsetzen fur aile t bis einschlieBlich t 1, so mùBte
auch H[ eine von o nach a in D(jr — e) laufende Kurve sein, wahrend
doch H[, als Bild eines von Ho (?0 verschiedenen geodâtischen Segments
H1 Gx, eine von Hr0 verschiedene Strecke H[ ist.

Es gibt also einen ersten Wert t0) 0< to< 1, so, daB H^o einen Punkt
im Abstand n — e enthâlt. Die Kurven H't, 0 < t < t0, lauifen aile von o

nach a.

2.4. Wir identifizieren nun Mv (aufgefaBt als euklidischer Raum) mit dem
Tangentialraum im Sûdpol der Einheitssphâre S=SdimM und bilden die Kurven

Hft, 0 < t < t0, durch die Exponentialabbildung y> in 8 ab. Dabei
wird aus H'o ein geodâtisches Segment Hq der Lange L(Hq) L{Hr0)

£(l?0) L(O0), wahrend das Bild H"u von JïJo einen Punkt enthàlt, der
den Abstand e vom Nordpol von S hat, und dann zum Endpunkt von H/fQ

zuriickkehrt. Damit haben wir die Beziehung

L(Hl) + L{H"U) > 2n- 2s. (5)

Nach dem Vergleichssatz von Rauch [5] (vgl. auch die Darstellung in [2]
und in [3]) gilt nun auf Grand von K < 1 : L{H"U) L{tp{Hrh)) < L(<p(H'to))

L{HH). Nach Voraussetzung ist L(Hto) < L^). Da L{Hnh) L(G0),
folgtaus(5) (0 >2n-2e. (6)

Da (6) fur jedes geniigend kleine e > 0 gilt, folgt die Behauptung (4).

3. Beweis von Theorem 3

3.1. In diesem Abschnitt machen wir die Voraussetzungen von Theorem 3.
Wir fixieren eine von p nach q laufende Geodâtische GQ der Lange

l(Gq) d(p, q) < 2tc — n/Vmin K. Sei nun Gx irgend eine von Go
verschiedene Geodâtische aus Q(p,q). Da M einfach zusammenhângend ist,
gibt es eine Schar Jt, 0 < t < 1, von stûckweise glatten Kurven Jt in
®( die stetig von t abhângen und so, daB JQ GQ und Jx Qt.



52 WlLHELM KXINGENBEBG

Auf dièse Jt wenden wir den bekannten DeformationsprozeB an, vgl.
neben Mobsb [4] auch Seifekt-Thbelfalïi [6], insbesondere § 16. Bei diesem
DeformationsprozeB bleiben die Geodâtischen unter den Jti also insbesondere
Jo Go und Ji 0l9 ungeândert, wâhrend die Nichtgeodâtischen verkûrzt
werden. Die Schar Jt, 0 < t < 1, geht dabei ûber in eine Schar Ht, 0 < t < 1,
mit folgenden Eigenschaften :

Es gibt eine Zahl u > 0 so, daB die Lange L(Ht) von Ht <u ist fur aile

t, und nur fur eine Geodàtische Ht gilt L(Ht) u. Da die Geodâtischen in
Q(p, q) isoliert liegen, lâBt sieh das Mntervall [0,1] so in disjunkte abge-
schlossene, aufeinander folgende Teilintervalle Tlf... ,Tr einteOen, daB aile
t in einem T{ dieselbe Geodàtische Ht darstellen (i 1,..., r), wàhrend
fur die auBerhalb der T{ gelegenen £-Werte L(Ht) < u gilt. Insbesondere
sind Ho O0 und Hx Ox verschiedene Geodàtische.

3.2. Folgende beiden Môglichkeiten kônnen eintreten:

A Das letzte Intervall Tr enthâlt den Wert 1. Dann ist L (HJ L (GJ u,
und L(Ht) < L{G-Ù fur aile t. Das Lemma liefert die Behauptung.

B 1 ist nicht in Tr enthalten. Das heiBt, L(Ht) L(GX) < u, also auch

L(H0) L(G0) d(p, q) < u. Die Kurven Go und Hti fur ti beliebig in
T{ (i 1,..., r) erfûllen die Voraussetzungen des Lemmas mit der Schar

Hu0 <t <t{. Aus (4) und (2) folgt daher

L(Ht{) > 2n - L(G0) 2tz - d(p, q)

Die Geodâtischen Hti haben also einen Index > n — 1, n dim M. Folg-
lich kônnen wir fur jedes i (i 1,..., r) eine kleine, zusammenhângende
Umgebung von Tt so finden, daB sich die Kurven Ht fur t innerhalb dieser

Umgebung durch kiirzere, stetig von t abhângende Kurven aus Q(p,q) er-
setzen lassen. - Bei dieser Ersetzung setzen wir dim M > 3 voraus ; im Falle
dim M 2 kann (ebenso wie allgemeiner im Falle dim M gerade) das Theorem
3 mit Hilfe von Theorem 1 aus [3] bewiesen werden, vgl. dazu Bergeb [2].

Auf dièse Weise erhalten wir aus der Schar Ht, 0 < t < 1, eine neue
Schar Ki90 <t <1, von Kurven Kt aus Q(p,q), die stetig von t ab-

hângen und fur die gilt: Ko (?0, Kx Gx und L(Kt) < u fur aile t.
Auf dièse Schar Kt, 0 < t < 1, wenden wir wiederum den DeformationsprozeB

aus 3.1 an und diskutieren die Môglichkeiten A und B. Da nur endlich
viele Geodâtisehe der Lange < u in Q(p,q) existieren, kommen wir nach
endlich vielen Schritten auf die unter A besprochene Situation, also auf die

Behauptung von Theorem 3.
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4. Beweis von Theorem 2

4.1. In diesem Abschnitt machen wir die Voraussetzungen von Theorem 2.
Wie wir in [3] gezeigt haben, gentigt es zum Beweis der Behauptung (b), wenn
wir nachweisen, da8 (a) gilt. Die Behauptung (c) folgt dann einfach aus der
Bemerkung, dafi zwei Punkte p und q, die maximalen Abstand d(p,q) — d(M)
besitzen, stets durch mindestens zwei geodàtische Segmente der Lange d(p9 q)
verbunden werden kônnen.

4.2. Wir nehmen jetzt an, da8 es auf M geschlossene Geodàtische der
Lange < 2n gibt. Dann gibt es auch eine geschlossene Geodâtische minimaler
Lange 2n — 2d <2n auf M. Wir bezeichnen sie mit G. Theorem 2 ist
bewiesen, sobald wir gezeigt haben, daB die Existenz der Geodâtischen G auf
einen Widerspruch fûhrt.

4.3. Wir wâhlen einen Punkt p auf G. Den p auf G gegenûberliegenden
Punkt bezeichnen wir mit r. r liegt auf dem Schnittort C(p) von p und
hat minimalen Abstand von p unter den Punkten von C(p), vgl. [3]. Die
beiden von p nach r fûhrenden geodâtischen Segmente der Lange n — d
auf G bezeichnen wir mit Fo und Fx. r ist nicht konjugiert zu p beziig-
lich jP0 oder bezûglich Fx. Daher besitzt r, aufgefafit als Punkt von C(p),
auf C(p) eine Umgebung bestehend aus Punkten rr eC(p), die durch zwei
geodâtische Segmente F'o und F[ mit p verbunden sind, so daB n —- d <
< L(F'O) L(F[) < n — d/2 und so, daB Ff0 benachbart ist zu Fo und F[
benachbart ist zu Fx.

Die F'o mit diesen Eigenschaften iiberdecken einen Kegel mit der Spitze
in p und der Achse .Fo, und ebenso ûberdecken die F[ mit diesen
Eigenschaften einen Kegel mit der Spitze in p und der Achse F[.

Nach Morse [4] (Seite 234) liegen die bezûglich p nichtentarteten Punkte
q uberall dicht in M. Es gibt also einen bezûglich p nichtentarteten Punkt q

mit folgenden Eigenschaften: d(p, q) < 2n — jr/V^min K und q liegt auf
einem der Segmente Ff0 des Kegels um Fo. Mit F[ bezeichnen wir jetzt das-
jenige im Kegel um Fx gelegene Segment, das mit FrQ den Endpunkt rr
gemeinsam hat. Wir haben n — d < L(F'O) L(F[) <n-dj2.

Go bezeichne das von p nach q laufende Segment der Lange d(p,q) auf
F'o. Mit Gx bezeichnen wir das von p nach q laufende gebrochene geodâtische

Segment, das sich zusammensetzt aus dem von p nach r' laufenden
Segment F[ und dem von r1 nach q laufenden Teil von F'o.

4.4. Da M einfach zusammenhângend ist, gibt es in Q(p,q) eine stetige
Schar Jt) 0 < t < 1, von sttickweise glatten Kurven Jt mit Jo Go und
^1/2 Gx und Jlm_t Jt. Auf dièse Schar wenden wir den schon im 3.1
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betrachteten DeformationsprozeB an und erhalten gemâB 3,2 eine Schar

Ht, 0 < t < 1, und eine Zahl u > 0 so, daB Ho H1 G0, L(Ht) < uy
und L(Ht) u nur, wenn Ht eine Geodàtisehe ist. Das Bild Hl(2 von
J1/2 Gx unter diesem DeformationsprozeB ist verschieden von Gx, falls
G1 echt gebrochen ist.

Die Geodâtischen Ht der Lange u sind isoliert; man kann, wie in 3.2,
auf Grand des Lemmas dièse Geodâtisehen durch kurzere ersetzen, falls
L(GQ) L(H0) L(H1) <u. Damit gelangt man zu einer Schar Kt,
0 < t < 1, mit K0 Kx (?0 und //(X^) < u. Naeh endlich vielen Schrit-
ten dieser Art lâBt sich daher die Schar Jt tiberfuhren in die uneigentliche
Schar Pti 0 < t < 1, mit Pt Go fur aile t.

Insbesondere geht dabei J1/2 Gx stetig ûber in Go mit nicht wachsender
Lange. Das heiBt, wir erhalten eine Schar Qt, 0 < t < 1, von Kurven Qt
in û(p, g) mit Q1 G1,Q0 Go, jL(Çf) + L((?o) < i^) + i((?0) < 2n - d.

Unter Verwendung dieser Qt, 0 <t < 1, definieren wir nun eine Schar
-R«, 0 < ^ < 1, von stûckweise glatten Kurven Rtc Q(p, p) mit Ro p und
R1 G wiefolgt:

Fur 0 < t < 1/3 soll Rt eine Déformation von p in das vor- und zuruck-
durchlaufene Segment Go auf Ff0 sein.

Fiir 1/3 < t < 2/3 soll iît gleich Qzt^ sein, gefolgt von dem zuruck
durchlaufenen Segment Go.

Fiir 2/3 <t <l soll iîe eine Déformation von F[ ^ Ff0 in F1^F0 G

sein ûber Segmente der Form Fq ^ F![ der Lange < 2n — d.
Wir erkennen, daB L(Mt) <2n — d<2n fur aile t, Auf der anderen Seite

zeigt der Beweis des Lemmas, insbesondere der Abschnitt 2.3, daB fur wenig-
stens ein t gelten muB: L(Rt) >2tz-- also ein Widerspruch.
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