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Uber Riemannsche Mannigfaltigkeiten
mit positiver Kriimmung

Von WiLHELM KLINGENBERG, Gottingen

1. Zusammenstellung der Ergebnisse?)

1.1. Bekanntlich ist eine kompakte, einfach zusammenhingende Riemann-
sche Mannigfaltigkeit M mit konstanter positiver Riemannscher Kriimmung
K homéomorph (ja sogar isometrisch) zur Sphire S = Sy, (mit der ge-
wohnlichen Riemannschen Metrik).

Es erhebt sich die Frage, ob man in diesem Satz die Forderung, dafl K
konstant ist, abschwichen kann zu der Forderung, da K innerhalb gewisser
Schranken variiert. Da auf einer kompakten, einfach zusammenhingenden
Mannigfaltigkeit M notwendig Werte K> 0 vorkommen, kénnen wir annehmen,
dafl die Metrik auf M so normiert ist, daB die Kriimmung K nur Werte < 1
annimmt.

Einen ersten Beitrag zu unserem Problem liefert der folgende Satz von
RavcH [5]: Falls auf einer kompakten, einfach zusammenhingenden Riemann-
schen Mannigfaltigkeit M die Krimmung K den Ungleichungen 0,74...
< K <1 gentigt, so ist M homéomorph zu S = Sy -

In der Note [3] haben wir dann gezeigt: Fiir Mannigfaltigkeiten gerader
Dimension folgt der Satz von Ravcu schon, wenn man nur die Ungleichungen
0,64... < K <1 fordert. Fiir den Beweis dieses Satzes hatten wir neue Me-
thoden entwickelt und uns insbesondere auf eine optimale Abschitzung nach
unten fiir den Abstand zwischen einem Punkt und seinem Schnittort gestiitzt,
vgl. Bemerkung 1 und 2 zu Theorem 2 unten. Da diese Abschitzung nur fiir
Mannigfaltigkeiten gerader Dimension bewiesen werden konnte, muBten wir
uns bei der Verbesserung des Satzes von Raucu auf geraddimensionale Man-
nigfaltigkeiten beschrinken.

BERGER [1] gelang es dann, die in [3] benutzten Methoden wesentlich zu
verfeinern und damit zu beweisen: Eine kompakte, einfach zusammenhingende
Riemannsche Mannigfaltigkeit M gerader Dimension, deren Kriimmung K
den Ungleichungen 1/4 < K <1 geniigt, ist homdomorph zur Sphire Sy -
Die hier auftretenden Schranken fiir K konnen nicht verbessert werden, da
die symmetrischen Riume vom Rang 1, die nicht homtomorph zur Sphire
sind, mit ihrer gewohnlichen Metrik der Beziehung 1/4 < K <1 geniigen.

1.2. Inder vorliegenden Note zeigen wir nun, daf das Ergebnis von BERGER
auch fiir Mannigfaltigkeiten ungerader Dimension richtig ist:

!) Der Verfasser hat die Hauptergebnisse dem Internationalen Kolloquium iiber Differential-
geometrie und Topologie, Ziirich, Juni 1960, mitgeteilt.
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Theorem 1. Sei M eine kompakte, einfach zusammenhingende Riemannsche
Mannigfaltigkeit. Falls die Riemannsche Krimmung K wvon M den Unglei-

chungen 1/4<K <1 (1)
genilgt, so ist M homoomorph zur Sphdire S = Sgmar-2)

Bemerkungen. 1. Fiir Mannigfaltigkeiten gerader Dimension > 2 ist das
vorstehende Ergebnis das bestmogliche, wie wir gerade erwihnt haben. Die
einzigen bekannten Mannigfaltigkeiten ungerader Dimension, die kompakt und
einfach zusammenhéngend sind und eine Metrik mit K > 0 tragen, sind
homéomorph zu den Sphéren. Es erscheint daher nicht ausgeschlossen, dafB
sich die Behauptung des Theorems fiir Mannigfaltigkeiten ungerader Dimen-
sion auch aus einer schwicheren Ungleichung als (1) herleiten 1a8t.

2. Fir dim M gerade wurde Theorem 1 von BERGER [1] bewiesen. Er
muflte sich auf diesen Fall beschrinken, da er seinen Beweis auf eine Ab-
schitzung des Abstandes zwischen einem Punkt und seinem Schnittort stiitzt,
die bisher nur fiir gerade Dimensionen bewiesen worden ist, vgl. [3], Theo-
rem 1. Wir zeigen nun in dieser Note, daBl das in Rede stehende Ergebnis aus
[3] auch fiir Mannigfaltigkeiten ungerader Dimension richtig ist, wenn man die
Voraussetzung (1) macht. Da im iibrigen der Beweis von BERGER unabhéngig
ist von der Dimension, geniigt es also zum Beweis von Theorem 1, wenn wir
das benétigte Ergebnis aus [3] fiir Mannigfaltigkeiten mit der Eigenschaft (1)
fiir den Fall beliebiger Dimension beweisen. Damit ist der Beweis von Theorem 1
zuriickgefithrt auf den Beweis von

Theorem 2. Se: M eine kompakte, einfach zusammenhingende Riemannsche
Mannigfaltigkeit. Falls die Riemannsche Krimmung K den Ungleichungen
(1) geniigt, so gilt?)

(a) Eine geschlossene Geoddtische hat die Linge > 2.

(b) Falls zwer Punkte p und q auf M einen Abstand d(p, q) <n haben,
so gibt es genau ein geoditisches Segment der Linge d(p,q) von p nach q.

(¢) Der Durchmesser d(M) von M, das heifit, der maximale Abstand, den
zwet Punkte auf M haben kinnen, ist > m.

Bemerkungen. 1. Die Eigenschaft (b) ld8t sich auch so formulieren: Der
Abstand zwischen einem Punkt p von M und seinem Schnittort C(p) ist
> n. Zum Begriff des Schnittortes vgl. [3].

2) Anmerkung bei der Korrektur: Durch eine Verfeinerung der hier entwickelten Methoden
gelang es inzwischen, das Theorem 2 auch unter der schwécheren Voraussetzung (1'), 1/4 < K <1,
zu beweisen. Aus den Resultaten von BERGER [1] folgt damit: Wenn man in Theorem 1 (1’) an
Stelle von (1) fordert, so ist M homdomorph der Sphére oder, falls dim M gerade und > 2,
isometrisch einem symmetrischen Raum vom Rang 1, ungleich der Sphire. Siehe hierzu die
demnéchst erscheinende Arbeit «Uber vollstandige Riemannsche Mannigfaltigkeiten mit nach
oben beschréankter Kriimmungy in den Annali di Matematica.
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2. In [3] hatten wir die Behauptungen (a), (b), (c) fiir Mannigfaltigkeiten
gerader Dimension aus der schwicheren Forderung: 0 < K < 1 hergeleitet.

Es bleibt offen, ob dieses Ergebnis sich auch auf Mannigfaltigkeiten ungerader
Dimension iibertrigt.

1.3. Wir bezeichnen mit Q(p, q) den Raum der stiickweise glatten Kur-
ven, die von p nach ¢ laufen. Nach MoRsE [4] heilt q nichientartet beziiglich
p, falls esin Q(p, ¢) nur endlich viele Geoditische beschrinkter Liinge gibt.

Ein wesentlicher Schritt bei dem Beweis von Theorem 2 besteht nun in dem
Beweis von

Theorem 3. Sev M eine kompakte, einfach zusammenhingende Riemannsche
Mannigfaltigkeit, fir die die Riemannsche Krimmung K den Ungleichungen
(1) geniigt. Seien p wund q zwei Punkte auf M so, da q mnicht entartet ist
bezilglich p und so, daf fir den Abstand d(p, q) gilt

0<d(p,q)<2n—n/VmnK . (2)

Set G, eine Geodditische minimaler Linge d(p,q) in Q(p,q). Fir jede von
Gy verschiedene Geodditische G, aus Q(p,q) ¢ilt dann die Beziechung

L(@y) > 2x — L(Gy) > n/V min K . (3)

Hier bezeichnet L(H) die Linge der Kurve H.

Da nun jedes der Ungleichung (3) geniigende geodétische Segment @, einen
Index >n — 1 hat, n =dim M, wihrend Q, wegen L(GQ,) =d(p,q)<n
den Index 0 hat, so folgt nach MorsE [4] (vgl. auch BERGER [2]) sofort:

Korollar. M ist eine Homologiesphiire.

Bemerkungen. 1. Da jiingst bewiesen wurde, dafl eine einfach zusammen-
hingende Homologiesphéire der Dimension > 7 homoéomorph ist zur Sphire
(STaLrings), liBt sich Theorem 1, jedenfalls fiir dim M > 7, auch aus die-
sem Korollar erschlieBen.

2. Im Laufe des Beweises von Theorem 3 ergibt sich unter anderem das
Folgende: Set M eine kompakte, einfach zusammenhingende Riemannsche
Mannigfaltigheit der Dimension > 3 mit der Eigenschaft (1), und seien p und g
und @, gewdihlt wie in Theorem 3. Dann lift sich jede Kurve H € 2(p, q) so
@y deformieren, daf dabei die Linge nicht zunimmé.

3. Fiir dim M gerade wurde das Korollar bewiesen von BERGER [2], unter
wesentlicher Verwendung von Theorem 1 aus [3].

1.4. Ein wichtiges Hilfsmittel fiir den Beweis von Theorem 3 (und damit
auch fiir den Beweis von Theorem 2 und 1) bildet das folgende

4 CMH vol. 35
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Lemma. Ser M eine vollstindige Riemannsche Mannigfaltigkest, deren Rie-
mannsche Krimmung K <1 ist. Seten p und q zwei Punkte auf M, die
durch zwes verschiedene geodditische Segmente G, und @, mitetnander verbunden
sind. Set ferner eine stetige Schar H,, 0 <t < 1, von stilckweise glatten Kurven
H, aus Q(p,q) gegeben so, daff H,= G, und H, = Q,. Wenn dann die
Linge L(H,) von H, < der Linge L(H,) von H, = G, 1st, so gilt die Bezie-
hung

L(Gy) + L(G) = 2= . (4)

Bemerkungen. 1. Man beachte, daBl in diesem Lemma von der Kriimmung
K nur vorausgesetzt wird, daBl sie <1 ist, und daB von M nur gefordert
wird, daB M vollstindig ist. Schon in dem einfachen Falle, da M eine
Fliche ist, deren GauBsche Kriimmung K <1 ist, verdient das Lemma
selbstdndiges Interesse. Insbesondere ist auch p =g¢, G, = p zugelassen.

2. Der Beweis des Lemmas stiitzt sich auf den Vergleichssatz von RaucH [5]
(vgl. auch die Darstellung in [2] oder [3]), der sich fiir dim M = 2 auf den
bekannten Vergleichssatz von STurM reduziert.

3. Einen wesentlichen Beitrag zu der vorstehenden Formulierung des
Lemmas verdanke ich einem Gesprich mit I. M. SINGER.

2. Beweis des Lemmas

2.1. In diesem Abschnitt machen wir die im Lemma formulierten Voraus-
setzungen. Insbesondere folgt aus der Annahme K <1, daB eine von p
ausgehende Geodédtische ihren ersten konjugierten Punkt frithestens im Ab-
stand & hat.

Das Lemma ist jedenfalls richtig, falls L(G,) = L(H,) > n; denn dann
ist auch L(H,) = L(G,) > n. Wir betrachten daher jetzt den Fall L(G,) < =.
Wir wihlen ein € > 0 so,daBB L(Gy) <m — ¢.

2.2. Sei ¢ die Exponentialabbildung des Tangentialraumes M, im Punkte
p auf die Mannigfaltigkeit M. Wenn wir ¢ einschrinken auf eine geeignete

offene Umgebung der abgeschlossenen Kugel D (m —¢) vom Radius n — ¢
um den Ursprung o von M,, dann ist ¢ ein lokaler Diffeomorphismus.
Damit kénnen wir das Anfangsstiick einer von p auslaufenden Kurve H,
die durch p(s), 0 <s <1, gegeben sei, zusammen mit einer Umgebung des

Anfangsstiicks, durch ¢~! in eine von o auslaufende Kurve von D (= — &)
abbilden. Wir kénnen diese Abbildung fiir wachsende Parameterwerte s so-
lange fortsetzen, wie die stetig von s abhidngenden, von p = p(0) nach
p(s) laufenden geodétischen Segmente nicht linger werden als © — ¢.

Falls insbesondere H ein von p ausgehendes geoditisches Segment der
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Linge <& — ¢ ist, so wird bei dieser Abbildung aus H eine von o aus-
gehende Strecke derselben Linge wie H.

2.3. Wir behaupten, dafl es nicht moglich ist, auf die vorstehend beschrie-
bene Weise, mit H, = G, beginnend, die ganze Schar H,, 0 <t <1, auf
eine Schar H;, 0 <t <1 in D(x — ¢) abzubilden, die wieder stetig von ¢

abhéngt. Beginnen wir mit H, = G,. In D (® — €) wird daraus eine Strecke
H, mit dem Endpunkt a. Alle geniigend zu H, benachbarten Kurven H,

gehen iiber in Kurven H) in D(x — ¢), die von o nach a laufen. LieBe
sich diese Abbildung fortsetzen fiir alle ¢ bis einschlieflich ¢ = 1, so miiBte

auch H; eine von o nach @ in D(n — ¢) laufende Kurve sein, wihrend
doch Hj, als Bild eines von H, = G, verschiedenen geoditischen Segments
H, = G,, eine von Hj verschiedene Strecke H; ist.

Es gibt also einen ersten Wert ¢,, 0 <t, <1, so, da@} H:o einen Punkt
im Abstand = — ¢ enthilt. Die Kurven Hj}, 0 <t <t,, laufen alle von o
nach a.

2.4. Wir identifizieren nun M, (aufgefafit als euklidischer Raum) mit dem
Tangentialraum im Siidpol der Einheitssphire S=3Sy; ,, und bilden die Kur-
ven H), 0 <t <t,, durch die Exponentialabbildung % in S ab. Dabei
wird aus H, ein geoditisches Segment H, der Linge L(Hj,)= L(H}) =
= L(H,) = L(Q,), wihrend das Bild H ',’o von H ;o einen Punkt enthilt, der
den Abstand ¢ vom Nordpol von § hat, und dann zum Endpunkt von H
zuriickkehrt. Damit haben wir die Beziehung

L(Hy) + L(H;) > 27 — 2¢ . (5)

Nach dem Vergleichssatz von RaucH [5] (vgl. auch die Darstellung in [2]
und in [3]) gilt nun auf Grund von K < 1: L(H}) = L(y(H})) < L(p(H}))
= L(H,). Nach Voraussetzung ist L(H,) < L(@,). Da L(H7) = L(G,),

folgt
o't aus (5) L(@,) + L(@) > 2 — 26 . (6)
Da (6) fiir jedes geniigend kleine &> 0 gilt, folgt die Behauptung (4).

3. Beweis von Theorem 3

3.1. In diesem Abschnitt machen wir die Voraussetzungen von Theorem 3.

Wir fixieren eine von p nach ¢ laufende Geoddtische G, der Linge
L(Gy) =d(p, q) < 2x — :rz/l/min K. Sei nun @, irgend eine von G, ver-
schiedene Geoditische aus Q(p,q). Da M einfach zusammenhingend ist,
gibt es eine Schar J,, 0 <t <1, von stiickweise glatten Kurven J, in
Q(p, q), die stetig von ¢ abhingen und so, daBl J, = G, und J, = G,.
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Auf diese J, wenden wir den bekannten Deformationsprozef an, vgl.
neben MORSE [4] auch SEIFERT-THRELFALL [6], insbesondere § 16. Bei diesem
DeformationsprozeB bleiben die Geoditischen unter den J,, also insbesondere
Jo =G, und J, = @,, ungeindert, wihrend die Nichtgeoditischen verkiirzt
werden. Die Schar J,, 0 <t <1, geht dabei iiber in eine Schar H,,0 <t <1,
mit folgenden Eigenschaften:

Es gibt eine Zahl % > 0 so, daf} die Linge L(H,) von H, < u ist fiir alle
t, und nur fiir eine Geodétische H, gilt L(H,) = . Da die Geoditischen in
Q(p, q) isoliert liegen, 1Bt sich das ¢-Intervall [0,1] so in disjunkte abge-
schlossene, aufeinander folgende Teilintervalle 7',,..., T, einteilen, daf} alle
t in einem 7', dieselbe Geodétische H, darstellen (z+ = 1,...,7), wihrend
fiir die auBerhalb der 7', gelegenen ¢-Werte L(H,) < u gilt. Insbesondere
sind Hy = @y, und H, = @, verschiedene Geoditische.

3.2. Folgende beiden Moglichkeiten konnen eintreten:

A Das letzte Intervall 7', enthilt den Wert 1. Dannist L(H,)= L(&,) =u,
und L(H,) < L(@G,) fiir alle ¢{. Das Lemma liefert die Behauptung.

B 1 ist nicht in 7', enthalten. Das heiit, L(H,) = L(®,) < u, also auch
L(H,) = L(Gy) = d(p,q) <u. Die Kurven G, und H,, fiir ¢, beliebig in
T, (s =1,...,r) erfilllen die Voraussetzungen des Lemmas mit der Schar"
H,, 0<t<t, Aus(4)und (2) folgt daher

LH,) > 2x — L(Gy) = 2z — d(p, ¢) > «/Vmin K .

Die Geodétischen H,, haben also einen Index >#n — 1, n =dim M. Folg-
lich konnen wir fiir jedes ¢ (1 = 1,...,r) eine kleine, zusammenhéngende
Umgebung von 7'; so finden, daf} sich die Kurven H, fiir ¢ innerhalb dieser
Umgebung durch kiirzere, stetig von ¢ abhingende Kurven aus £2(p, q) er-
setzen lassen. — Bei dieser Ersetzung setzen wir dim M > 3 voraus; im Falle
dim M = 2 kann (ebenso wie allgemeiner im Falle dim M gerade) das Theorem
3 mit Hilfe von Theorem 1 aus [3] bewiesen werden, vgl. dazu BERGER [2].

Auf diese Weise erhalten wir aus der Schar H,, 0 <t <1, eine neue
Schar K,,0 <t <1, von Kurven K, aus Q(p, q), die stetig von ¢ ab-
hiéngen und fiir die gilt: K, = @G,, K, = @, und L(K,) < u fiir alle ¢.

Auf diese Schar K,, 0 <t <1, wenden wir wiederum den Deformations-
prozeB aus 3.1 an und diskutieren die Moglichkeiten A und B. Da nur endlich
viele Geoditische der Linge < in Q(p, q) existieren, kommen wir nach
endlich vielen Schritten auf die unter A besprochene Situation, also auf die
Behauptung von Theorem 3.
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4. Beweis von Theorem 2

4.1. In diesem Abschnitt machen wir die Voraussetzungen von Theorem 2.
Wie wir in [3] gezeigt haben, geniigt es zum Beweis der Behauptung (b), wenn
wir nachweisen, daf (a) gilt. Die Behauptung (c) folgt dann einfach aus der
Bemerkung, dal zwei Punkte p und ¢, die maximalen Abstand d(p, q)=d (M)
besitzen, stets durch mindestens zwei geoditische Segmente der Liinge d(p, q)
verbunden werden konnen.

4.2. Wir nehmen jetzt an, dal es auf M geschlossene Geoditische der
Linge < 2z gibt. Dann gibt es auch eine geschlossene Geoditische minimaler
Linge 27 — 2d < 2x auf M. Wir bezeichnen sie mit @. Theorem 2 ist
bewiesen, sobald wir gezeigt haben, daB die Existenz der Geoditischen G auf
einen Widerspruch fiihrt.

4.3. Wir wihlen einen Punkt p auf G. Den p auf G gegeniiberliegenden
Punkt bezeichnen wir mit r. r liegt auf dem Schnittort C(p) von p und
hat minimalen Abstand von p unter den Punkten von C(p), vgl. [3]. Die
beiden von p nach r fithrenden geoditischen Segmente der Linge = — d
auf G bezeichnen wir mit F, und F,. r ist nicht konjugiert zu p beziig-
lich F, oder beziiglich F,. Daher besitzt r, aufgefaBt als Punkt von C(p),
auf C(p) eine Umgebung bestehend aus Punkten 7' e C(p), die durch zwei
geoditische Segmente ¥, und F; mit p verbunden sind, so daB 7 — d <
< L(Fy) = L(F;) <=x — d/2 und so, daB F} benachbart ist za F, und F/
benachbart ist zu F;.

Die Fy mit diesen Eigenschaften iiberdecken einen Kegel mit der Spitze
in p und der Achse F,, und ebenso iiberdecken die F; mit diesen Eigen-
schaften einen Kegel mit der Spitze in p und der Achse F;.

Nach MorsE [4] (Seite 234) liegen die beziiglich p nichtentarteten Punkte
q tiberall dicht in M. Es gibt also einen beziiglich p nichtentarteten Punkt ¢

mit folgenden Eigenschaften: d(p,q) < 2nx — #n/V/ min K und ¢ liegt auf
einem der Segmente F, des Kegels um F,. Mit F; bezeichnen wir jetzt das-
jenige im Kegel um F, gelegene Segment, das mit F; den Endpunkt 7'
gemeinsam hat. Wir haben = — d < L(F;) = L(F}) <= — d/2.

G, bezeichne das von p nach ¢ laufende Segment der Linge d(p, q) auf
Fg. Mit G, bezeichnen wir das von p nach ¢ laufende gebrochene geoditi-
sche Segment, das sich zusammensetzt aus dem von p nach ¢’ laufenden
Segment F; und dem von 7 nach ¢ laufenden Teil von Fj.

4.4. Da M einfach zusammenhingend ist, gibt es in Q(p, g) eine stetige
Schar J,, 0 <t < 1, von stiickweise glatten Kurven J, mit Jy= G, und
Jyp= G, und J,_,=J,. Auf diese Schar wenden wir den schon im 3.1
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betrachteten Deformationsproze an und erhalten gemdB 3.2 eine Schar
H,,0<t<1, und eine Zahl v« >0 so, dal Hy=H,=@G,, L(H, <u,
und L(H,) = u nur, wenn H, eine Geoditische ist. Das Bild H,, von
Jys = G, unter diesem Deformationsproze ist verschieden von @,, falls
G, echt gebrochen ist.

Die Geoditischen H, der Linge w sind isoliert; man kann, wie in 3.2,
auf Grund des Lemmas diese Geodatischen durch kiirzere ersetzen, falls
L(Gy) = L(H,) = L(H,) <u. Damit gelangt man zu einer Schar K,,
0<t<1, mit K,= K, =G, und L(K,) <wu. Nach endlich vielen Schrit-
ten dieser Art laBt sich daher die Schar J, iiberfiihren in die uneigentliche
Schar P,, 0 <t <1, mit P,= G, fiir alle ¢.

Insbesondere geht dabei J,, = @, stetig iiber in G, mit nicht wachsender
Linge. Das hei3t, wir erhalten eine Schar @,, 0 <t <1, von Kurven @,
in Q(p,q) mit @, =Gy, Q= Gy, L(Q) + L(Gy) < L(G) + L(Gy) <2n —d.

Unter Verwendung dieser @,, 0 <t <1, definieren wir nun eine Schar
R,, 0 <t <1, von stiickweise glatten Kurven R, e Q2(p, p) mit R, = p und
R, = G wie folgt:

Fir 0 <t <1/3 soll R, eine Deformation von p in das vor- und zuriick-
durchlaufene Segment G, auf F| sein.

Fir 1/3 <t <2/3 soll R, gleich @,, , sein, gefolgt von dem zuriick
durchlaufenen Segment @,.

Fiir 2/3 <t <1 soll R, eine Deformation von F;v Fj in F,vF,= QG
sein iiber Segmente der Form Fj v F] der Linge < 2z — d.

Wir erkennen, dafl L(R,) <2n —d<2x fir alle . Auf der anderen Seite
zeigt der Beweis des Lemmas, insbesondere der Abschnitt 2.3, daf} fiir wenig-
stens ein ¢ gelten muf3: L(R,) > 2x — also ein Widerspruch.
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