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Groups of Transformations of Kaenrer
and almost KaenLer Manifolds

by S. I. GoLpBERG!), Cambridge, Mass. (USA)

In his Princeton lectures delivered in 1956, LicHNEROWICZ proved that the
largest connected LiE group C,(E£?") of conformal transformations of a com-
pact EINSTEIN-KAEHLER space E?"(n > 1) of positive Riccr curvature
leaves the KAEHLERian structure invariant. This result is of particular interest
in the study of homogeneous spaces, for, every compact homogeneous KAEH-
LERian space admits if the group of conformal transformations is semi-simple
an invariant EINSTEIN-KAEHLER metric. In a subsequent paper, this result
was extended to KAEHLER manifolds?), in general, by employing an integral
formula giving a characterization of an infinitesimal analytic transformation
in terms of the Riccr curvature. Indeed, if M2" (n > 1) is a compact KAER-
LER manifold the largest connected Lie group Co(M?") of conformal trans-
formations coincides with the largest connected group Aq(M?**) of auto-
morphisms of the KAEHLER structure. For n = 1 it coincides with the largest
connected group of analytic homeomorphisms.

Now, if M is a compact almost KAEHLERian manifold, it is known that the
largest, connected group of affine transformations with respect to the RiIE-
MANNian connection coincides with the largest connected group A4,(M) of
automorphisms of the almost KAEHLERian structure. It was recently shown
that Cy(M) = A,(M) in the case where dim M = 4k, so that for these
dimensions a conformal map is an affine transformation and conversely [4].
It is the main purpose of this paper to extend this result so that it holds for
all dimensions. We shall prove

Theorem 1. The largest connected Lie group of conformal transformations of
a compact almost KaErLER manifold M?*™(n > 1) coincides with the largest
connected group of automorphisms of the almost KAEHLER structure, that 18
Co(M?™) = Ao(M*™).

If the almost complex structure is completely integrable and comes from
a complex analytic structure we obtain as an immediate consequence the

1) This research was supported by the United States Air Force Office of Scientific Research
of the Air Research and Development Command under Contract No. AF-49 (638)-14.

Presented at the International Colloquium on Differential Geometry and Topology, Ziirich,
June, 1960.

3) The manifolds, differential forms and tensorfields considered are assumed to be of class C,
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theorem of LicaNEROWICZ [6]. The proof given in [6] was recently extended
to include the almost KAEHLER manifolds as well [9]. Indeed, an integral for-
mula is established relating a certain tensorfield (whose vanishing, in the
KAEHLERian case, gives a necessary and sufficient condition for an infinitesimal
transformation to be analytic) with the RiccI curvature of the manifold. The
derivation of this formula is rather complicated as it involves several lengthy
non-trivial computations.

Our method of proof does not differ essentially from that given in a previous
paper [4] for the special case previously mentioned, that is, it stems from the
same general formula (cf. equation 4 below) upon which the results of this
paper depend. For the sake of completeness and because of its intrinsic in-
terest we shall reproduce this result thereby giving an alternate proof for the
dimensions 4k.

In §8, Theorem 1 is generalized to include those compact orientable Rig-
MANNian manifolds carrying an harmonic form of a given degree whose coef-
ficients satisfy a certain relation.

2. In the noncompact case it is shown that an infinitesimal analytic con-
formal map of a pseudo-KAEHLER manifold is a homothetic map, and hence
also an affine transformation corresponding to the RiEMANNian connection
(cf. Theorem 5). We shall also consider infinitesimal maps whose covariant
forms are closed. Indeed, let X be a vector field on a pseudo-KAEHLERian
manifold whose image by the almost complex structure operator J is an
infinitesimal conformal map preserving the pseudo-KaAEHLERian structure.
The vector field JX is then “closed,” that is its covariant form (by the
duality defined by the metric) is closed. We shall show that, in general, a
“closed conformal map” is a homothetic transformation. In fact, the follow-
ing theorem is proved:

Theorem 2. If M2"(n>1) s a complete pseudo-Karnrerian manifold
which 18 not locally flat a closed infinitestmal conformal map is an automorphism
of the pseudo- K AEnLERIQN Structure.

In the locally flat case we may prove

Theorem 3. Let M2" (n > 1) be a complete locally flat pseudo-K4EnLERIQN
manifold. Then, a closed infinitesimal conformal transformation of bounded
length is an automorphism of the pseudo-KaEBLERION Structure.

Remark. The linear space A of all closed infinitesimal conformal maps of
a compact KAEHLER manifold M?* is an abelian subalgebra of the LiE
algebra L of infinitesimal conformal transformations of M2 (n > 1). An
alternate way of expressing this is to say that any two elements of 4 are
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in involution. If the first betti number vanishes 4 = (0). To see this, we ob-
serve first that the image by J of an element X of A is isometric (cf. proofs
of Theorems 2 and 3). Hence, 8C& = 0, where & is the covariant form of
X and C the complex structure operator applied to forms. By Theorems 2
and 3, X € Aj(M), that is dC¥& vanishes. It follows that C¢& is harmonic
and therefore since M is a KAEHRLER manifold ¢ is also harmonic. The con-
dition & = 0 implies that X is an infinitesimal isometry. But a harmonic
vector field which is at the same time a Kmring field must be a parallel

0 . 0
field of vectors. For X, Y ed, X = 5{"3;?’ Y=19 9zt
) on? o0&+
[ k______ — k..._.___
X, Y= gk ="
= & Dyt — nkD, &
=0

where D, denotes the covariant derivative with respect to the canonical
connection.

(The summation convention is used throughout.)

If we consider the subalgebra of closed bounded conformal maps the com-
pactness condition may be replaced by completeness.

3. A real manifold M?* of even dimension 27 is said to be almost complex
if there is a linear transformation J defined on the tangent space at each
point which varies differentiably with respect to local coordinates and whose
square is minus the identity, that is if there is a real tensorfield F: on M2»

7
satisfying F;:F5=— i (¢,7,k=1,...,2n).

In a coordinate neighborhood of an even dimensional real manifold with
coordinates z!,..., 22" complex coordinates may be introduced by setting
2l =af 4 4af+n, j=1,...,n. The almost complex structure given by J
is called completely integrable if the manifold can be made into a complex
manifold with local coordinates z!,...,2", so that operating with J is
equivalent to transforming dz/ and dz/ into ¢dz/ and — idz/. In this
case multiplication by ¢ in the tangent space has an invariant meaning.

Consider a manifold M?* admitting a 2-form

w = Fydxt A da!

of rank 2n everywhere. If w is closed the manifold is said to be symplectic.
Let g be a metric on M?2* with the property

F{ijlgkl=gij (i,j,k,lzl,.-.,2n).
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Such a metric always exists. The operator J acting in the tangent space at
each point J: & > (i(X)w)*

(where (X) is the interior product by X operator) defines on M?2* an
almost complex structure and together with ¢ an almost Hermirian struc-
ture. If the manifold is symplectic with respect to the fundamental form w the
almost HeErRMITian structure is called almost Kaenrerian. In this case, M2»
is said to be an almost Karnrer manifold. In such a manifold the fundamental
2-form w is both closed and co-closed, that is harmonic. If J defines a
completely integrable almost complex structure M?2" is said to be pseudo-
Kaenrerian. If the almost complex structure comes from a complex structure
M?* is said to be a Karmrer manifold. A KAEHLER manifold is thus an
HerMiTian manifold which is symplectic for the fundamental 2-form of the
HerMrTian structure.

4. A transformation f of a complex manifold is said to be analytic if it
preserves the complex analytic structure. The corresponding almost complex
structure J is therefore invariant by f. If two complex analytic structures
induce the same almost complex structure they must coincide. Hence, in
order that f be analytic it is necessary and sufficient that J be preserved.
If the manifold is compact it is well known that the largest group of analytic
transformations is a complex L1k group [2].

Let G denote a connected Lik group of analytic transformations of the
complex manifold M. To each element A of the LiE algebra of G is as-
sociated the 1-parameter subgroup a, of @ generated by 4. The corre-
sponding 1-parameter group of transformations R, on M (R, -P =
= P.a;,, P e M) induces a (right invariant) vector field X on M. From
the action on the almost complex structure J it follows that 6(X)J vanishes
where 0(X) is the Lie derivative operator applied to J. An infinitesimal
analytic transformation is an infinitesimal transformation defined by a vector
field X satisfying 6(X)J = 0. On the other hand, a vector field on M
satisfying this equation generates a local 1-parameter group of local trans-
formations of M. In order that a connected L1k group G of transformations
be a group of analytic transformations it is necessary and sufficient that the
vector fields on M induced by the 1-parameter subgroups of @ define in-
finitesimal analytic transformations. If M is complete every infinitesimal
analytic transformation generates a l-parameter global group of analytic
transformations of M.

Consider a RiEMANNian manifold M with metric g. By a conformal trans-
formation of M is meant a differentiable homeomorphism f of M onto
itself with the property that f*g = atg
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where f* is the induced map in the bundle of frames over M and a is a
real differentiable function on M. If a is a constant f is said to be homo-
thetic. If the metric is preserved (@ = 1) f is an isomefry. The group of all
the isometries of M is a Lie group with respect to the natural topology.
Let G denote a connected LIE group of conformal transformations of M
and L its Lie algebra. To each element A of L is associated the 1-para-
meter subgroup a, of G generated by A. The corresponding 1-parameter
group of transformations of M induces a differentiable vector field X on
M. From the action on the metric tensor ¢ we conclude that

60(X)g = Ag

where A is a real differentiable function depending on X. A vector field
satisfying this equation is called an ¢nfinitesimal conformal transformation.
If M is complete every solution of 6(X)g = Ag generates a l-parameter
global group of conformal transformations of M.

In terms of a system of local coordinates the (symmetric) tensor 0(X)g
has the components
P (0(X)g)is = Dy&i + Dy -

Hence, if dim M = m an infinitesimal conformal map is a solution of the
equation

2
0(X)g + _—085-9=0.

5. Let « and B be any two p-forms on a compact and orientable RIE-
MANNian manifold M™. Then, for any vector field X on M™ it follows
from SToxES’ theorem and the identity

60(X) = di(X) + 1(X)d
fOX)xnrxpf)=[di(X)(xAxB)=0

Mm™ M™

that

where 6(X),1(X) and d denote the operations of LIk derivation, contrac-
tion (interior product) and exterior derivation, resp. and * denotes the duality
(star) operator of HongE. We employ the notation (,) for the global scalar

product ,B) = fan*h.
Mm
Since 6(X) is a derivation
(0(X)x, p) = — Joan O(X)xB .
Mm

If, therefore, we put _
*x0(X)g = — 0(X)*8,
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that is

8(X) = (—1)m+2+1 % (X) %, (1)

we have (0(X)x, f) = (@, 6(X)p) . (2)
It follows that the operator 6(X) is the dual of 6(X). One therefore obtains
0(X) = de(£) + &(£)d (3)

where & = X,dx* is the covariant form for X and &(¢£) is the dual of 7(X):
(X)) = (—1)"PVxg(&) %,
e(fla = &N

for any p-form «. The operators 6(X) and d commute and, clearly, so do
their duals as one may also infer from (3). Moreover, if ¢ denotes the metric
tensor of M™

(O(X) + 0(X) & = 0-88 + = g% (0(X) ) s

r=1
X

that is

. _ . dxt ip
tl,...lr_1711+1...tpdx Ao A dx * (4)

Lemma 1. The harmonic forms on a compact and orientable Riemannian
manifold M are invariant under the Lie algebra K of the largest commected
group of isometries of M. _

The proof depends on the fact that 6(X) + 6(X), X ¢ K annihilates har-
monic forms [3]. Since X is an infinitesimal motion, 6(X)g = 0 from which
it follows that 8& vanishes also. If « is a harmonic form d6(X)x = 6 (X)dx = 0
and 80(X)ax = — 80(X)x = — 6(X)éx = 0. Hence 6(X)x is a harmonic
form. But 6(X)x = di(X)x from which by the Hopge decomposition of a
form 6(X)x vanishes.

Lemma 2. The harmonic forms of degree p = g of a compact, orientable

Rizmannian manifold M of even dimension m are tnvariant under the Lik
algebra L of the largest connected group of conformal transformations of M.
Indeed, let X be an element of L. Then,

0(X)g = — 369 (5)

and, from (4) _
(X))o + 0(X)x = ( — %—?—) 08 -

Lemma 3. If dim M = 2, the inner product of a harmonic vector field and
a vector field defining an infinitesimal conformal transformation is a constant
on M.
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This is clearly the case if M is a RIEMANN surface.

6. In a compact almost KAEHLER manifold M the fundamental 2-form
w which is canonically defined by the almost HeErRMITian metric is closed
and co-closed. The LAPLACE-BELTRAMI operator A = dd + 34 and the
operator L:x -« A @ (x: a p-form) do not commute in general. In fact,

LA — AL =dCdC + CdCd .

However, since Cw = w, ALw = LAw = 0 from which we may conclude
that ok is a harmonic 2k-form. Hence, if dim M = 4k and X is an in-
finitesimal conformal map it follows from Lemma 2 and compactness that
6(X)w* vanishes. Now, 0(X)w* = k0(X)w A w1, and so since the map
L defines an isomorphism between the spaces A?(M) of p-forms over M
and A?+*(M) for p < 2k — 2 we conclude that 0(X)w vanishes, that is
X defines an automorphism of the almost KAEHLER structure. That the auto-
morphisms are isometries is seen as follows: Since w is closed, 6(X)w =
= dit(X)w and hence 7(X)w is closed. Thus, by the HopGeE-DE RuHAM de-
composition of a form ¢(X)w = d® + H[+(X)w] for some real C* func-
tion @; the operator H is the harmonic projector. Since i(X)w = C&,
&§= — Cd® + CH[CE&], from which we conclude that &£ vanishes.

Remark. In an almost KAEHLER manifold the operators C and H do
not commute. Nevertheless, if % is a harmonic 1-form its image by C has
zero divergence. However, if « is an effective closed p-form (p < 1), 6C«
vanishes.

Proof of Theorem 1. This is an application of equation (6) applied to the
fundamental 2-form w:

0(X)w + E(X)w=(1 _ %) 5w,

Applying 8 to both sides of this relation we derive since 6(X) and § com-
mute and the fact that dw vanishes

86(X) o = (1 —%)a(as-w)
— _(1 —-2-) D, (3¢ F*)da*
_ _(1 —-’2;> Cdse .

Taking the global scalar product with C& we have since the manifold is
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compact
(0(X)w,C8) = (0(X)w,dC¥) = (6(X)w, 0(X)w)
and
(Cdé&, C&) = (do&, &) = (6§, 84) .
Hence,

0@ | = — (121 261

where we have employed the notation ||« ||2= foxA xa«. The l.h.s. being
M

non-negative and the r.h.s. non-positive we conclude for n» > 1 that 0(X)w
vanishes.

For n > 2 it is immediate that 6£ = 0, that is X is an infinitesimal
isometry. For » = 2 a previous argument gives the same result. Hence,
Co(M™) = Ag(M).

7. Throughout this section we assume that M is a pseudo-KAEHLERian
manifold. Let X be a vector field on M whose image by the almost complex
structure operator J is closed. Then, X is an infinitesimal automorphism
of the pseudo-KAEHLER structure since the fundamental form w of M is
closed. Denote by ¢(X) the tensorfield 6(X)J modulo #(X)Dw where D
is the covariant differential operator. For pseudo-KAEHLER manifolds Do
vanishes, that is #(X) and 0(X)J coincide. If J is induced by a complex
structure the vanishing of #(X) characterizes the infinitesimal analytic maps.
Let t be a covariant real tensor of order 2 and denote by J again the operator

Jity —>t,F;.

Since F, F; 9% = g,;, Jw = g where we denote by J once again the induced
map on 2-forms. The tensorfield ¢(X) associated with a given tangent vector

field X is given by ) : .

It is easily checked that ¢(JX)= Jt(X). Therefore, if X is an analytic
map so is JX and the dimension of the group of analytic homeomorphisms
of any complex manifold is even.

Lemma 4. For any vector field X

(X)) =0X)w + JO(X)g .
Indeed,
— (t(X))ii = F;(Dkfi — D&, + vak) + Ffofk
= F:(G(X)g)ik + D;(Of)f — Dy (C§),
= — (J0(X)g) ¢y — (6(X) @)y .
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Theorem 4. A vector field X defines an infinitesimal analytic transformation
of a KaearLer manifold if and only if JO(X)w = 0(X)g, that is when applied
to the fundamental 2-form the operators 0(X) and J commute.

~

Let ¢(X) denote the 2-form corresponding to the skew-symmetric part of
t(X).

Lemma b. For any vector field X on a pseudo-K4erLER manifold

Py

0 X)w — 0(X)w = 68 -0 — 2¢(X) .

This is a straightforward application of equation (4) and Lemma 4.
As an immediate application of equation (6) and lemma 5 we obtain

Theorem 5. An infinitesimal analytic conformal map of a pseudo-KaEHLER
manifold 18 necessarily homothetic.

Lemma 6. For any vector field X on a compact pseudo-K aenLErR manifold M
160(X)w|[?=]| 6§]]+ 2((X), 0(X)w) .

The proof is based on that of Theorem 1.

™™™

Corollary. An infinitesimal transformation of M satisfying JO(X)g =0
18 an automorphism of the pseudo- KaEHLERIan structure.

Theorem 6. Let X be an infinitesimal analytic transformation of a compact
K aenrer manifold. Then

[0(X)w || = 0&]l .

Hence, a divergence free analytic map is an infinitesimal automorphism of
the KAEHLER structure.

This follows immediately from Lemma 6. An application of Lemma 4
together with Theorem 4 results in

Theorem 7. Let M be a Kaenrer manifold. Then, in order that an infini-
tesimal analytic transformation be the image by J of an infinitesimal isomelry
it i3 necessary and sufficient that it be closed.

This generalizes to the non-compact case a theorem of LICHNEROWICZ [7].

Proof of Theorem 2. Since & is closed,

— (t(X))ii = F;‘(Dkfi - Defk + Difk) + Fijfk
= F;‘Difk + FiijEk
= (60(C&)9)ss »



44 S. I. GOLDBERG

that is #(X) is a symmetric tensorfield. Since 6(X)g = — }—65- g it follows
from Lemma 4 that n

HX) = 6(X)o + o 00 (7)

Hence, t(X) is also skew-symmetric and must therefore vanish. It follows
that ddéA w = 0 and for n > 1 we may conclude that dé¢ vanishes, that
is X defines a homothetic transformation. But a homothetic map of a com-
plete connected RremannNian manifold which is not locally flat is isometric
[6], hence volume preserving and therefore from equation (7) we conclude
that the fundamental form is preserved.

Proof of Theorem 3. Every homothetic transformation of a Riemanw~ian
manifold is also an affine transformation corresponding to the RiEmanwian
connection. Moreover, an infinitesimal affine transformation of a complete
locally flat RiEMANNian manifold is an isometry if and only if its length is
bounded.

Remarks. (a) Clearly, if the manifold is compact every vector field has
bounded length.

(b) Every conformal map of a complete flat space is homothetic but this
is not sufficient to insure that it is an automorphism of the pseudo-KAEHLERian
structure. :

(¢) It is known that every affine transformation of a complete pseudo-
Kaenrerian manifold whose Riccr curvature is non-degenerate is an auto-
morphism of the pseudo-KAEHLERian structure.

(d) If X is a homothetic transformation of an almost KAEHLERian mani-
fold M the 2-form 6(X)w is harmonic. Indeed, 6(X)w is closed. Moreover,
from the proof of Theorem 1 it is also co-closed. If dim M = 4 this is so for
any infinitesimal conformal transformation.

(e) M. OBATA has communicated to us the following result (unpublished):
“A closed infinitesimal conformal transformation of a (locally) reducible
RiemaNnnian manifold is homothetic.” This means that only an (absolutely)
irreducible RiEMANNian manifold can admit closed non-homothetic maps.

For non-compact KAEHLER manifolds an infinitesimal isometry X need
not be analytic. Indeed, the condition 6(X)w = di¢(X)w where 6(X)w is
a harmonic 2-form does not imply that 0(X)w wvanishes. However, if the
manifold is complete the proof of Theorem 2 shows that a closed infinitesimal
conformal transformation X is analytic and, in this case X is isometric.
Without the assumption of completeness we may conclude in any case that
an infinitesimal isometry which is closed is analytic and, in fact by Lemma 4
preserves the fundamental form.
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Let X and Y be infinitesimal automorphisms of an almost KAEHLER
manifold M. Since 0([X, Y])w vanishes where o is the fundamental
2-form of M, [X, Y] is also an infinitesimal automorphism. Moreover,

([ X, Yo =0(X)t(Y)w —i(Y)0(X)w
= (X)di(Y)w + di(X)¢(Y)w
=di({rAn)w .

Put Z=[X, Y]. Then, C{=¢(Z)w=di(éAn)w. Hence, if the Lik algebra
of infinitesimal automorphisms is abelian

1 (EAn) w = const.
for any infinitesimal automorphisms X and Y.

Remark. We have assumed throughout that the manifolds under consider-
ation are of class C*. It is known that on an almost complex manifold M2»
of class C2?*+! with completely integrable almost complex structure defined
by a tensorfield of class C?" it is possible to introduce complex analytic
coordinates [8]. Under these conditions every pseudo-KAEHLERian manifold
is differentiably homeomorphic with a KAEHLER manifold. Our results are
valid if the C* condition is replaced by only (3. Then, only in the case
n =1 is it known that a pseudo-KAEHLERian manifold is KAEHLERian.

8. In this section we assume that M™ is a compact orientable RIEMANNian
manifold on which there is defined an harmonic p-form

i dzitn ... A dx'?

& = 0‘1‘,1...‘0

with the property

e A1t —
(P)'ail » “f’il...ip_l_gii'

For p = 2, LicunerowIcz has shown that the metric of any RieMaNNian
space with an almost complex structure can be modified so that (P) is satis-
fied. It is well-known that a compact semi-simple LIE group carries an har-
monic 3-form whose coefficients satisfy the property (P). More generally,
let H(m,p) denote a compact orientable RiEMANNian manifold satisfying
the property (P)3). Then, the proof of theorem 1 yields

3) These spaces were defined and studied by R. S. CLARK in his paper ‘“On conformal equival-
ence of Riemannian manifolds which admit an exterior form,” Proc. Kon. Ned. Akad. v. Wet. A,
19 (1956), 198-203.
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Theorem 8. An infinitesimal conformal map of an H(m,p), m > 2p 1s
an infinitesimal isometry.

Corollary. An infinitesimal conformal map of an m-dimensional compact
semz-simple Lie group (m = 6) with the canonical (left-invariant) metric 18 an
infinitesimal tsometry.

Harvard Unaversity and Wayne State University
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