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Eine hinreichende Bedingung
fiir die Regularitiit einer komplexen Funktion

von Kurt MEIER, Winterthur

I. Ist die komplexe Funktion f(z) (2 = x + 2y) im Gebiet G stetig, existie-

ren ferner in jedem Punkt z von @ partielle Ableitungen % und —Z—:’; , welche

die CAvcHY-R1EMANNsche Bedingung 9 -+ z—aj- = 0 erfiillen, so ist f(z) in
o . ox oy
G regulér analytisch.

Das ist der Satz von LOOMAN-MENCHOFF!). Aus seinem Beweis geht un-
mittelbar hervor, daBl die Voraussetzungen etwas abgeschwicht werden kon-
nen. So ist eine abzihlbare Menge von Punkten des Gebietes G zulissig, in
welchen nur die Stetigkeit von f(z) gefordert werden muf3. Auch auf die Vor-
aussetzung, dafl die CAucHY-RI1EMANNsche Bedingung erfiillt ist, darf in den
Punkten einer Menge vom Maf@} 0 verzichtet werden.

Im Gegensatz dazu strebt nun die vorliegende Arbeit eine gleichmiflige Ab-
schwichung der Voraussetzungen in sdmtlichen Punkten von G an. Es soll
bewiesen werden, daf fir die Regularitit von f(z) im Gebiet G die folgenden
Bedingungen hinreichen:

f(z) seu stetig in G . (1)

Es existiere eine gegen O konvergierende Folge r,,7rs,7;,... vOR positiven
Zahlen mit der Eigenschaft, daf in jedem Punkt z von G die Differenzenquotienten

fetn) — @) fletin) —fF) fe—r)—f@F fE—1in)—{F

Ty 17y — 7y — 7,

(2)

fiir % — oo gegen den gleichen endlichen Grenzwert streben.

Der in den folgenden Abschnitten durchgefiihrte Beweis dieser Regularitéts-
bedingung stiitzt sich auf einen Satz von R. BAIRE?), den schon LooMAN und
MENCHOFF im selben Sinn angewendet haben: Ist die abgeschlossene Menge
F Vereinigungsmenge einer Folge von abgeschlossenen Mengen F, (u =1,
2,3,...), so gibt es eine Kreisscheibe K und eine natiirliche Zahl m, fiir
welche 0 c K-F C F,, ist.

II. Die Punkte z des Gebietes @, in deren Umgebung f(z) nicht iiberall
regulir ist, bilden eine perfekte Menge F. Wir gehen von der Annahme aus,
F sei nicht leer.

1) Der Beweis dieses Satzes ist dargestellt in [2], Seiten 9-16.
?) Vgl. [3], Seite 54.
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Unter F, (p=1,2,3,...) verstehen wir die Menge jener Punkte z von
F, fiir welche |f(z + 7 e“") — f(2) | < pr, immer dann gilt, wenn » > u ist

, 2 , —35— annimmt. Der Voraussetzung (1) zufolge
sind die Mengen F, abgeschlossen. Thre Vereinigungsmenge ist mit F' iden-
tisch, denn wegen (2) gehort jeder Punkt von F' mindestens einer der Mengen
F, an.

Nach dem in Abschnitt I erwihnten Satz von R. BAIRE gibt es somit
eine natiirliche Zahl m, sowie eine Kreisscheibe K(Z, 2R) mit dem Mittel-
punkt Z und dem Radius 2R > 0, fiir welche die Bedingungen Z ¢ F und
0c K-F c F,, erfiillt sind.

Nun kénnen wir die natiirliche Zahl M > m so festlegen, daf3

und ¢ einen der Werte 0

| f(z+ Re'”) — f(z) | < MR (3)

unabhingig von @ fiir jeden Punkt z von K, = K(Z, R) gilt. Dies ist
moglich, weil f(z) in G stetig ist. Damit ist jetzt in jedem Punkt z von
F,=F-K(Z,2R) die Bedingung

| f(z + re®) — f(2) | < M, (4)
3n

immer dann erfiillt, wenn » > m ist und ¢ einen der Werte O, 5> g

nimmt.

an-

ITI. Unter der Voraussetzung, daf f(z) in einer Umgebung des Punktes
zo von K, regulér ist, soll in diesem Abschnitt die Giiltigkeit von

[ 1(2) —f(z) | S M |2 — 2| (5)

fir | 2 — 2y | << R nachgewiesen werden.
Setzen wir D(z,) = f'(2,), 80 ist D(z) = [._(%E_i(ﬂ’) eine in allen Punk-
ten von @G stetige Funktion. Thr absoluter Betrag nin;,mt somit auf der Kreis-
scheibe K(z,, B) in einem Punkt { sein Maximum an. Fir |z —z,| < R

gilt daher D) <|D@Q)] - (6)

D(z) ist in einer Umgebung jedes Punktes von K (Z, 2R) — F, regulir.
Dies gilt insbesondere fiir z,. { liegt infolgedessen entweder auf der Peripherie
des Kreises K (z,, R) oder auf #,. Im ersten Fall gilt wegen (3) | D({) | <M
und daraus folgt, unter Beriicksichtigung von (6), die Ungleichung (5). Ist
hingegen { ein innerer Punkt von K(z,, R), so verlduft der Beweis von (5)
wie folgt:

Hat ¢ einen der Werte 0, 5 @s 32 , 8o strebt gem#fB Voraussetzung (2)
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fE+ reet?) — f(E)

der Differenzenquotient

fiir » — oo gegen einen end-

7. e'®
lichen Grenzwert a({). Unter den gleichen Bedingungen konvergiert somit
D+ ree'?) — D) _ 1 fE + reet?) — f(0)

T, €'’ L —zt e r, €% — D) (7)

gegen den Grenzwert

a() — D)

A@) = . 8
6 =" ®)

Nun ist im weiteren Verlauf des Beweises die Annahme D({) £ 0 erlaubt.
Ist ndmlich D({) = 0, so folgt aus (5) unmittelbar (6).

Es soll jetzt gezeigt werden, dafl A4({) = 0 ist. Zu diesem Zweck gehen
wir von der Annahme A4 ({) # 0 aus und leiten daraus einen Widerspruch
her.

T, Q= %73 ist nach (7) und (8)

ad

" 7
Fir ¢ = 0, =5, ¢

|

D(C + r,e%) = D(C) + A(L)r, e + r.e(r,) (9)

wobel ¢(r,) fiir x — oo gegen 0 strebt. Essei A({) = |4 |e™ (0 <« < 2n)
und D) =|D|ed(0<d<2nm). Wegen 4 #£0 und D#O sind die
Argumente «x und ¢ eindeutig bestimmt.

Von den in (9) fiir ¢ zuldssigen Werten 0 erfiillt sicher einer die

3n
b 2 3 n’ 2
Bedingung cos (x — é + @) > }; wir bezeichnen ihn mit ¢*. Wegen 4 # 0

kann man die natiirliche Zahl k so festlegen, dafl |e(ry) | < 141 und 7, <R

ist. Mit der neuen Bezeichnung (* = { + r,e'* folgt somit a,zus (9)
e®D(L*) = | D| 4 | A | rpeie=8+e%) Ly e=idg(r,) . (10)

Wegen cos (x — 6+ ¢*) > 1 ist aber ||D| 4|4 |r e @3+ | > | D| + |A2|7'k

und daraus folgt, unter Beriicksichtigung von |[e(ry)| < J~—4—i~, aus (10)

2
| D(¢*)| > | D(¢)|. Diese Ungleichung steht im Widerspruch zu (6), denn
{* ist ein Punkt von K (z,, R), und damit ist A (¢ ) = 0 bewiesen.

Aus (8) folgt jetzt a(f) = D({) und weiter aus (4) |a(l)| < M. Somit
ist auch | D({) | < M und endlich wegen (6) | D(z | < M fir |z —zy| <R.
Das ist aber gleichbedeutend mit der am Anfang dieses Abschnittes aufgestell-
ten Behauptung (5).

IV. Zum Schluf} legen wir die natiirliche Zahl &k, > m so fest, daBl r, < R
tir alle » > k, gilt. Damit erfiillt nach (4) und (5) die Funktion f(z) in jedem



70 Kurt MEIER Eine hinreichende Bedingung fiir die Regularitit einer komplexen Funktion
Punkt 2z, von K, die Bedingungen

‘f(z—}—rx)_f(z)lgM?'/’ lf(z+?’rx)—f(z)|'<er
fir jedes » > k,.

Setzen wir Q(z,, 7,) = et m) —fz) _ [+ 7;7.‘”) — @) gilt folglich

fir zge K, und » >k, T b
1@z, 7) | <2M (11)
und weiter wegen (2)
lim Q (z, 1) = 0 (12)
X—300

Aus (1), (11) und (12) geht aber hervor, dal f(z) in K, regulir analytisch sein
muf3?). Im Widerspruch dazu enthilt aber K, den Punkt Z von F. Die am
Anfang von Abschnitt II gemachte Annahme F > 0 trifft daher nicht zu,
das heiBit f(z) ist im ganzen Gebiet ¢ regulir.

Herrn Prof. W. SAXER bin ich fiir die Anregung zu dieser Arbeit zu herz-
lichem Dank verpflichtet.
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(Eingegangen den 21. Februar 1959)

8) Dies geht aus einem Satz hervor, der schon unter wesentlich schwécheren Voraussetzungen
die Regularitit von f(z) sichert. Vgl. [1], Seite 258.
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