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Neue Ergebnisse iiber konvexe Flâchen

von Wilhelm Klingenberg, Gôttingen

1. Zusammenstellung der Ergebnisse

1.1. Wir betrachten geschlossene, positiv gekrummte Flâchen der Klasse
Cz im Raum. Solche Flâchen nennen wir kurz Eiflâchen. Insbesondere gehôren
die Sphâren zu den Eiflâchen; sie sind dadurch gekennzeichnet, daB sie kon-
stante gauBsehe Krummung haben.

Wir betrachten in dieser Note die innere Géométrie einer Eiflâche M. Und
zwar geben wir eine nur von dem Maximum der gauBschen Krùmmung K auf
M abhângende untere Schranke fur die Lange eines geschlossenen gsodàti-
schen Segments1) auf M (Theorem 1) und fur den inneren Durchmesser von
M (Theorem 2) an. Bei der Diskussion des Gleichheitszeichens ergeben sich
dabei zwei neue Kennzeichnungen der Sphâre unter den Eiflâchen.

Dièse Ergebnisse bilden das Gegenstiick zu den nur von dem Minimum der
gauBschen Krùmmung K auf M abhângenden oberen Schranken fur die Lange
eines geschlossenen geodâtischen Segments auf M und den inneren Durchmesser

von M, wie sie kûrzlich Toponogow angegeben hat (Theorem 1* und 2*).
In einem Anhang geben wir eine durch das Maximum der Krûmmung K

auf einer Eiflâche M bestimmte untere Schranke fur den àuBeren Durchmesser
von M an (Theorem 3). Damit erhalten wir ein anscheinend bisher nicht be-
merktes Gegenstiick zu der auf Bonnet zurûckgehenden, durch das Minimum
von K auf M bestimmten oberen Schranke fur den âuBeren Durchmesser von
M. Die Diskussion des Gleichheitszeichens liefert eine weitere Kennzeichnung
der Sphâre unter den Eiflâchen.

1.2. Theorem 1. Zwischen der Lange L(G) eines geschlossenen geodâtischen
Segments G auf einer Eiflâche M und dem Maximum der gauflschen Krûmmung
K auf M besteht die Beziehung

K < L{G) (1)

Dann und nur dann, wenn M eine Sphâre ist, gibt es auf M ein geschlossenes

geodâtisches Segment der Lange 27r/l/max K.

*) Ein geschlossenes geodâtisches Segment wird stets als doppelpunktfrei vorausgesetzt. Eine
geschlossene Geodâtische ist ein geschlossenes geodâtisches Segment, fur das Anfangs- und
Endrichtung zusammenfallen. Unter einem Segment wollen wir stets ein geodâtisches Segment
verstehen.
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Bemerkungen. 1. Fur den Spezialfall, da8 G eine geschlossene Geodâtische

ist, wurde die Ungleichung (1) von Pogorelow [8] bewiesen. Ein ganz an-
derer Beweis fur die Ungleichung (1), der sich, im Unterschied zu dem Beweis

von Pogorelow, sogleich fur einfach zusammenhângende, positiv gekrûmmte
Riemannsche Mannigfaltigkeiten beliebiger gerader Dimension formulieren
lâBt, findet sieh in [5], Ein wesentlicher Schritt in diesem Beweis ist eine Aus-

sage, die wir unten, fur den Fall der Dimension 2, als Lemma 1 formuliert
haben. Es ist dièses Lemma, das dann auch die im Theorem 1 enthaltene
Kennzeichnung der Sphâre zu beweisen gestattet. Wir werden hier noch ein-
mal einen ausfuhrlichen Beweis des Lemmas 1, unter Berûcksichtigung der sich
fur den Fall der Dimension 2 ergebenden Vereinfachungen, bringen.

2. Die Bedeutung der hier und im folgenden immer wieder auftretenden

Zahl jr/l/max K beruht unter anderem darauf, da8 ein geodâtisches Segment
mindestens die Lange n/l^max K haben muB, wenn seine Endpunkte kon-
jugiert zueinander sein sollen. Das ergibt sich aus dem Vergleichssatz von
Sturm, vgl. Blaschke [1], § 100.

3. Die im zweiten Teil des Theorems enthaltene Kennzeichnung der Sphàre
gestattet es, die Ungleichung (1) in folgender Weise zu verschârfen: Sei M
eine Eiflache, die nicht eine Sphâre ist. Dann hat jedes geschlossene geodâtische

Segment auf M eine Lange > 2#/Vmax K.
4. Das Theorem wird falsch, wenn man an Stelle von Eiflâchen auch Flâchen

mit teilweise negativer Krûmmung zulâBt, wie man an dem Beispiel einer
Rotationsflàche mit Taille erkennen kann.

5. Theorem 1 ist das Gegenstûck zu folgendem kurzlich bewiesenen Satz:

Theorem 1* (Toponogow [12]). Zwischen der Lange 2/(6?) eines geschlossenen

geodâtischen Segments G aufeiner Eiflache M und dem Minimum der Krûmmung
K auf M besteht die Beziehung

L(G) < 27t/Vmin K (1*)

Dann und nur dann, wenn M eine Sphâre ist, gibt es auf M ein geschlossenes

geodâtisches Segment der Lange 27r/l/min K.
Bei seinem Beweis verwendet Toponogow Ergebnisse aus der Théorie der

inneren Géométrie konvexer Flâchen von A. D. Alexandrow.
1.3. In der Formulierung des Lemmas 1, und auch in den weiteren Ûber-

legungen dieser Note, spielt der Begriff des Schnitiorts eines Punhtes eine wich-
tige Rolle. Dieser Begriff wurde zuerst von Poincaré [9] fur analytische
Eiflachen eingefûhrt. Myers [7] untersucht den Schnittort allgemeiner auf voll-
stândigen, analytischen Flâchen. In [6] haben wir den Schnittort auch fur
nichtanalytische Flâchen betrachtet.
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Wir wollen hier noch einmal den Schnittort definieren und seine wichtig-
sten Eigenschaften zusammenstellen. p bezeichne jetzt einen fest gewâhlten
Punkt auf der Eiflâche M. Auf jedem von p ausgehenden geodâtischen Strahl
G gibt es einen wohlbestimmten Punkt q mit folgender Eigenschaft: Fur jeden
vor q auf G gelegenen Punkt r ist das Segment pr von G ein minimales Ver-
bindungssegment2) von p nach q; dagegen gilt dies fur keinen Punkt r auf
G, der hinter q gelegen ist. Es folgt hieraus, daB das Segment pr von G fur
einen vor q gelegenen Punkt r auch das einzige minimale Verbindungssegment
mit p ist, wâhrend fur r q das Segment pr pq zwar noch minimal ist,
jedoch nicht mehr notwendig das einzige minimale Verbindungssegment zwi-
schen p und q zu sein braucht.

Aus der Définition von q folgt weiter, daB ein vor q auf G gelegener Punkt
r nicht konjugiert sein kann zu p bezuglich G. q selber kann konjugiert sein

zu p bezuglich G ; wenn das jedoch nicht der Fall ist, dann gibt es noch ein
weiteres minimales Verbindungssegment von p nach q. Um das einzusehen,
betrachten wir eine von hinten gegen q konvergierende Folge von Punkten
q{ auf G (i 1,2,....; qt ^ q) und fur jeden dieser Punkte q{ ein minimales
Verbindungssegment mit p. Ein Hâufungselement3) dieser Verbindungs-
segmente ist dann ein minimales Verbindungssegment von p nach q, und
dièses ist sicherlich dann verschieden von dem auf G gelegenen minimalen
Segment pq, wenn q nicht konjugiert ist zu p bezuglich G.

Der Schnittort G(p) ist nun definiert als die Menge der vorstehend defi-
nierten Punkte q auf den von p ausgehenden geodâtischen Strahlen. Da in
beliebiger Nàhe eines solchen Punktes q von C(p) Punkte gelegen sind, die
nicht zu C(p) gehôren, enthâlt C(p) keine inneren Punkte. Jeder Punkt
auBerhalb C(p) besitzt genau ein minimales Verbindungssegment mit p;
das Komplement von C(p) in M ist ein einfach zusammenhângendes Gebiet,
und zwar die maximale offene Menge, in der sich geodatische Polarkoordinaten
mit dem Zentrum p einfuhren lassen.

1.4. Nach diesen Vorbereitungen kônnen wir das fur den Beweis von Theo-
rem 1 fundamentale Lemma 1 formulieren :

Lenuna 1. Auf einer Eiflâche M sei eine geschlossene Geodatische G gegeben

mit folgender Eigenschaft: Fur jeden Punkt von M ist der Abstand zu seinem

2) Wir erinnern daran, dafi fur je zwei Punkte p, q einer Eiflâche M der Abstand d {p, q) —

d(q.>'P) erklârt ist als die untere Grenze der Lângen der auf M gelegenen Verbindungskurven
von p mit q. Es gibt stets eine Verbindungskurve, deren Lange gleich dem Abstand d(p9q)
ist; eine solche Kurve ist immer geodâtisch. Wir nennen sie minimales (geodâtisches)
Verbindungssegment zwischen p und q. Vgl. hierzu Hopf-Rinow [4],

3) Konvergenz ist hier verstanden im Sinne der ûblichen, auf M. Morse zurûckgehenden
Metrik fur Kurven auf einer Eiflâche, vgl. Sbifebt-Thbelfall [10], § 13.
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Schnittort mindestens so grofi wie die halbe Lange, L(G)/2, von G, oder, was
dasselbe besagt: Je zwei Punkte auf M, deren Abstand kleiner ist als L(G)/2,
besitzen genau ein minimales geodâtisches Verbindungssegment.

Behauptung. Ist p ein PunJct auf G, so treffen sich aile von p ausgehenden
geodâtischen Strahlen nach Durchlaufen der Strecke L(G)/2 in dem p auf G

gegenûberliegenden Punkte q. q ist, bezûglich eines jeden von p ausgehenden
geodâtischen Strahls, konjugiert zu p, Der Schnittort C(p) von p besteht ans
dem Punkt q allein.3*)

1.5. Aus dem Beweis von Theorem 1 ergibt sich unmittelbar : Ist p ein
Punkt auf einer Eiflâche M, dann ist der Abstand d(p,C(p))*) zwischen

p und seinem Schnittort C(p) mindestens rc/l^max K. Insbesondere gibt es

also Punktepaare auf M, deren Abstand > yr/j/max K ist. Wenn wir mit
d (M) den inneren Durchmesser von M (das ist der maximale Abstand, gemessen
auf M, den zwei Punkte von M haben kônnen) bezeichnen, dann gilt also

d (M) > ^/j/max K. Wir ergânzen dièses Ergebnis durch die Bemerkung,
daB nur fur die Sphâre d(M) sr/l/max K gilt. Damit haben wir dann eine
zweite Kennzeichnung der Sphâre gewonnen.

Theorem 2. Sei p ein Punkt auf einer Eiflâche M > C(p) sein Schnittort.

Dann ist der Abstand d(p, C(p)) > rc/l/max K, wo K die gaujische Krilm-
mung auf M bezeichnet. Insbesondere gilt also filr den inneren Durchmesser
d (M) von M die Beziehung

rc/VWx K <d(M) (2)

Dann und nur dann, wenn M eine Sphâre ist, gibt es auf M einen Punkt p so,

daji aile Punkte von M einen Abstand < rc/j/max K von p haben. Insbesondere:

Dann und nur dann, wenn M eine Sphâre ist, gilt d {M) ?r/Kmax K.
Bemerkungen. 1. Der erste Teil des Theorems, und insbesondere die Un-

gleichung (2), gehen schon auf Pogokelow [8] zurtick. Vgl. auch [5]. Fur ein
Gegensttick zu Theorem 2 siehe das unten formulierte Theorem 2*.

2. Fur den Beweis der im zweiten Teil des Theorems enthaltenen Kennzeichnung

der Sphâre spielt folgendes Lemma eine wichtige Rolle:

Lemma 2. Sei p ein Punkt auf einer Eiflâche M derart, dafi aile Punkte auf

3a) Es lâfît sich zeigen, daÛ jede Flàche, die den Voraussetzungen des Lemmas geniïgt, eine
sogenannte Wiedersehensflàehe ist. Vgl. die Définition in [1], § 102. Die einzigen bekannten
Wiedersehensflâchen sind die Sphàren.

*) d(p, C(p))9 der Abstand zwischen einem Punkt p und seinem Schnittort C(p), ist, wie
ûblich, definiert als die untere Grenze der Werte d(p, qf) fur q' e C(p). Da C(p) kompakt ist
(vgl. etwa [6]), wird dièse untere Grenze fur ein qe C(p) angenommen.
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dem Schnittort G(p) von p den gleichen Abstand n\Vmax K von p haben.
Dann besteht C(p) aus nur einem einzigen Punkt, und dieser Punkt ist kon-
jugiert zu p bezUglich eines jeden von p ausgehenden geodatischen Strahls.

Wenn nâmlich p ein Punkt auf M ist, derart, daB aile Punkte von M einen

Abstand < ^/V^max K von p haben, dann haben, da d(p,C(p)) > jr/l/max K,
die Punkte von C(p) genau den Abstand rc/l/max K von p. Aus Lemma 2

folgt, daB dann G(p) nur einen einzigen Punkt, q, enthalt, und q ist kon-
jugiert zu p bezuglich eines jeden von p auslaufenden Strahls. Auf jedem von
p auslaufenden geodatischen Strahl erscheint also der erste konjugierte Punkt
im Abstand n\v max K, und daher ist lângs eines jeden solchen Strahls, bis
dieser q trifft, die Krummung K max K const., das heiBt, M ist eine
Sphâre.

3. Das Lemma 2 folgt nun fur analytische Eiflâchen M sofort aus den Unter-
suchungen von Poincaré [9] und Myers [7] uber die Struktur des Schnittorts
fur solche Flâchen. Danach gilt nâmlich, wenn der Schnittort C(p) eines
Punktes p mehr als einen Punkt enthalt, daB es auf C(p) sogenannte End-
punkte gibt, das sind Punkte auf C(p), die nur genau ein minimales Verbin-
dungssegment mit p haben; wenn q ein solcher Endpunkt auf G(p) ist, dann
hat q kleineren Abstand von p als aile geniigend zu q benachbarten Punkte
q1 z£ q auf C(p), das heiBt, es gibt auf C(p) Punkte, die verschiedenen
Abstand von p haben.

Fur nichtanalytische Eiflâchen dagegen, wie wir sie betrachten, scheinen
Ergebnisse von der vorstehenden Art nicht zur Verfûgung zu stehen. Der
unten gefuhrte Beweis von Lemma 2 erfordert daher eingehendere tîber-
legungen. In jedem Fall kann unser Beweis von Lemma 2 fur sich in Anspruch
nehmen, daB in ihm nicht auf anderweitig verôffentlichte, tieferliegende
Ergebnisse verwiesen zu werden braucht.

4. Das Gegenstûck zu Theorem 2 wurde kûrzlich bewiesen :

Theorem 2* (Toponogow [11]). Sei p ein Punkt auf einer Eiflôtche M.
Dann ist der Abstand d(p,G(p)) zwischen p und seinem Schnittort G(p)

K, wo min K das Minimum der GAussschen Krummung K auf M
bezeichnet. Insbesondere gilt fur den inneren Durchmesser d(M) von M die Be-

ziehung

d(M) < rc/j/min K (2*)

Dann und nur dann, wenn M eine Sphâre ist, gilt d(M) rc/j/miniT.
Bei seinem Beweis verwendet Toponogow wiederum Methoden von A. D.

Alexandrow. Die Ungleichung (2*) geht schon auf Bonnet [3] zuriick, vgl.
Blaschkb f 1], § 100. Die im zweiten Teil enthaltene Kennzeichnung der
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Sphare durfte jedoch bisher nicht bekannt gewesen sein. Fur analytische Ei-
flâehen ergibt sie sich ubrigens wiederum leicht aus den Ergebnissen von
Myers [7] ûber die Struktur des Schnittorts fur solche Flâchen : Seien nàmlich

p und q zwei Punkte auf M mit dem Abstand n\V^min K. Dann liegt q auf
dem Schnittort C(p) von p, und q ist konjugiert zu p bezuglich eines jeden
von p nach q laufenden minimalen Segments. Wenn nun C(p) nur aus dem
Punkt q besteht, dann muB M die Sphare der Krummung min K sein.
Wenn C(p) dagegen mehr als einen einzigen Punkt enthalt, so bemerkt
Myers, da8 ein konjugierter Punkt auf C(p) stets auf einer zugewandten
Spitze des Orts der konjugierten Punkte von p gelegen sein muB (das folgt
sogleich aus dem Enveloppentheorem, vgl. Blaschke [1], § 99, der hier einen
Gedanken von Darbotjx wiedergibt). Nun kann aber der Punkt q nicht auf
einer solchen zugewandten Spitze des konjugierten Orts von p gelegen sein,

da Tt/l/min K die maximale Lange ist, die ein Segment mit konjugierten
Endpunkten auf M haben kann

1.6. Neben dem inneren Durehmesser d(M) einer Eiflache M betrachten
wir noch den aufieren Durchmesser von M, D(3Ï). Darunter verstehen wir
das Maximum des Abstandes zweier Punkte von M, gemessen im Baum
D(M) ist dasselbe wie der Durchmesser des durch M bestimmten konvexen
Kôrpers, vgl. Bonnesen-Fenchel [2], § 7.

Offenbar ist D(M) <d(M), und damit ist nach dem Satz von Bonnet
(vgl. Theorem 2*) ji/VminK eme obère Schranke fur D{M). jr/l/min K
ist sogar eine obère Grenze fur D(M), wie die an den Spitzen abgerundeten
spindelfôrmigen Drehflachen konstanter Krummung zeigen, vgl. Blaschke
[1], § 100.

Wir erganzen dièses klassische Ergebms durch die Angabe emer nur von
maxjfiT abhangenden unteren Schranke fur D(M) und erhalten dabei eine
weitere Kennzeichnung der Spharen unter den Eiflachen :

Theorem 3. Zwischen dem aufieren Durchmesser D(M) einer Eifiàche M
und den Extremwerten der KrUmmung K auf M bestehen die Beziehungen

2/j/max K <D(M)< rc/l/min K (3)

Hier kann die rechts stehende Zahl nicht verkleinert werden, wàhrend links dann
und nur dann das Oleichheitszeichen steht, wenn M eine Sphare ist.

Bemerkung. Wir beweisen die links stehende Ungleichung in (3) unter Ver-

wendung der in Theorem 2 bewiesenen Ungleichung njVm&x K < d(M), in-
dem wir durch zwei Punkte p, q auf M mit maximalem inneren Abstand
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d(p>q) d(M) einen ebenen Schnitt legen und auf die Lange L(C) und den
auBeren Durchmesser D(C) der so entstehenden ebenen Schnittkurve C die
Beziehung L(C) <nD{C) anwenden (vgl. Bonnesen-Fenchel [2] §10).

Einen anderen Beweis der Ungleichung jr/i/max K < D(M) verdanke ich
einer Mitteilung von C. Pommerenke : Unter Verwendung des GAussschen

Integralsatzes und der Beziehung F (M) <n(D(M))2 zwischen der Ober-
flâche F (M) und dem Durchmesser D(M) einer Eiflàche M (vgl. Bonnesen-
Fenchel f2], § 10) ergibt sich

4tn fKdco < F(M) max K < n(D{M))2 max K
M

und damit die Behauptung.

2. Beweis von Lemma 1

2.1. Wir betrachten in diesem Abschnitt eine Eiflâehe M der Klasse Cz,
auf der eine geschlossene Geodàtische G der Lange L L(O) gegeben ist
mit der Eigenschaft : Je zwei Punkte auf M mit einem Abstand < L/2 be-
sitzen genau ein minimales Verbindungssegment.

2.2. Satz 2.1. Sei G eine (beliebige) geschlossene Geodàtische auf einer
Eiflàche M. Dann sind aile zu G genUgend benachbarten Paralldhnrven H von
G kilrzer als G.

Beweis. Nach Wahl eines Anfangspunktes p auf G und einer an G tan-
gentialen Anfangsrichtung in p fuhren wir làngs G geodàtische Parallelkoordi-
naten ein, vgl. Blaschke [1], § 73. In diesem Koordinatensystem wird G durch
^ 0, 0 <v < L (L bezeichnet die Lange von G) besehrieben, und das
Linienelement hat die Gestalt ds2 du2 + G(u, v)dv2 mit (?(0, v) 1,
Gu(0, v) 0, Guu(0, v) — K(0, v). (K(0, v) ist die Krummung in dem
Punkt mit den Koordinaten (0, v))

Die Parallelkurven H(e) zu G im Abstand | s \ sind durch u e,
0 < v < L gegeben. Es ist H(0) G.

L
Fur die Lange L(e) L(H(e)) J G(e, v) dv von H(e) in Abhângigkeit

0 L
von e finden wir: L'(0) 0, L"(0) - f K(0, v)dv < 0, das heiBt,

o

G jET(O) hat strikt grôBere Lange als jede Parallelkurve H(e), e ^ 0.

2.3, Zu jeder zu G benachbarten Parallelkurve H (H sei stets verschieden

von bezeichne p{H) denjenigen Punkt, in welchem die zu G in p
orthogonale Geodàtische die Kurve H trifft. Offenbar konvergiert p(H) gegen p,
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wenn H gegen G konvergiert. Wenn wir H noch in Richtung wachsender
v-Werte orientieren, kônnen wir H als geschlossene Kurve mit Anfangs- und
Endpunkt p (H) auffassen.

Die geschlossene Geodâtische G zerlegt die Eiflache M in zwei Teile; wir
nennen sie die beiden Hâlften von M (bezûglich G).

Da eine Parallelkurve H zu G kûrzer ist als G, also aile Punkte von H einen
Abstand <L(G)/2 von p(H) haben, besitzt, nach der in 2.1 gemachten
Voraussetzung, jeder Punkt r von H — p(H) ein eindeutig bestimmtes
minimales Verbindungssegment p(H)r mit p(H). Jedes dieser Segmente p(H)r
bildet im Punkt p(H) mit der Anfangsrichtung von H einen gewissen Winkel6)
Wir behaupten dazu :

Satz 2.2. Sei a ein Winkel zwischen 0 und n. Auf jeder in einer fest gewâhl-
ten Hâlfte von M gelegenen Parallelkurve H gibt es einen Punkt r(H, <x) derart,
dafi dos minimale Verbindungssegment p(H)r(H, oc) mit der Kurve H im
Punkt p(H) den Winkel a bildet. Dos Segment p(H)r(H,<x) verlâuft dabei

ganz in der gewàhlten Hâlfte von M.
Beweis. Da H kûrzer ist als G, trifft H den Schnittort C(p(H)) des Punk-

tes p(H) nicht. H gehôrt also ganz demjenigen Gebiet auf der Eiflache an,
das sich durch die geodâtischen Polarkoordinaten mit Zentrum p(H) und
mit der Anfangsrichtung von H als O-Richtung beschreiben lâBt. Der Winkel
zwischen der Anfangsrichtung von p(H)r, wo r ein Punkt von H — p(H)
ist, und der Anfangsrichtung von H ist also nichts anderes als die Winkel-
koordinate des Punktes r und daher eine stetige Funktion von r. Da
H — p(H) einfach zusammenhângend ist, fûllen die Werte dieser stetigen
Funktion ein Intervall in [0, ri] aus. Da aber Punkte r auf H — p(H) vor-
kommen, deren Winkelkoordinate beliebig nahe an 0 oder an n gelegen ist,
gibt es fur jedes a zwischen 0 und n einen Punkt r r(H, a) mit der in
dem Satz genannten Eigenschaft.

Da schlieBlich Anfangs- und Endpunkt des Segments p(H)r(H, a) der
gewàhlten Hâlfte von M angehôren, und da das Segment kiirzer als L/2 ist,
gehôrt es ganz dieser Hâlfte an.

Satz 2.3. Sei a ein Winkel zwischen 0 und n. Fur jede auf einer fest gewâhl-
ten Hâlfte von G gelegene Parallelkurve H ^ G sei r(H, a) ein Punkt auf H
80, dafi das minimale Segment p(H)r(H, a) mit der Kurve H in p(H) den
Winkel oc bildet.

Behauptung. Wenn H gegen G konvergiert, so konvergiert p(H) gegen den

Punkt p auf G und r(H, oc) konvergiert gegen den p auf G gegenilberliegenden

•) Wir betrachten, falls nicht ausdrûcklich etwas anderes gesagt wird, stets nichtorientierte
Winkel, so dafi nur Winkelwerte von 0 bis n vorkommen.
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Punkt q. Das minimale Segment p(H)r(H, a) konvergiert folglich gegen ein
auf der fest gewâhUen Hâlfte von M gelegenes minimales Verbindungssegment
von p nach q, dos in p mit der Geodâtischen G den Winkel a bildet.

Beweis. Offenbar ist ]hap(H) p fur lim H G. Wenn wir noch zei-

gen, daB lim r(H, a) q fur lim H G, daim ergeben sich die ûbrigen
Behauptungen des Satzes sofort : Denn der Grenzwert6) einer Folge minimaler
geodâtischer Segmente ist offenbar wiederum ein minimales geodàtisches
Segment, und da die Segmente p(H)r(H, a) aile in einer fest gewâhlten Hâlfte
von M verlaufen und mit der Kurve H im Punkt p(H) den Winkel a bilden,
so gilt dasselbe fur die Grenzlage.

Da M kompakt ist, besitzen die Punkte r(H, a) fur lim jET G jeden-
falls einen Hâufungspunkt r ; r ist offenbar auf G gelegen. Wir haben zu zei-

gen, daB r q ist.
Zunâchst ist leicht zu sehen, daB r nicht ein von p und q verschiedener

Punkt auf G sein kann. Denn dann wurden die minimalen Segmente
p(H)r(H, a) gegen ein minimales Segment von p nach r konvergieren, das
mit G in p den Winkel oc, 0 < a < n, einschlieBt. Da r ^ q, also r nicht zu
C(p) gehôrt, kann es aber nur das eine, zu G gehôrende minimale
Verbindungssegment von p nach r geben - ein Widerspruch.

Es bleibt also noch die Môglichkeit auszuschlieBen, daB der Punkt p als
ein Hâufungspunkt der Punkte r(H,<x) fur limH G auftritt. Dies wurde
bedeuten, daB es eine Folge von gegen G konvergierenden Parallelkurven Ht
(i 1, 2,... zu G gibt derart, daB die Folge r{ r(Hiy a) gegen p
konvergiert.

Wir betrachten die folgenden beiden Verbindungskurven von pt p{H^
nach r{ r(Hiy a): Einmal das minimale Segment Gi piri, und zum
anderen den kiirzeren Bogen K{ der beiden von pi nach r{ laufenden Bôgen
von Ht (da lim ri¦ p, ist, jedenfalls fur genugend groBe i, Ki durch unsere
Forderung eindeutig bestimmt).

Die Kurven Gt und Kt sind ganz in dem geodâtischen Polarkoordinaten-
system mit p€ als Zentrum gelegen. Dièse Polarkoordinaten vermitteln einen
Diffeomorphismus y einer Umgebung des Punktes p{ auf eine Umgebung des

Ursprungs o der Tangentialebene T€ in p{. Hierbei ist das Bild \pGt in Tt
des geodâtischen Segments G{ die Verbindungsstrecke von y>p{ o nach
y)ri9 wâhrend das Bild y)K{ von K{ eine zweite Verbindungskurve von
xppi o nach iprt ist, die sich beliebig wenig von dem mit der gleichen An-
fangsrichtung von 0 ausgehenden geradlinigen Segment der gleichen Lange
unterscheidet, sobald nur i genugend groB gewâhlt ist. Denn die Kurve Kt

•) Vgl. Fufinote 3.
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unterscheidet sich, als ein Bogen der gegen die Geodatisehe G konvergieren-
den Kurve Ht, fur genugend groBe i beliebig wenig von einem mit der
gleichen Anfangsnchtung von p% ausgehenden Segment der gleichen Lange,
und ein solches Segment wird ja unter \p in ein geradliniges Segment des

Tangentialraumes Tt abgebildet.
Nun bilden aber die Anfangsriehtungen der beiden Verbindungskurven

\pGt und y)Kt von o ypt nach %prt im Punkt o den fest gewahlten Winkel
a, 0 < oc < 7t. Zwei mit einem solchen Winkel von einem Punkt o einer
euklidischen Ebene ausgehende Kurven, von denen die eine geradlinig ist
und die andere der Geradlinigkeit in einem beliebig vorgebbaren MaBe nahe
kommt, kônnen sich aber nicht in einem Punkte wiedertreffen, der beliebig
nahe an o gelegen ist.

Damit ist der Satz 2.3 bewiesen.

2.4. Aus den vorangehenden Satzen folgt nun sofort das Lemma 1. Sei

namlich, unter den in 2.1 angegebenen Voraussetzungen, ein Punkt p auf G

und in diesem Punkt eine Anfangsrichtung fur G gewahlt. Von den beiden
dureh G bestimmten Halften von M wahlen wir eine aus. oc sei ein behebiger
Winkel zwischen 0 und n. Wie in 2.2 wahlen wir auf den in der gewahlten
Halfte gelegenen Parallelkurven H zu G die Punkte p(H). Nach Satz 2.2 gibt
es auf jedem dieser H einen Punkt r(H, a) derart, daB das mimmale
Segment p(H)r(H, a) mit der Kurve H im Punkt p(H) den Winkel a bildet
Nach Satz 2.3 konvergieren dièse Segmente fur lim H G gegen ein
minimales, in der gewahlten Halfte gelegenes Verbindungssegment von p mit q,
das mit G in p den Winkel oc bildet.

Das heiBt : Ein von p mit dem Winkel a in die gewahlte Halfte von M aus-
laufender geodâtischer Strahl trifft G in dem p auf G gegenuberliegenden
Punkt q wieder, und zwar nach Durchlaufen der Strecke L/2, L L(G) die
Lange von G. Der Schnittort C(p) besteht also nur aus dem Punkt g, q ist
konjugiert zu p bezuglich eines jeden von p ausgehenden geodatischen Strahls.

3. Beweis von Theorem 1

3.1. In diesem Abschnitt betrachten wir Eiflachen der Klasse Cz.

Satz 3.1. Sei p ein Punkt auf einer Eifloche M und q ein Punkt auf dem
Schnittort C (p) von p mit minimalem Abstand von p. Wenn

q) d(p, G(p)) < Tt/Vm^x K 7)

dann gibt es genau zwei minimale Verbindungssegmente von p nach q, und

7) Vgl. FuÛnote 4.
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dièse treffen sich in q mit dem Winkel n. qist also der Mittelpunkt eines von p
ausgéhenden und dorthin zurilckkehrenden geodàtischen Segments der Lange

2d(p, q) 2d(p, C(p)) < 2rc/V/max K 8).

Beweis. Sei Go ein minimales Verbindungssegment von p nach q. Da Go

nach Voraussetzung kûrzer ist als n/l/max K, ist q nicht konjugiert zu p
bezuglieh (?0. Es gibt also, nach den in 1.3 hergeleiteten Grundeigensehaften
des Schnittorts, ein zweites, von Go verschiedenes, minimales Verbindungssegment

Hq von p nach q. Wir behaupten, daB O0 und Hq im gemeinsamen
Endpunkt q den Winkel n miteinander bilden.

Zum Beweis betrachten wir die von p ausgehenden geodàtischen Segmente
der Lange d(p, q) < ;7r/l/max K. Dièse Segmente enthalten keinen kon-
jugierten Punkt zu p, ihre Endpunkte bilden folglich eine Kurve K auf der
Eiflàche, die in jedem ihrer Endpunkte eine zur Endrichtung des Segments
orthogonale Tangente besitzt. Insbesondere gehôren GQ und Ho zu diesen
Segmenten, und ihr gemeinsamer Endpunkt ist ein mehrfacher Punkt der
Kurve K.

Angenommen, Go und Ho bilden mit ihren Endriehtungen im Punkte q
einen Winkel < n. Dann sind die dazu senkrechten Tangenten an K im
Punkte q voneinander verschieden, und daraus folgt, daB es Segmente G'o und
Hf0 der Lange d(p,q) gibt, die in der Nâhe von G und H verlaufen derart,
daB sie einen inneren, in der Nâhe von q gelegenen Punkt gemeinsam haben.
Das bedeutet aber, daB G'o und Hf0 den Schnittort C(p) schon vor Erreichen
ihres Endpunktes treffen, also in einem Abstand < d(p9 q) d(p, C(p)) -
ein Widerspruch.

Also treffen sich Go und Ho in q mit dem Winkel n, und hieraus folgt dann
auch, daB es nicht mehr als zwei minimale Segmente von p nach q geben kann.

3.2. Satz 3.2. Wenn es auf einer Eiflàche M ein geschlossenes geodatisches

Segment der Lange < 27r/]/max K gibt, dann gibt es auch eine geschlossene

Geodàtische G der Lange L(G) < 2^/l/max K derart, dafi jedes andere ge-
schlossene geodatische Segment auf M die Lange > L(G) hat9).

Beweis. Wir betrachten die Menge der geschlossenen geodàtischen
Segmente der Lange < 27r/l/max K auf M. Nach Voraussetzung ist dièse Menge
nicht leer^ und es ist leicht zu sehen, daB sie kompakt ist im Sinne der iiblichen
Metrik10). Die Lângenfunktion ist stetig auf dieser Menge, sie nimmt also einen

8) Satz und Beweis gelten auch fur beliebige kompakte Flachen, vgl. [5] und [6].
•) Vgl. FuBnote 8.
10) Vgl. FuBnote 3.
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Meinsten Wert an. Sei G ein geschlossenes geodâtisches Segment kleinster

Lange L(Q). Nach Voraussetzung ist L(G) < 2jr/Vmax^. Wir behaupten,
da8 G eine geschlossene Geodâtische ist.

Dazu betrachten wir den Anfangs- und Endpunkt p von G. Sei q der Mit-
telpunkt von G. Spâtestens beim Punkt q trifft also der von p in der Anfangs -

richtung von G ausgehende geodatische Strahl den Schnittort C(p) von p,
das heiBt, der Abstand d(p, C(p)) zwischen p und C(p) ist < L(G)/2.

Angenommen, es wâre d(p, C(p)) < L(G)/2. Dann wurde aus Satz
3.1 die Existenz eines geschlossenen geodâtischen Segments der Lange
2d(p,C(p)) < L(G) folgen - im Widerspruch zur Wahl von G. Also ist
d(p, G(p)) L(G)/2} q liegt auf C(p) und der von p nach q laufende erste
Teil und der von q nach p laufende zweite Teil von G liefern zwei minimale
Segmente von p nach q.

Andererseits liegt aber p auf dem Schnittort C(q) von g, da wir ja gerade
zwei minimale Verbindungssegmente von q nach p nachgewiesen haben. Also

ist d(q, C(q)) < d(p, q) < rc/Vmax K. Wâre d(q, C{q)) < d(p, q), so

folgte nach Satz 3.1 die Existenz eines geschlossenen Segments der Lange
2d(q, C(q)) < 2d{p, q) L(G), im Widerspruch zur Wahl von G. Also

ist d(q, C(q)) d(p,q) < ^r/j/max K, das heiBt, p ist ein auf C(q) gelege-
ner Punkt mit kleinstem Abstand von q. Aus Satz 3.1 folgt dann aber, dafi
die beiden von q nach p laufenden minimalen Segmente sich in p mit dem
Winkel n treffen, das heiBt, G ist eine geschlossene Geodatische.

Damit ist Satz 3.2 bewiesen.

Satz 3.3. Wenn auf einer Eifloche M eine geschlossene Geodatische G mini-
maler Lange L(G) existiert (das hei/it: Jede andere geschlossene Geodatische

hat mindestens die Lange L(G)), und wenn L(G) < 2?r/l/max K, dann ist
der Abstand zwischen einem Punkt von M und seinem Schnittort stets >L(G)/2.

Beweis. Wenn p1 ein Punkt auf G ist, so trifft G den Schnittort C(p')
von p' spâtestens in dem pf gegenûberliegenden Punkt q' auf G, das heiBt,
eine fur aile Punkte p von M gultige untere Schranke fur den Abstand
d(P>C(p)) ist <L(G)j2.

Angenommen, es gibt einen Punkt p auf M, fur den d(p} C(p)) < L(G)/2
< n/Vm&xK ist. Dann folgt aus Satz 3.1 die Existenz eines geschlossenen

geodâtischen Segments der Lange 2d(p, C(p)) <L(G) < 2#/V/max K, und
aus Satz 3.2 folgt die Existenz einer geschlossenen Geodâtischen der Lange
< 2d(p, C(p)) <L(G) - ein Widerspruch zur Wahl von G.

3.3. Wir kônnen jetzt die Ungleichung (1) in Theorem 1 beweisen.
Angenommen, es gibt ein geschlossenes geodatisches Segment einer Lange
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K. Dann gibt es nach Satz 3.2 eine geschlossene Geodâtische

G minimaler Lange L(O) < 2n/Vmatx K, und nach Satz 3.3 ist L(G)j2
eine untere Grenze fur den Abstand d(p,C(p))9 p ein beliebiger Punkt
auf M.

Die geschlossene Geodâtische G erfûllt also die Voraussetzungen von
Lemma 1, und daher sind zwei einander auf G gegenûberliegende Punkte p
und q konjugiert zueinander bezûglich eines von p nach q laufenden halben

Bogens von G. Ein solcher Bogen hat aber die Lange L(G)/2 < ^/Vmax K
und kann folglich kein Paar von konjugierten Punkten enthalten - ein Wider-
spruch.

3.4, Mit den bisherigen Ergebnissen sind wir nun in der Lage, das Gleich-
heitszeichen in der Beziehung (1) zu diskutieren.

Falls M eine Sphâre ist, so steht in (1) ofifenbar das Gleichheitszeichen.
Falls umgekehrt auf einer Eiflâche M eine geschlossene Geodâtische G der

Lange 2;rc/V/max K gegeben ist, so folgt aus dem soeben bewiesenen ersten
Teil von Theorem 1, daB jede andere geschlossene Geodâtisehe auf M min-
destens die gleiche Lange hat wie G. Auf Grund von Satz 3.3 sind also die
Voraussetzungen von Lemma 1 erfûllt.

Wenn also p ein Punkt auf G ist und q der gegenûberliegende Punkt im
Abstand rc/j/max K, dann treffen sich aile von p ausgehenden geodàtischen
Strahlen nach Durchlaufen der Strecke n/ymaxK im Punkte q wieder.

q ist konjugiert zu p bezûglich eines jeden dieser von p nach q laufenden

Segmente der Lange nj V max K. Daraus folgt, daB die Krûmmung K lângs
eines jeden dieser Segmente nicht Werte kleiner als max K annehmen kann,
das heiBt, K max K const. auf ganz M, M ist eine Sphàre.

Wir zeigen jetzt noch : Ein geschlossenes geodâtisches Segment G der Lange

2n/)/ma,x K ist eine geschlossene Geodâtische. Angenommen, Anfangs- und
Endrichtung von G bilden in p einen Winkel < n. Dann betrachten wir einen
Punkt p' t^ p auf G und den p1 auf G gegenûberliegenden Punkt q'. Von p'
nach qr laufen ein geodâtisches Segment H und ein bei p gebrochenes geodâtisches

Segment H', beide von der Lange n /]/max K. Da Hf nicht minimale
Verbindung seiner Endpunkte ist, ist auch H nicht minimale Verbindung
seiner Endpunkte, das heiBt, der Abstand d(p', C(p')) von pr zu seinem

Schnittort C (p1) ist < n /l/max K. Nach Satz 3.1 folgt daraus die Existenz eines

geschlossenen geodàtischen Segments der Lange 2d (pr, C (pr)) < 2n / k max K,
im Widerspruch zu der Beziehung (1).
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4. Beweis von Lemma 2 und Theorem 2

4.1. Der erste Teil von Theorem 2, und insbesondere die Ungleichung (2),
ergibt sich unmittelbar aus den vorangegangenen Ûberlegungen. Denn an-
genommen, es gâbe einen Punkt p auf M derart, daB aile Punkte q auf M
einen Abstand < jr/V^max K von p besitzen. Dann ist also insbesondere der
Abstand d(p,C(p)) zwisehen p und seinem Schnittort C(p) kleiner als

7t/Vw^xK, und das fuhrt, wie wir am SchluB des letzten Absatzes gesehen
haben, auf einen Widerspruch.

4.2. Es bleibt also der zweite Teil von Theorem 2 zu beweisen und
insbesondere der Fall zu diskutieren, daB in (2) das Gleichheitszeichen steht.
Wir nehmen also jetzt an :

Auf der Eiflache M gibt es einen Punkt p derart, da/3 aile Punkte von M
einen Abstand < njv max K von p besitzen.

Satz 4.1. Unter der angegebenen Voraussetzung trifft jeder von p ausgéhende

geodâtische Strahl den Schnittort C(p) nach Durchlaufen der Strecke ?r/]/max K.
M erfûllt also die Voraussetzungen von Lemma 2.

Beweis. Jeder Punkt q auf G(p) hat mindestens den Abstand jr/l/max K
von p, andernfalls wâre d(p, C(p)) < 7r/l/max K, und das fuhrt, wie wir
soeben in 4.1 sahen, auf einen Widerspruch. Da nach Voraussetzung kein
Punkt von M einen Abstand > jr/Kmax K von p hat, folgt die Behauptung.

Satz 4.2, Der Endpunkt eines von p ausgéhenden Segments der Lange

n/VmSùxK ist dann und nur dann konjugiert zu p (bezûglich dièses Segments),
wenn fur aile Punkte des Segments K max K const. ist.

Beweis. Das folgt unmittelbar aus dem schon zitierten Vergleichsatz von
Stubm, vgl. Blaschke [1], § 100.

Hiermit kônnen wir nun, unter Voraussetzung von Lemma 2, zeigen, daB
eine Eiflache mit der eingangs erwâhnten Eigenschaft eine Sphâre ist. Denn
wegen Satz 4.1 erfûllt M die Voraussetzung von Lemma 2, C(p) besteht
also aus nur einem einzigen Punkt, q. Auf jedem von p ausgéhenden geo-
dâtischen Strahl treffen wir daher nach Durchlaufen der Strecke ^t/l/max K
auf einen konjugierten Punkt (nâmlich q), und nach Satz 4.2 ist daher auf M
K max K const.

4.3. Der Beweis von Theorem 2 ist damit auf den Beweis von Lemma 2

zurûckgefûhrt. Wir nehmen daher fur den Rest des Abschnitts an: p ist ein
Punkt auf einer Eiflache M derart, dafi aile Punkte von C(p) den gleichen
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Abstand n/ymÂxK von p besitzen. Wir wollen zeigen, da8 C(p) dann nur
einen einzigen Punkt enthâlt.

Zunàchst vereinbaren wir folgende Abkiirzungen in der Sprechweise: Ein
von p ausgehendes Segment der Lange njv max K heiBt konjugiert oder
nichtkonjugiert, je nachdem der Endpunkt dièses Segments konjugiert ist zu
p (bezûglich dièses Segments) oder nicht. Eine Richtung in p heiBt konjugiert
oder nichtkonjugiert, je nachdem das in dieser Richtung von p ausgehende

Segment der Lange jr/V^max K konjugiert ist oder nicht.

Satz 4.3. Die konjugierten Richtungen bilden einen abgeschlossenen Teil des

Richtungskreises R in p.

Beweis. Die Menge derjenigen Punkte auf der Eiflàche M, fur die die
Krummung K < max K ist, bilden einen offenen Teil von M. Der Endpunkt
eines von p ausgehenden Segments G der Lange rc/l/max K ist genau dann
nicht konjugiert zu p, wenn G einen Punkt mit diesem offenen Teil gemein-
sam hat, vgl. Satz 4.2. Dann enthâlt aber offenbar auch jedes Segment der

Lange njV^max K, dessen Anfangsrichtung genugend benachbart ist zur
Anfangsrichtung von G, einen Punkt, in dem die Krummung K<ma,xK
ist.

4.4. Wir setzen nun die Diskussion einer Eiflàche M mit den in 4.3 an-
gegebenen Eigenschaften fort, indem wir folgende drei Fâlle betrachten, mit
denen offenbar aile Môglichkeiten ausgeschôpft werden.

A. Aile von p ausgehenden Segmente sind konjugiert.

B. Unter den von p ausgehenden Segmenten der Lange n:/]/max K gibt es

zwei verschiedene, G und H, die nichtkonjugiert sind und einen gemeinsamen
Endpunkt haben.

C. Es gilt weder A noch B.

Wir zeigen in den folgenden drei Sâtzen, daB im Fall A M eine Sphâre ist,
also insbesondere das Lemma 2 gilt, wâhrend die Fâlle B und C auf einen Wider-
spruch fuhren.

Satz 4.4. Unter den in 4.3 angegebenen Voraussetzungen folgt aus A, dafi
die Eiflàche eine Sphâre ist.

Beweis. Nach Satz 4.2 ist in diesem Falle K max K const. l&ngs
eines jeden von p ausgehenden Segments, also K const. auf M, also M
eine Sphâre.
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Satz 4.5. Unter den in 4.3 angegebenen Voraussetzungen folgt aus B ein
Widerspruch.

Beweis. Zunâchst behaupten wir, daB die Endrichtungen der beiden nicht-
konjugierten Segmente G und H in ihrem gemeinsamen Endpunkt den Win-
kel n miteinander bilden. Denn sonst wurde sich, ebenso wie beim Beweis von
Satz 3.1, die Existenz eines Punktes auf C(p) ergeben, der weniger als

jr/l/max K von p entfernt ist, im Widerspruch zu dem in 4.1 bewiesenen
ersten Teil von Theorem 2.

Da aber andererseits p auf dem Sehnittort C(q) von q gelegen ist, zeigt die-
selbe Argumentation, daB auch die Anfangsrichtungen von G und H in p den
Winkel n miteinander bilden. Es ergibt sich also, daB G und H zusammen
eine geschlossene Geodàtische der Lange 27r/V/max K ausmachen, und hier-
aus folgt naeh Theorem 1, daB die Eiflâche M eine Sphâre ist. Dann sind
aber G und H konjugierte Segmente - ein Widerspruch.

Satz 4.6. Unter den in 4.3 angegebenen Voraussetzungen folgt aus C ein
Widerspruch,

Beweis. Wir fixieren fur den Richtungskreis R im Punkte p eine Orien-
tierung. Dann bestimmt jedes geordnete Paar a, r von Richtungen in p ein
Intervall [a, r], bestehend aus er, r und allen zwischen a und r gelegenen
Richtungen. Die Lange dièses Intervalls [or, t], auch Abstand von a und t
genannt11), ist nichts anderes als das BogenmaB des von a und r gebildeten
orientierten Winkels.

Da A ausgeschlossen ist, geht von p ein nichtkonjugiertes Segment G der

Lange tt/Vmax K aus. Sei q der Endpunkt von G. Nach Voraussetzung ge-
hôrt q zu G (p). Da G nichtkonjugiert ist, gibt es ein zweites minimales
Segment der Lange n/Vm&x K von p nach q, und da B ausgeschlossen ist, ist
dièses Segment konjugiert.

Die Menge der Anfangsrichtungen derjenigen von p ausgehenden Segmente
der Lange n/l/max K, die q als Endpunkt besitzen und fur die q konjugier-
ter Punkt zu p ist, dièse Menge ist also nicht leer, und auBerdem ist sie offen-
bar abgeschlossen im Richtungskreis R in p. Also ist durch folgende Eigen-
schaften ein von p ausgehendes Segment H der Lange rc/l^max Jl wohl-
bestimmt: H ist konjugiert, hat q als Endpunkt und das von der Anfangs-
richtung a von G und der Anfangsrichtung r von H gebildete Intervall [a, r]
hat minimale Lange.

Die so bestimmten Segmente G und H zerlegen die Eiflâche M in zwei Teile.

11 Dieser Abstand hângt also von der Keihenfolge der Richtungen ab!
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Da zwei verschiedene, von p ausgehende Segmente der Lange n\V^max K,
auBer p, hôchstens ihren Endpunkt gemeinsam haben kônnen, wird einer
dieser beiden Teile vollstândig ûberdeckt von denjenigen von p ausgehenden

Segmenten der Lange rc/ï/max K, deren Anfangsrichtung zu Intervall [<t,t]
gehôrt. Wir bezeichnen diesen Teil von M, der iibrigens der abgeschlossenen
Halbsphâre homeomorph ist, mit N.

Da die nichtkonjugierten Richtungen in p einen offenen Teil des Riehtungs-
kreises R ausmachen, ist die nichtkonjugierte Richtung a in einem offenen
Intervall von nichtkonjugierten Richtungen enthalten Der Durchschnitt dièses

Intervalls mit dem Intervall I [a, r] ist ein in / offenes Intervall J
der Form [<x, q[. Da B ausgeschlossen ist, haben nichtkonjugierte Segmente
mit verschiedenen Anfangsrichtungen in J auch verschiedene Endpunkte.

Jedem Segment G' der Lange ^/Kmax K, dessen Anfangsrichtung a' zum
Intervall J gehôrt, ist durch folgende Bedingungen eindeutig ein konjugiertes
Segment H' zugeordnet: H1 ist konjugiert, hat den Endpunkt qf von G' als

Endpunkt und das von der Anfangsrichtung a' von G' und der Anfangsrichtung

t' von Hf gebildete Intervall [a1, r'] hat minimale Lange.
Die Existenz und Eindeutigkeit von Hf ergeben sich dabei ebenso wie oben,

wo wir durch die gleichen Bedingungen dem Segment G das Segment H
zugeordnet hatten. Insbesondere folgt also aus G' G, daB Hf H ist.

Nun gehôrt die Anfangsrichtung t; des dem Segment G1 zugeordneten
Segments Hr dem Intervall [a, r] an, und zwar sogar dem Inneren des Intervalls,
wenn G' ^G ist. Denn wenn G1 =£ G ist, so gehôrt der Endpunkt q1 von
G' zum Inneren des durch G und H begrenzten Teils N der Eiflâche M ; H'
hat also seinen Endpunkt im Inneren von N und folglich seine Anfangsrichtung

im Inneren von [a, t]
Ein Segment G' der betrachteten Art und das ihm zugeordnete Segment

H' begrenzen, âhnlich wie die Segmente G und H, einen der abgeschlossenen
Halbsphâre homeomorphen Teil N1, der ganz ûberdeckt wird von den von p
ausgehenden Segmenten der Lange rc/l/max K mit der Anfangsrichtung im
Intervall [ar, rf]. Offenbar ist Nf ganz in N enthalten.

Indem wir jeder in J gelegenen (nichtkonjugierten) Anfangsrichtung a'
eines Segments G' die Anfangsrichtung r' des durch G1 wie oben bestimmten
Segments H1 zuordnen, erhalten wir eine Abbildung (p des in / [a, t]
gelegenen Intervalls J [a, q] in das Intervall I — J von /. Dièse Abbildung

(p ist streng monoton fallend im folgenden Sinne : Wenn a" *J auf
a' €«/ folgt, so liegt das Bild rff — <p{on) vor r' (p(o'). Denn nach den
vorstehenden Betrachtungen ist der von dem Segment G" mit der Anfangsrichtung

o" und dem Segment H" mit der Anfangsrichtung r" q>(an) be-

3 Commenter!! Mathematici Helvetici
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grenzte Teil N" von M ganz in dem von den Segmenten G1 mit der Anfangs-
richtung a1 und H1 mit der Anfangsrichtung x1 <p{af) begrenzten Teil Nf
enthalten.

Dièse Abbildung q> : J -> / — J ist vielleicht nicht stetig, aus der strengen
Monotonie ergibt sich jedoch, daB es zu jedem e > 0 aufeinander folgende,
verschiedene Richtungen a' und o" vom Abstand < e gibt derart, daB auch
die Richtungen xn q>(o") und t' <p(o') einen Abstand < e haben. a'
und a" sowie x" <p(on) und xf q>(o') sollen jetzt Richtungen mit dieser
Eigenschaft sein. Da, wegen des Ausschlusses von B, der gemeinsame End-
punkt q' von G1 und H' verschieden ist von dem gemeinsamen Endpunkt q"
von G" und H", sind x" und x' voneinander verschiedene konjugierte
Richtungen.

Es kônnen jedoch nicht aile zwischen x" und x' gelegenen Richtungen kon-
jugiert sein, denn dann wurde, auf Grund von Satz 4.2, langs aller Segmente
der Lange jr/V^max K mit Anfangsrichtung im Intervall [t", x'] die Krum-
mung K max K const. sein, und dies wiederum wurde zur Folge haben,
daB aile dièse Segmente einen gemeinsamen Endpunkt besitzen, wàhrend doch
der Endpunkt q" von H" verschieden ist von dem Endpunkt q1 von H'.

Es gibt also ein nichtkonjugiertes Segment H* der Lange rc/l^max i£,
dessen Anfangsrichtung t* zum Innern des Intervalls [t", t'] gehôrt. Der
Endpunkt q* von Jï* ist folglich gleichzeitig Endpunkt eines zweiten, wegen
des Ausschlusses von B, konjugierten Segments G* der Lange rc/l/max K.
Da g* im Innern des durch G' und H' begrenzten Gebietes Nr, aber auBerhalb
des durch G" und H" begrenzten Gebietes N" gelegen ist (denn g* ist, wegen
des Ausschlusses von B, verschieden sowohl vom Endpunkt q' des nichtkon-
jugierten Segments G1 als auch vom Endpunkt q" des nichtkonjugierten
Segments G"), liegt die Anfangsrichtung <r* und G* entweder zwischen a1 und
o" oder zwischen x" und x'. Die erste Môglichkeit fâllt aus, da a*, als konjugierte

Richtung, nicht dem aus nichtkonjugierten Richtungen bestehenden
Intervall J angehôren kann. Also liegt cr*, ebenso wie t*, im Intervall [x", t']
der Lange < e.

Wir wollen nun die Zahl e > 0 von vorneherein so klein gewâhlt annehmen,
daB zwei von p ausgehende Segmente der Lange njV^max K, die einen
gemeinsamen Endpunkt haben und deren Anfangsrichtungen in einem Intervall
der Lange < e gelegen sind, im Endpunkt sich mit einem Winkel < 7t/é
treffen. Die Existenz eines solchen e ergibt sich aus der stetigen Abhàngigkeit
eines Segments der Lange rc/l/max K von seiner Anfangsrichtung.

Die Segmente G* und H* treffen sich also in dem gemeinsamen Endpunkt
q* mit einem Winkel < n/é. Da mit der Anfangsrichtung r* von £f* auch



Neue Ergebnisse ûber konvexe Flâchen 35

aile geniigend zu r* benachbarten Richtungen in p nichtkonjugiert sind, bil-
den die Endpunkte der von p mit einer geniigend zu t* benachbarten An-

fangsrichtung auslaufenden Segmente der Lange n/l/m&x K eine durch q*
laufende Kurve, deren Tangente in g* senkrecht steht zur Endrichtung von
H*. Da nun aber die Endrichtungen von (?* und 2ï* in q* einen Winkel
< nj4t < nj2 bilden, gibt es beliebig nahe an H* gelegene, von p ausgehende

Segmente der Lange ^r/l/max K, die das Segment C?* sehon vor seinem

Endpunkt q* treffen - ein Widerspruch zu der Tatsache, daB zwei verschie-

dene, von p ausgehende Segmente sich friihestens im Abstand Tr/V^max K
wieder treffen kônnen.

Damit ist Satz 4.6 und damit das Lemma 2 und damit auch Theorem 2

bewiesen.

Ânhang. Beweis von Theorem 3

Da die rechte Ungleichung in (3) schon auf Bonnet zuriickgeht, begnugen
wir uns mit dem Beweis der linken Ungleichung in (3).

Dazu wàhlen wir auf der Eiflàche M zwei Punkte p, q mit maximalem in-
neren Abstand: d(p, q) d(M). Durch p und q legen wir eine Ebene. Dièse
Ebene trifft die Eiflàche M in einer konvexen Kurve G. Die beiden von p
nach q laufenden Bôgen der Kurve G haben jeder mindestens die Lange

d(p, q) und wegen Theorem 2 also mindestens die Lange jr/Kmax K. Ferner
ist der àuBere Durchmesser D(M) von M mindestens so groB wie der auBere
Durchmesser D(C) von G. Unter Verwendung der Ungleichung L(G)
< nD(C) erhalten wir daher

2d(M) 2d(p, q) < L(C) < tzD(G) < nD{M)

und dies liefert die linke Ungleichung in (3).
Falls die àuBeren Terme der vorstehenden Folge von Ungleichungen iiber-

einstimmen, gilt insbesondere ^/Kmax K d(M), und daraus folgt nach
Theorem 2, daB M eine Sphâre ist.
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