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Neue Ergebnisse iiber konvexe Flichen

von WILHELM KLINGENBERG, Gottingen

1. Zusammenstellung der Ergebnisse

1.1. Wir betrachten geschlossene, positiv gekriimmte Flichen der Klasse
C?® im Raum. Solche Fldchen nennen wir kurz Eiflichen. Insbesondere gehoren
die Sphéren zu den Eiflichen; sie sind dadurch gekennzeichnet, da8 sie kon-
stante gauBsche Krimmung haben.

Wir betrachten in dieser Note die innere Geometrie einer Eifliche M. Und
zwar geben wir eine nur von dem Maximum der gauBschen Kriimmung K auf
M abhingende untere Schranke fiir die Linge eines geschlossenen gsoditi-
schen Segments!) auf M (Theorem 1) und fiir den inneren Durchmesser von
M (Theorem 2) an. Bei der Diskussion des Gleichheitszeichens ergeben sich
dabei zwei neue Kennzeichnungen der Sphére unter den Eifldchen.

Diese Ergebnisse bilden das Gegenstiick zu den nur von dem Minimum der
gaullschen Kriimmung K auf M abhingenden oberen Schranken fiir die Lange
eines geschlossenen geoditischen Segments auf M und den inneren Durch-
messer von M, wie sie kiirzlich ToroNocow angegeben hat (Theorem 1* und 2*).

In einem Anhang geben wir eine durch das Maximum der Kriimmung K
auf einer Eifliche M bestimmte untere Schranke fiir den dueren Durchmesser
von M an (Theorem 3). Damit erhalten wir ein anscheinend bisher nicht be-
merktes Gegenstiick zu der auf BoNNET zuriickgehenden, durch das Minimum
von K auf M bestimmten oberen Schranke fiir den éufleren Durchmesser von
M . Die Diskussion des Gleichheitszeichens liefert eine weitere Kennzeichnung
der Sphire unter den Eiflichen.

1.2. Theorem 1. Zwischen der Linge L(GQ) eines geschlossenen geoditischen
Segments G auf einer Eifliche M und dem Maximum der gauBschen Kriimmung
K auf M besteht die Beziehung

27/Vmax K < L(G) (1)

Dann und nur dann, wenn M eine Sphdre ist, gibt es auf M ein geschlossenes
geoddtisches Segment der Liinge 2n/l/max K.

1) Ein geschlossenes geoditisches Segment wird stets als doppelpunktfrei vorausgesetzt. Eine
geschlossene Geoditische ist ein geschlossenes geodétisches Segment, fir das Anfangs- und

Endrichtung zusammenfallen. Unter einem Segment wollen wir stets ein geoditisches Segment
verstehen,
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Bemerkungen. 1. Fiir den Spezialfall, dafl G eine geschlossene Geod#tische
ist, wurde die Ungleichung (1) von PoGorELOW [8] bewiesen. Ein ganz an-
derer Beweis fiir die Ungleichung (1), der sich, im Unterschied zu dem Beweis
von PocoreLow, sogleich fiir einfach zusammenhéngende, positiv gekriimmte
Riemannsche Mannigfaltigkeiten beliebiger gerader Dimension formulieren
1iBt, findet sich in [5]. Ein wesentlicher Schritt in diesem Beweis ist eine Aus-
sage, die wir unten, fiir den Fall der Dimension 2, als Lemma 1 formuliert
haben. Es ist dieses Lemma, das dann auch die im Theorem 1 enthaltene
Kennzeichnung der Sphére zu beweisen gestattet. Wir werden hier noch ein-
mal einen ausfithrlichen Beweis des Lemmas 1, unter Beriicksichtigung der sich
fiir den Fall der Dimension 2 ergebenden Vereinfachungen, bringen.

2. Die Bedeutung der hier und im folgenden immer wieder auftretenden

Zahl 7/} max K beruht unter anderem darauf, daB ein geoditisches Segment

mindestens die Linge n/)/max K haben muB, wenn seine Endpunkte kon-
jugiert zueinander sein sollen. Das ergibt sich aus dem Vergleichssatz von
SturM, vgl. BLascHKE [1], § 100.

3. Die im zweiten Teil des Theorems enthaltene Kennzeichnung der Sphére
gestattet es, die Ungleichung (1) in folgender Weise zu verschirfen: Se: M
eine Hifliche, die nicht etne Sphdre ist. Dann hat jedes geschlossene geoddtische

Segment auf M eine Linge > 2x/V max K.

4. Das Theorem wird falsch, wenn man an Stelle von Eiflichen auch Flachen
mit teilweise negativer Kriimmung zuldft, wie man an dem Beispiel einer
Rotationsfliche mit Taille erkennen kann.

5. Theorem 1 ist das Gegenstiick zu folgendem kiirzlich bewiesenen Satz:

Theorem 1* (ToroNocow [12]). Zwischen der Linge L(G) eines geschlossenen
geoditischen Segments Q auf exner Eifldche M und dem Minimum der Kriimmung
K auf M besteht die Beziehung

L(Q) < 27/Vmin K . (1%)
Dann und nur dann, wenn M eine Sphdre ist, gibt es auf M ein geschlossenes

geoddtisches Segment der Linge 2n/l/min K.
Bei seinem Beweis verwendet ToroNnocow Ergebnisse aus der Theorie der
inneren Geometrie konvexer Flichen von A. D. ALEXANDROW.

1.3. In der Formulierung des Lemmas 1, und auch in den weiteren Uber-
legungen dieser Note, spielt der Begriff des Schnitiorts eines Punktes eine wich-
tige Rolle. Dieser Begriff wurde zuerst von PoiNcarg [9] fir analytische Ei-
flichen eingefiihrt. MYERS [7] untersucht den Schnittort allgemeiner auf voll-
stindigen, analytischen Flichen. In [6] haben wir den Schnittort auch fiir
nichtanalytische Flachen betrachtet.
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Wir wollen hier noch einmal den Schnittort definieren und seine wichtig-
sten Eigenschaften zusammenstellen. p bezeichne jetzt einen fest gewihlten
Punkt auf der Eifliche M. Auf jedem von p ausgehenden geoditischen Strahl
G gibt es einen wohlbestimmten Punkt ¢ mit folgender Eigenschaft: Fiir jeden
vor q auf G gelegenen Punkt r ist das Segment pr von G ein minimales Ver-
bindungssegment?) von p nach ¢; dagegen gilt dies fiir keinen Punkt r auf
G, der hinter ¢ gelegen ist. Es folgt hieraus, dafl das Segment pr von @ fiir
einen vor g gelegenen Punkt » auch das einzige minimale Verbindungssegment
mit p ist, wihrend fiir » = ¢ das Segment pr = pqg zwar noch minimal ist,
jedoch nicht mehr notwendig das einzige minimale Verbindungssegment zwi-
schen p und ¢ zu sein braucht.

Aus der Definition von ¢ folgt weiter, dafl ein vor g auf G gelegener Punkt
r nicht konjugiert sein kann zu p beziiglich G. ¢ selber kann konjugiert sein
zu p beziiglich G; wenn das jedoch nicht der Fall ist, dann gibt es noch ein
weiteres minimales Verbindungssegment von p nach ¢. Um das einzusehen,
betrachten wir eine von hinten gegen ¢ konvergierende Folge von Punkten
g;auf G (1 =1,2,....; ¢q; # q) und fiir jeden dieser Punkte ¢, ein minimales
Verbindungssegment mit p. Ein Héufungselement?®) dieser Verbindungs-
segmente ist dann ein minimales Verbindungssegment von p nach ¢, und
dieses ist sicherlich dann verschieden von dem auf G gelegenen minimalen
Segment pg, wenn ¢ nicht konjugiert ist zu p beziiglich G .

Der Schnittort C(p) ist nun definiert als die Menge der vorstehend defi-
nierten Punkte ¢ auf den von p ausgehenden geoditischen Strahlen. Da in
beliebiger Nédhe eines solchen Punktes ¢ von C(p) Punkte gelegen sind, die
nicht zu C(p) gehodren, enthdlt C(p) keine inneren Punkte. Jeder Punkt
aullerhalb C(p) besitzt genau ein minimales Verbindungssegment mit p;
das Komplement von C(p) in M ist ein einfach zusammenhingendes Gebiet,
und zwar die maximale offene Menge, in der sich geoditische Polarkoordinaten
mit dem Zentrum p einfithren lassen.

1.4. Nach diesen Vorbereitungen kénnen wir das fiir den Beweis von Theo-
rem 1 fundamentale Lemma 1 formulieren:

Lemma 1. Auf einer Eifliche M sei eine geschlossene Geoditische G gegeben
mit folgender Ergenschaft: Fir jeden Punkt von M ist der Abstand zu seinem

%) Wir erinnern daran, daf} fiir je zwei Punkte p, ¢ einer Eifliche M der Abstand d(p, q) =
d(q, p) erklart ist als die untere Grenze der Liingen der auf M gelegenen Verbindungskurven
von p mit ¢. Es gibt stets eine Verbindungskurve, deren Liénge gleich dem Abstand d(p, q)
ist; eine solche Kurve ist immer geoditisch., Wir nennen sie minimales (geoditisches) Verbin-
dungssegment zwischen p und ¢g. Vgl. hierzu Hopr-Rinow [4].

3) Konvergenz ist hier verstanden im Sinne der tiblichen, auf M. MorsE zuriickgehenden
Metrik fiir Kurven auf einer Eifliche, vgl. SEIFERT-THRELFALL [10], § 13.
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Schnittort mindestens so groff wie die halbe Linge, L(G)/2, von @, oder, was
dasselbe besagt: Je zwer Punkte auf M, deren Abstand kleiner ist als L(G)/2,
besitzen genawu ein minimales geodiitisches Verbindungssegment.

Behauptung. Ist p ein Punkt auf Q, so treffen sich alle von p ausgehenden
geoditischen Strahlen mach Durchlaufen der Strecke L(G)/2 in dem p auf G
gegeniiberliegenden Punkte q. q ist, beziiglich eines jedem wvon p ausgehenden
geoddtischen Strahls, konjugiert zu p. Der Schnittort C(p) von p besteht aus
dem Punkt q allein.®®)

1.5. Aus dem Beweis von Theorem 1 ergibt sich unmittelbar: Ist p ein
Punkt auf einer Eifliche M, dann ist der Abstand d(p, C(p))*) zwischen
p und seinem Schnittort C(p) mindestens n/ V' max K. Insbesondere gibt es

also Punktepaare auf M, deren Abstand > yz/l/max K ist. Wenn wir mit
d (M) den inneren Durchmesser von M (das ist der maximale Abstand, gemessen
auf M, den zwei Punkte von M haben konnen) bezeichnen, dann gilt also

d(M) > n/l/max K. Wir erginzen dieses Ergebnis durch die Bemerkung,
daf nur fiir die Sphire d(M) = n/V max K gilt. Damit haben wir dann eine
zweite Kennzeichnung der Sphire gewonnen.

Theorem 2. Ser p ein Punkt auf einer Eifliche M, C(p) sein Schnittort.

Dann ist der Abstand d(p, C(p)) > n/l/max K, wo K die gaufsche Kriim-
mung auf M bezeichnet. Insbesondere gilt also fiir den imneren Durchmesser
d(M) von M die Beziehung

a/Vmax K < d(M) . (2)

Dann und nur dann, wenn M eine Sphdire ist, gibt es auf M einen Punkt p so,
daf alle Punkte von M einen Abstand < m/V max K von p haben. Insbeson-
dere: Dann und nur dann, wenn M eine Sphire tst, gilt d(M) = yz/l/max K.

Bemerkungen. 1. Der erste Teil des Theorems, und insbesondere die Un-
gleichung (2), gehen schon auf PogorELOW [8] zuriick. Vgl. auch [5]. Fiir ein
Gegenstiick zu Theorem 2 siehe das unten formulierte Theorem 2*.

2. Fiir den Beweis der im zweiten Teil des Theorems enthaltenen Kennzeich-
nung der Sphire spielt folgendes Lemma eine wichtige Rolle:

Lemma 2. Sei p ein Punkt auf einer Eifliche M derart, daf alle Punkte auf

3a) Es 148t sich zeigen, daBl jede Flache, die den Voraussetzungen des Lemmas geniigt, eine
sogenannte Wiedersehensfliche ist. Vgl. die Definition in [1], §102. Die einzigen bekannten
Wiedersehensflachen sind die Sphéren.

4) d(p, C(p)), der Abstand zwischen einem Punkt p und seinem Schnittort C(p), ist, wie
ublich, definiert als die untere Grenze der Werte d(p, ¢’') fir ¢’ € C(p). Da C(p) kompakt ist
(vgl. etwa [6]), wird diese untere Grenze fiir ein ¢ € C(p) angenommen.
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dem Schnittort C(p) von p den gleichen Abstand n/l/max K wvon p haben.

Dann besteht C(p) aus nur einem einzigen Punkt, und dieser Punkt ist kon-

jugiert zu p bezilglich eines jeden von p ausgehenden geodditischen Strahls.
Wenn ndmlich p ein Punkt auf M ist, derart, daB alle Punkte von M einen

Abstand < #/}V/ max K von p haben, dann haben,da d(p, C(p)) > =n/V max K,

die Punkte von C(p) genau den Abstand n/l/max K von p. Aus Lemma 2
folgt, daB dann C(p) nur einen einzigen Punkt, ¢, enthilt, und ¢ ist kon-
jugiert zu p beziiglich eines jeden von p auslaufenden Strahls. Auf jedem von
p auslaufenden geodétischen Strahl erscheint also der erste konjugierte Punkt

im Abstand =/} max K, und daher ist lings eines jeden solchen Strahls, bis
dieser ¢ trifft, die Krimmung K = max K = const., das heiflt, M ist eine
Sphire.

3. Das Lemma 2 folgt nun fiir analytische Eiflichen M sofort aus den Unter-
suchungen von PoIincarg [9] und MyERs [7] iiber die Struktur des Schnittorts
fiir solche Fldchen. Danach gilt ndmlich, wenn der Schnittort C(p) eines
Punktes p mehr als einen Punkt enthilt, daB} es auf C(p) sogenannte End-
punkte gibt, das sind Punkte auf C(p), die nur genau ein minimales Verbin-
dungssegment mit p haben; wenn ¢ ein solcher Endpunkt auf C(p) ist, dann
hat ¢ kleineren Abstand von p als alle geniigend zu ¢ benachbarten Punkte
q' # q auf C(p), das heiBlt, es gibt auf C(p) Punkte, die verschiedenen Ab-
stand von p haben.

Fiir nichtanalytische Eiflichen dagegen, wie wir sie betrachten, scheinen
Ergebnisse von der vorstehenden Art nicht zur Verfiigung zu stehen. Der
unten gefiihrte Beweis von Lemma 2 erfordert daher eingehendere Uber-
legungen. In jedem Fall kann unser Beweis von Lemma 2 fiir sich in Anspruch
nehmen, dal in ihm nicht auf anderweitig vertffentlichte, tieferliegende Er-
gebnisse verwiesen zu werden braucht.

4. Das Gegenstiick zu Theorem 2 wurde kiirzlich bewiesen:

Theorem 2* (Toronogow [11]). Sei p ein Punkt auf einer Eifliche M.
Dann ist der Abstand d(p, C(p)) zwischen p und seinem Schnittort C(p)
= :nr/l/min K, wo min K das Minimum der Qavssschen Kriimmung K auf M

bezeichnet. Insbesondere gilt fitr den inneren Durchmesser d(M) von M die Be-
ziehung

d(M) < n/Vmin K . (2%)

Dann und nur dann, wenn M eine Sphdire ist, gilt d(M) = =/} min K.

Bei seinem Beweis verwendet ToroNogow wiederum Methoden von A. D.
Arexanprow. Die Ungleichung (2*) geht schon auf BoNNET [3] zuriick, vgl.
BrascekE [1], § 100. Die im zweiten Teil enthaltene Kennzeichnung der
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Sphire diirfte jedoch bisher nicht bekannt gewesen sein. Fiir analytische Ei-
flichen ergibt sie sich iibrigens wiederum leicht aus den Ergebnissen von
My=ERs [7] iiber die Struktur des Schnittorts fiir solche Fliachen: Seien niamlich

p und g zwei Punkte auf M mit dem Abstand z/} min K. Dann liegt ¢ auf
dem Schnittort C(p) von p, und ¢ ist konjugiert zu p beziiglich eines jeden
von p nach ¢ laufenden minimalen Segments. Wenn nun C(p) nur aus dem
Punkt q besteht, dann mufl M die Sphire der Krimmung min K sein.
Wenn C(p) dagegen mehr als einen einzigen Punkt enthélt, so bemerkt
My=Ers, daB ein konjugierter Punkt auf C(p) stets auf einer zugewandten
Spitze des Orts der konjugierten Punkte von p gelegen sein mull (das folgt
sogleich aus dem Enveloppentheorem, vgl. BLASCHKE [1], § 99, der hier einen
Gedanken von DArBOUX wiedergibt). Nun kann aber der Punkt ¢ nicht auf
einer solchen zugewandten Spitze des konjugierten Orts von p gelegen sein,

da n/]/min K die maximale Linge ist, die ein Segment mit konjugierten
Endpunkten auf M haben kann.

1.6. Neben dem inneren Durchmesser d(M) einer Eifliche M betrachten
wir noch den duferen Durchmesser von M, D(M). Darunter verstehen wir
das Maximum des Abstandes zweier Punkte von M, gemessen im Raum.
D (M) ist dasselbe wie der Durchmesser des durch M bestimmten konvexen
Korpers, vgl. BONNESEN-FENCHEL [2], § 7.

Offenbar ist D(M) < d(M), und damit ist nach dem Satz von BONNET

(vgl. Theorem 2%*) n/l/min K eine obere Schranke fiir D(M). =/V min K
ist sogar eine obere Grenze fiir D (M), wie die an den Spitzen abgerundeten
spindelformigen Drehflichen konstanter Kriimmung zeigen, vgl. BLASCHKE
[1], § 100.

Wir erginzen dieses klassische Ergebnis durch die Angabe einer nur von
max K abhingenden unteren Schranke fiir D (M) und erhalten dabei eine
weitere Kennzeichnung der Sphéren unter den Eiflichen:

Theorem 3. Zwischen dem duPeren Durchmesser D (M) einer Eifliche M
und den Extremwerten der Krismmung K auf M bestehen die Beziehungen

2/Vmax K < D(M) < #/V min K . (3)

Hier kann die rechts stehende Zahl nicht verkleinert werden, wihrend links dann
und nur dann das Gleichheitszeichen steht, wenn M eine Sphdre ist.

Bemerkung. Wir beweisen die links stehende Ungleichung in (3) unter Ver-

wendung der in Theorem 2 bewiesenen Ungleichung az/l/ma.x K <d(M), in-
dem wir durch zwei Punkte p, ¢ auf M mit maximalem inneren Abstand
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d(p, q) = d(M) einen ebenen Schnitt legen und auf die Linge L(C) und den
duBeren Durchmesser D(C) der so entstehenden ebenen Schuittkurve C' die
Beziehung L(C) < xD(C) anwenden (vgl. BONNESEN-FENCHEL [2] § 10).

Einen anderen Beweis der Ungleichung n/l/max K < D(M) verdanke ich
einer Mitteilung von C. POMMERENKE: Unter Verwendung des (GAussschen
Integralsatzes und der Beziehung F (M) < n(D(M))? zwischen der Ober-
fliche F'(M) und dem Durchmesser D (M) einer Eifliche M (vgl. BONNESEN-
FENcCHEL [2], § 10) ergibt sich

4n = [Kdo < F(M)max K < n(D(M))>max K
M

und damit die Behauptung.

2. Beweis von Lemma 1

2.1. Wir betrachten in diesem Abschnitt eine Eifliche M der Klasse C3,
auf der eine geschlossene Geoditische G der Linge L = L(G) gegeben ist
mit der Eigenschaft: Je zwei Punkte auf M mit einem Abstand < L/2 be-
sitzen genau ein minimales Verbindungssegment.

2.2. Satz 2.1. Set G eine (beliebige) geschlossene Geoddtische auf einer Ei-
fliche M. Dann sind alle zu G geniigend benachbarten Parallelkurven H von
G kirzer als G.

Beweis. Nach Wahl eines Anfangspunktes p auf G und einer an G tan-
gentialen Anfangsrichtung in p fiihren wir lings & geodétische Parallelkoordi-
naten ein, vgl. BLASCHKE [1], § 73. In diesem Koordinatensystem wird G durch
u=0, 0<v <L (L bezeichnet die Linge von @) beschrieben, und das
Linienelement hat die Gestalt ds? = du® + G(u, v)dv? mit G(0,v) =1,
G,0,v) =0, @,,(0,v)=— K(0,v). (K(0,v) ist die Kriimmung in dem
Punkt mit den Koordinaten (0, v)).

Die Parallelkurven H(¢) zu G im Abstand |e| sind durch » = e,
0 <v <L gegeben. Esist H(0) =

L

Fiir die Lange L(e) = L(H (¢)) = j' G(e, v) dv von H (¢) in Abhidngigkeit
von ¢ finden wir: L'(0) =0, L”(O — j' K(0, v)dv < 0, das heilt,
G = H(0) hat strikt groBere Linge als jede Parallelkurve H(e), ¢ #0.

2.3. Zu jeder zu @ benachbarten Parallelkurve H (H sei stets verschieden
von @) bezeichne p(H) denjenigen Punkt, in welchem die zu G in p ortho-
gonale Geoditische die Kurve H trifft. Offenbar konvergiert p(H) gegen p,
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wenn H gegen @ konvergiert. Wenn wir H noch in Richtung wachsender
v-Werte orientieren, konnen wir H als geschlossene Kurve mit Anfangs- und
Endpunkt p(H) auffassen.

Die geschlossene Geodétische G zerlegt die Eifliche M in zwei Teile; wir
nennen sie die beiden Hdlften voun M (beziiglich @).

Da eine Parallelkurve H zu @ kiirzer ist als @, also alle Punkte von H einen
Abstand < L(G)/2 von p(H) haben, besitzt, nach der in 2.1 gemachten
Voraussetzung, jeder Punkt » von H — p(H) ein eindeutig bestimmtes mini-
males Verbindungssegment p(H)r mit p(H). Jedes dieser Segmente p(H)r
bildet im Punkt p (H) mit der Anfangsrichtung von H einen gewissen Winkel ®)
Wir behaupten dazu:

Satz 2.2. Sei « ein Winkel zwischen 0 und n. Auf jeder in etner fest gewdihl-
ten Hilfte von M gelegenen Parallelkurve H gibt es einen Punkt r(H, o) derart,
daf das minimale Verbindungssegment p(H)r(H,o) mit der Kurve H im
Punkt p(H) den Winkel o bildet. Das Segment p(H)r(H, «) verliuft dabei
ganz wn der gewdhlten Hidlfte von M .

Beweis. Da H kiirzer ist als G, trifft H den Schnittort C (p(H)) des Punk-
tes p(H) nicht. H gehort also ganz demjenigen Gebiet auf der Eifliche an,
das sich durch die geodétischen Polarkoordinaten mit Zentrum p(H) und
mit der Anfangsrichtung von H als 0-Richtung beschreiben 1i8t. Der Winkel
zwischen der Anfangsrichtung von p(H)r, wo r ein Punkt von H — p(H)
ist, und der Anfangsrichtung von H ist also nichts anderes als die Winkel-
koordinate des Punktes r und daher eine stetige Funktion von r. Da
H — p(H) einfach zusammenhingend ist, fiillen die Werte dieser stetigen
Funktion ein Intervall in [0, ] aus. Da aber Punkte r auf H — p(H) vor-
kommen, deren Winkelkoordinate beliebig nahe an 0 oder an z gelegen ist,
gibt es fiir jedes a zwischen 0 und = einen Punkt r = r(H, «) mit der in
dem Satz genannten Eigenschaft.

Da schlieBlich Anfangs- und Endpunkt des Segments p(H)r(H, ) der
gewihlten Hilfte von M angehoéren, und da das Segment kiirzer als L/2 ist,
gehort es ganz dieser Hilfte an.

Satz 2.3. Sei o esn Winkel zwischen 0 und n. Fitr jede auf einer fest gewdhl-
ten Hilfte von @ gelegene Parallelkurve H # @ sei r(H, «) ein Punkt auf H
80, daf das minimale Segment p(H)r(H, a) mit der Kurve H in p(H) den
Winkel o bildet.

Behauptung. Wenn H gegen G konvergiert, so konvergiert p(H) gegen den
Punkt p auf G und r(H, o) konvergiert gegen den p auf Q gegenilberliegenden

§) Wir betrachten, falls nicht ausdriicklich etwas anderes gesagt wird, stets nichtorientierte
Winkel, so da3 nur Winkelwerte von 0 bis 7z vorkommen.
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Punkt q. Das minimale Segment p(H)r(H, o) konvergiert folglich gegen ein
auf der fest gewdhlten Halfte von M gelegenes minimales Verbindungssegment
von p nach q, das in p mat der Geodditischen G den Winkel « bildet.

Beweis. Offenbar ist lim p(H) = p fiir lim H = @. Wenn wir noch zei-
gen, dafl limr(H, o) = ¢ fiir lim H = @, dann ergeben sich die iibrigen
Behauptungen des Satzes sofort: Denn der Grenzwert ®) einer Folge minimaler
geoditischer Segmente ist offenbar wiederum ein minimales geoditisches Seg-
ment, und da die Segmente p(H)r(H, o) alle in einer fest gewihlten Hilfte
von M verlaufen und mit der Kurve H im Punkt p(H) den Winkel « bilden,
so gilt dasselbe fiir die Grenzlage.

Da M kompakt ist, besitzen die Punkte r(H,«) fir lim H = G jeden-
falls einen Haufungspunkt r; r ist offenbar auf @ gelegen. Wir haben zu zei-
gen, dafl r = q ist.

Zunichst ist leicht zu sehen, daB3 » nicht ein von p und ¢ verschiedener
Punkt auf G sein kann. Denn dann wiirden die minimalen Segmente
p(H)r(H, o) gegen ein minimales Segment von p nach r konvergieren, das
mit @ in p den Winkel «, 0 < o < 7, einschlieBt. Da r # ¢, also 7 nicht zu
C(p) gehort, kann es aber nur das eine, zu G gehdrende minimale Verbin-
dungssegment von p nach r geben — ein Widerspruch.

Es bleibt also noch die Moglichkeit auszuschlieBen, dal der Punkt p als
ein Hdufungspunkt der Punkte r(H, «) fiir lim H = @ auftritt. Dies wiirde
bedeuten, dafl es eine Folge von gegen G konvergierenden Parallelkurven H,
(t=1,2,...) zu @ gibt derart, daB die Folge r, = r(H,, «) gegen p kon-
vergiert.

Wir betrachten die folgenden beiden Verbindungskurven von p, = p(H,)
nach r, =r(H;, a): Einmal das minimale Segment G;= p,;r;, und zum
anderen den kiirzeren Bogen K, der beiden von p,; nach r, laufenden Bogen
von H, (da lim r, = p, ist, jedenfalls fiir geniigend grofle ¢, K; durch unsere
Forderung eindeutig bestimmt).

Die Kurven @, und K, sind ganz in dem geoditischen Polarkoordinaten-
system mit p, als Zentrum gelegen. Diese Polarkoordinaten vermitteln einen
Diffeomorphismus g einer Umgebung des Punktes p, auf eine Umgebung des
Ursprungs o der Tangentialebene 7', in p,. Hierbei ist das Bild p@, in T,
des geodétischen Segments @; die Verbindungsstrecke von yp, = o0 nach
yr,, wihrend das Bild K, von K, eine zweite Verbindungskurve von
vp; = o nach yr, ist, die sich beliebig wenig von dem mit der gleichen An-
fangsrichtung von 0 ausgehenden geradlinigen Segment der gleichen Linge
unterscheidet, sobald nur ¢ geniigend groB gewéhlt ist. Denn die Kurve K,

%) Vgl. FuBinote 3.
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unterscheidet sich, als ein Bogen der gegen die Geoditische @ konvergieren-
den Kurve H,, fiir geniigend groBle ¢ beliebig wenig von einem mit der
gleichen Anfangsrichtung von p, ausgehenden Segment der gleichen Linge,
und ein solches Segment wird ja unter y in ein geradliniges Segment des
Tangentialraumes 7', abgebildet.

Nun bilden aber die Aunfangsrichtungen der beiden Verbindungskurven
p@; und pK, von o = yp; nach yr;, im Punkt o den fest gewiahlten Winkel
x, 0 <a<m. Zwei mit einem solchen Winkel von einem Punkt o einer
euklidischen Ebene ausgehende Kurven, von denen die eine geradlinig ist
und die andere der Geradlinigkeit in einem beliebig vorgebbaren Mafle nahe
kommt, kénnen sich aber nicht in einem Punkte wiedertreffen, der beliebig
nahe an o gelegen ist.

Damit ist der Satz 2.3 bewiesen.

2.4. Aus den vorangehenden Sitzen folgt nun sofort das Lemma 1. Sei
ndmlich, unter den in 2.1 angegebenen Voraussetzungen, ein Punkt p auf G
und in diesem Punkt eine Anfangsrichtung fiir G gewihlt. Von den beiden
durch @ bestimmten Hélften von M wihlen wir eine aus. « sei ein beliebiger
Winkel zwischen 0 und =z. Wie in 2.2 wihlen wir auf den in der gewihlten
Hilfte gelegenen Parallelkurven H zu G die Punkte p(H). Nach Satz 2.2 gibt
es auf jedem dieser H einen Punkt r(H, «) derart, dafl das minimale Seg-
ment p(H)r(H, o) mit der Kurve H im Punkt p(H) den Winkel o bildet.
Nach Satz 2.3 konvergieren diese Segmente fiir lim H = G gegen ein mini-
males, in der gewihlten Hilfte gelegenes Verbindungssegment von p mit ¢,
das mit ¢ in p den Winkel « bildet.

Das heilt: Ein von p mit dem Winkel « in die gewdhlte Hilfte von M aus-
laufender geodéatischer Strahl trifft G in dem p auf G gegeniiberliegenden
Punkt ¢ wieder, und zwar nach Durchlaufen der Strecke L/2, L = L(G) die
Lénge von @. Der Schnittort C(p) besteht also nur aus dem Punkt ¢, ¢ ist
konjugiert zu p beziiglich eines jeden von p ausgehenden geodétischen Strahls.

3. Beweis von Theorem 1

3.1. In diesem Abschnitt betrachten wir Eiflichen der Klasse C3.

Satz 3.1. Set p ein Punkt auf einer Hifliche M und q ein Punkt auf dem
Schnittort C(p) von p mit minimalem Abstand von p. Wenn

d(p,q) = d(p,C(p)) <=n/Vmax K 7),

dann gibt es genau zwei minimale Verbindungssegmente von p nach q, und

7) Vgl. FuBnote 4.
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diese treffen sich in g mit dem Winkel 7. q st also der Mittelpunkt eines von p
ausgehenden wund dorthin zuriickkehrenden geodditischen Segments der Liinge

2d(p, q) = 2d(p, C(p)) < 275/Vmax K 8).

Beweis. Sei G, ein minimales Verbindungssegment von p nach ¢. Da G,

nach Voraussetzung kiirzer ist als x/V max K, ist ¢ nicht konjugiert zu p
beziiglich ;. Es gibt also, nach den in 1.3 hergeleiteten Grundeigenschaften
des Schnittorts, ein zweites, von G, verschiedenes, minimales Verbindungs-
segment H, von p nach ¢. Wir behaupten, dafl G, und H, im gemeinsamen
Endpunkt ¢ den Winkel z miteinander bilden.

Zum Beweis betrachten wir die von p ausgehenden geoditischen Segmente

der Linge d(p,q)< n/Vmax K. Diese Segmente enthalten keinen kon-
jugierten Punkt zu p, ihre Endpunkte bilden folglich eine Kurve K auf der
Eifliche, die in jedem ihrer Endpunkte eine zur Endrichtung des Segments
orthogonale Tangente besitzt. Insbesondere gehéren G, und H, zu diesen
Segmenten, und ihr gemeinsamer Endpunkt ist ein mehrfacher Punkt der
Kurve K.

Angenommen, G, und H, bilden mit ihren Endrichtungen im Punkte ¢
einen Winkel < z. Dann sind die dazu senkrechten Tangenten an K im
Punkte ¢ voneinander verschieden, und daraus folgt, daB es Segmente @ und
H] der Lange d(p, q) gibt, die in der Nihe von G und H verlaufen derart,
daB sie einen inneren, in der Ndhe von ¢ gelegenen Punkt gemeinsam haben.
Das bedeutet aber, daB @] und H, den Schnittort C(p) schon vor Erreichen
ihres Endpunktes treffen, also in einem Abstand < d(p,q) =d(p, C(p)) -
ein Widerspruch.

Also treffen sich G, und H, in ¢ mit dem Winkel z, und hieraus folgt dann
auch, daf es nicht mehr als zwei minimale Segmente von p nach ¢ geben kann.

3.2. Satz 3.2. Wenn es auf einer Hifliche M ein geschlossenes geoditisches
Segment der Linge < 2x/V max K gibt, dann gibt es auch eine geschlossene

Geoddtische G der Linge L(G)< 2xn/V max K derart, daf jedes andere ge-
schlossene geoditische Segment auf M die Linge > L(G) hat?®).

Beweis. Wir betrachten die Menge der geschlossenen geoditischen Seg-

mente der Linge < 2x/V max K auf M. Nach Voraussetzung ist diese Menge
nicht leer und es ist leicht zu sehen, da sie kompakt ist im Sinne der iiblichen
Metrik 19). Die Lingenfunktion ist stetig auf dieser Menge, sie nimmt also einen

8) Satz und Beweis gelten auch fiir beliebige kompakte Flachen, vgl. (5] und [6].
%) Vgl. FuBnote 8.
10) Vgl. FuBnote 3.
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kleinsten Wert an. Sei G ein geschlossenes geoditisches Segment kleinster

Linge L(Q®@). Nach Voraussetzung ist L(G) < 2xn/V/ max K. Wir behaupten,
daBl G eine geschlossene Geoditische ist.

Dazu betrachten wir den Anfangs- und Endpunkt p von @. Sei ¢ der Mit-
telpunkt von G. Spéitestens beim Punkt ¢ trifft also der von p in der Anfangs-
richtung von @ ausgehende geoditische Strahl den Schnittort C(p) von p,
das heilt, der Abstand d(p, C(p)) zwischen p und C(p) ist < L(@)/2.

Angenommen, es wire d(p, C(p)) < L(G@)/2. Dann wiirde aus Satz
3.1 die Existenz eines geschlossenen geoditischen Segments der Linge
2d(p, C(p)) < L(@) folgen — im Widerspruch zur Wahl von G. Also ist
d(p, C(p)) = L(@)/2, q liegt auf C(p) und der von p nach q laufende erste
Teil und der von ¢ nach p laufende zweite Teil von @G liefern zwei minimale
Segmente von p nach q.

Andererseits liegt aber p auf dem Schnittort C(q) von ¢, da wir ja gerade
zwel minimale Verbindungssegmente von ¢ nach p nachgewiesen haben. Also

ist d(g,C(q) <d(p,q) <n/VmaxK. Wire d(g,C(q)) <d(p,q), so

folgte nach Satz 3.1 die Existenz eines geschlossenen Segments der Linge
2d(q,C () < 2d(p,q) = L(@), im Widerspruch zur Wahl von G. Also

ist d(¢g,C(q)) =d(p,q) <=n/Vmax K, das heilt, p ist ein auf C(q) gelege-
ner Punkt mit kleinstem Abstand von ¢. Aus Satz 3.1 folgt dann aber, daf3
die beiden von ¢ nach p laufenden minimalen Segmente sich in p mit dem
Winkel z treffen, das heiflt, G ist eine geschlossene Geoditische.

Damit ist Satz 3.2 bewiesen.

Satz 3.3. Wenn auf einer Eifliche M eine geschlossene Geoditische G mini-
maler Linge L(G) existiert (das heift: Jede andere geschlossene Geoddtische
hat mindestens die Linge L(Q)), und wenn L(Q) < 2x/Vmax K, dann ist
der Abstand zwischen einem Punkt von M und seinem Schnittort stets > L(QG)/2.

Beweis. Wenn p’ ein Punkt auf @ ist, so trifft G den Schnittort C(p’)
von p' spitestens in dem p’ gegeniiberliegenden Punkt ¢’ auf @, das heif3t,
eine fiir alle Punkte p von M giiltige untere Schranke fiir den Abstand
d(p,C(p)) ist <L(G)/2.

Angenommen, es gibt einen Punkt p auf M, fiir den d(p, C(p)) < L(Q)/2
< zn/V max K ist. Dann folgt aus Satz 3.1 die Existenz eines geschlossenen

geoditischen Segments der Linge 2d(p, C(p)) < L(@) < Zn/l/max K, und
aus Satz 3.2 folgt die Existenz einer geschlossenen Geoditischen der Linge
< 2d(p, C(p)) < L(Q@) - ein Widerspruch zur Wahl von G.

3.3. Wir konnen jetzt die Ungleichung (1) in Theorem 1 beweisen. Ange-
nommen, es gibt ein geschlossenes geoditisches Segment einer Linge
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< 2n/V max K. Dann gibt es nach Satz 3.2 eine geschlossene Geodatische

G minimaler Linge L ()< 2x/V max K, und nach Satz 3.3 ist L(G)/2
eine untere Grenze fiir den Abstand d(p, C(p)), p ein beliebiger Punkt
auf M.

Die geschlossene Geodétische G erfiillt also die Voraussetzungen von
Lemma 1, und daher sind zwei einander auf G gegeniiberliegende Punkte p
und ¢ konjugiert zueinander beziiglich eines von p nach ¢ laufenden halben

Bogens von @. Ein solcher Bogen hat aber die Linge L(G)/2 < :n/l/ma,x K
und kann folglich kein Paar von konjugierten Punkten enthalten — ein Wider-
spruch.

3.4. Mit den bisherigen Ergebnissen sind wir nun in der Lage, das Gleich-
heitszeichen in der Beziehung (1) zu diskutieren.

Falls M eine Sphire ist, so steht in (1) offenbar das Gleichheitszeichen.
Falls umgekehrt auf einer Eifliche M eine geschlossene Geodétische G der

Lénge 2n/l/max K gegeben ist, so folgt aus dem soeben bewiesenen ersten
Teil von Theorem 1, daB3 jede andere geschlossene Geoditische auf M min-
destens die gleiche Linge hat wie G. Auf Grund von Satz 3.3 sind also die
Voraussetzungen von Lemma 1 erfiillt.

Wenn also p ein Punkt auf @ ist und ¢ der gegeniiberliegende Punkt im

Abstand #/} max K, dann treffen sich alle von p ausgehenden geoditischen

Strahlen nach Durchlaufen der Strecke s/} max K im Punkte g wieder.
q ist konjugiert zu p beziiglich eines jeden dieser von p nach q laufenden

Segmente der Linge n/} max K. Daraus folgt, da die Kriimmung K lidngs
eines jeden dieser Segmente nicht Werte kleiner als max K annehmen kann,
das heiflt, K = max K = const. auf ganz M, M ist eine Sphire.

Wir zeigen jetzt noch: Ein geschlossenes geoddtisches Segment G der Linge
2x /Vmax K st eine geschlossene Geoddtische. Angenommen, Anfangs- und
Endrichtung von G bilden in p einen Winkel < z. Dann betrachten wir einen
Punkt 9’ # p auf @ und den p’ auf G gegeniiberliegenden Punkt ¢'. Von p’
nach ¢’ laufen ein geoditisches Segment H und ein bei p gebrochenes geodati-
sches Segment H', beide von der Linge xn/V max K. Da H' nicht minimale
Verbindung seiner Endpunkte ist, ist auch H nicht minimale Verbindung
seiner Endpunkte, das heilt, der Abstand d(p', C(p’)) von p’' zu seinem

Schnittort C (p') ist <z /) max K . Nach Satz 3.1 folgt daraus die Existenz eines

geschlossenen geoditischen Segments der Léange 2d (p’, C(p')) <2=/ Vmax K,
im Widerspruch zu der Beziehung (1).
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4. Beweis von Lemma 2 und Theorem 2

4.1. Der erste Teil von Theorem 2, und insbesondere die Ungleichung (2),
ergibt sich unmittelbar aus den vorangegangenen Uberlegungen. Denn an-
genommen, es gibe einen Punkt p auf M derart, daBl alle Punkte ¢ auf M
einen Abstand < z/}V max K von p besitzen. Dann ist also insbesondere der
Abstand d(p, C(p)) zwischen p und seinem Schnittort C(p) kleiner als

n/V max K, und das fiihrt, wie wir am Schlu des letzten Absatzes gesehen
haben, auf einen Widerspruch.

4.2. Es bleibt also der zweite Teil von Theorem 2 zu beweisen und ins-
besondere der Fall zu diskutieren, dal in (2) das Gleichheitszeichen steht.
Wir nehmen also jetzt an:

Auf der Eifliche M gibt es einen Punkt p derart, daf alle Punkte von M

einen Abstand < n/V 'max K von p besitzen.

Satz 4.1. Unter der angegebenen Voraussetzung trifft jeder von p ausgehende

geoddtische Strahl den Schnittort C (p) nach Durchlaufen der Strecke n/ Vmax K.
M erfallt also die Voraussetzungen von Lemma 2.

Beweis. Jeder Punkt ¢ auf C(p) hat mindestens den Abstand n/l/max K

von p, andernfalls wire d(p,C(p)) <n/Vmax K, und das fiihrt, wie wir
soeben in 4.1 sahen, auf einen Widerspruch. Da nach Voraussetzung kein

Punkt von M einen Abstand > n/} max K von p hat, folgt die Behauptung.

Satz 4.2. Der Endpunkt eines von p ausgehenden Segments der Linge

a/V max K ist dann und nur dann konjugiert zu p (bezilglich dieses Segments),
wenn fir alle Punkte des Segments K = max K = const. ist.

Beweis. Das folgt unmittelbar aus dem schon zitierten Vergleichsatz von
STURM, vgl. BLASCHKE [1], § 100.

Hiermit kénnen wir nun, unter Voraussetzung von Lemma 2, zeigen, dafl
eine Eifliche mit der eingangs erwihnten Eigenschaft eine Sphére ist. Denn
wegen Satz 4.1 erfiilllt M die Voraussetzung von Lemma 2, C(p) besteht
also aus nur einem einzigen Punkt, ¢. Auf jedem von p ausgehenden geo-
ditischen Strahl treffen wir daher nach Durchlaufen der Strecke =/V/ max K
auf einen konjugierten Punkt (ndmlich ¢), und nach Satz 4.2 ist daher auf M
K = max K = const.

4.3. Der Beweis von Theorem 2 ist damit auf den Beweis von Lemma 2
zuriickgefiithrt. Wir nehmen daher fiir den Rest des Abschnitts an: p st ein
Punkt auf einer Eifliche M derart, daf3 alle Punkte von C(p) den gleichen
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Abstand =/V max K wvon p besitzen. Wir wollen zeigen, dafl C(p) dann nur
einen einzigen Punkt enthalt.

Zunichst vereinbaren wir folgende Abkiirzungen in der Sprechweise: Ein

von p ausgehendes Segment der Liange =/} max K hei3t konjugiert oder
nichtkonjugiert, je nachdem der Endpunkt dieses Segments konjugiert ist zu
p (beziiglich dieses Segments) oder nicht. Eine Richtung in p heiBlt konjugiert
oder nichtkonjugiert, je nachdem das in dieser Richtung von p ausgehende

Segment der Linge =/} max K konjugiert ist oder nicht.

Satz 4.3. Die konjugierten Richtungen bilden eimen abgeschlossenen Teil des
Richtungskreises R in p.

Beweis. Die Menge derjenigen Punkte auf der Eifliche M, fiir die die
Krimmung K < max K ist, bilden einen offenen Teil von M. Der Endpunkt

eines von p ausgehenden Segments G der Linge n/l/max K ist genau dann
nicht konjugiert zu p, wenn @ einen Punkt mit diesem offenen Teil gemein-
sam hat, vgl. Satz 4.2. Dann enthilt aber offenbar auch jedes Segment der

Linge =/l max K, dessen Anfangsrichtung geniigend benachbart ist zur

Anfangsrichtung von G, einen Punkt, in dem die Kriimmung K < max K
ist.

4.4. Wir setzen nun die Diskussion einer Eifliche M mit den in 4.3 an-
gegebenen Eigenschaften fort, indem wir folgende drei Fiélle betrachten, mit
denen offenbar alle Moglichkeiten ausgeschdpft werden.

A. Alle von p ausgehenden Segmente sind konjugiert.

B. Unter den von p ausgehenden Segmenten der Linge n/l/ma.x K gibt es

zwei verschiedene, G und H, die nichtkonjugiert sind und einen gemeinsamen
Endpunkt haben.

C. Es gilt weder A moch B.

Wir zeigen in den folgenden drei Sitzen, daB im Fall A M eine Sphiire ist,
also insbesondere das Lemma 2 gilt, withrend die Fille B und € auf einen Wider-
spruch fiithren.

Satz 4.4. Unter den in 4.3 angegebenen Voraussetzungen folgt aus A, daf
die Eifliche eine Sphdre ist.

Beweis. Nach Satz 4.2 ist in diesem Falle K = max K = const. lings

eines jeden von p ausgehenden Segments, also K = const. auf M, also M
eine Sphiire.
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Satz 4.6. Unter den in 4.3 angegebenen Voraussetzungen folgt aus B ein
Widerspruch.

Beweis. Zunichst behaupten wir, daB die Endrichtungen der beiden nicht-
konjugierten Segmente @ und H in ihrem gemeinsamen Endpunkt den Win-
kel = miteinander bilden. Denn sonst wiirde sich, ebenso wie beim Beweis von
Satz 3.1, die Existenz eines Punktes auf C(p) ergeben, der weniger als
a/V max K von p entfernt ist, im Widerspruch zu dem in 4.1 bewiesenen
ersten Teil von Theorem 2.

Da aber andererseits p auf dem Schnittort C(g) von ¢ gelegen ist, zeigt die-
selbe Argumentation, dafl auch die Anfangsrichtungen von @ und H in p den
Winkel # miteinander bilden. Es ergibt sich also, da3 G und H zusammen

eine geschlossene Geoditische der Linge 2n/l/max K ausmachen, und hier-
aus folgt nach Theorem 1, daB3 die Eifliche M eine Sphire ist. Dann sind
aber G und H konjugierte Segmente — ein Widerspruch.

Satz 4.6. Unter den in 4.3 angegebenen Voraussetzungen folgt aus C ein
Widerspruch.

Beweis. Wir fixieren fiir den Richtungskreis R im Punkte p eine Orien-
tierung. Dann bestimmt jedes geordnete Paar ¢, v von Richtungen in p ein
Intervall [o, 7], bestehend aus ¢, v und allen zwischen ¢ und z gelegenen
Richtungen. Die Linge dieses Intervalls [o, 7], auch Abstand von ¢ und =
genannt!!), ist nichts anderes als das Bogenmaf3 des von ¢ und 7 gebildeten
orientierten Winkels.

Da A ausgeschlossen ist, geht von p ein nichtkonjugiertes Segment G' der

Lange az/l/ma_,x K aus. Sei ¢ der Endpunkt von G. Nach Voraussetzung ge-
hort ¢ zu C(p). Da G nichtkonjugiert ist, gibt es ein zweites minimales Seg-
ment der Linge s/} max K von p nach ¢, und da B ausgeschlossen ist, ist
dieses Segment konjugiert.

Die Menge der Anfangsrichtungen derjenigen von p ausgehenden Segmente
der Linge n/V max K, die ¢ als Endpunkt besitzen und fiir die ¢ konjugier-
ter Punkt zu p ist, diese Menge ist also nicht leer, und auBlerdem ist sie offen-
bar abgeschlossen im Richtungskreis R in p. Also ist durch folgende Eigen-

schaften ein von p ausgehendes Segment H der Linge n/l/max K wohl-
bestimmt: H ist konjugiert, hat ¢ als Endpunkt und das von der Anfangs-
richtung o von G und der Anfangsrichtung = von H gebildete Intervall [g, 7]
hat minimale Lénge.

Die so bestimmten Segmente G und H zerlegen die Eifliche M in zwei Teile.

11) Dieser Abstand hidngt also von der Reihenfolge der Richtungen ab!
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Da zwei verschiedene, von p ausgehende Segmente der Linge n/l/max K,
aufler p, hochstens ihren Endpunkt gemeinsam haben konnen, wird einer
dieser beiden Teile vollstéindig iiberdeckt von denjenigen von p ausgehenden

Segmenten der Linge x/V max K, deren Anfangsrichtung zu Intervall [o, 7]
gehort. Wir bezeichnen diesen Teil von M, der iibrigens der abgeschlossenen
Halbsphére homeomorph ist, mit N.

Da die nichtkonjugierten Richtungen in p einen offenen Teil des Richtungs-
kreises R ausmachen, ist die nichtkonjugierte Richtung ¢ in einem offenen
Intervall von nichtkonjugierten Richtungen enthalten Der Durchschnitt die-
ses Intervalls mit dem Intervall I = |g, 7] ist ein in I offenes Intervall J
der Form [o, o[. Da B ausgeschlossen ist, haben nichtkonjugierte Segmente
mit verschiedenen Anfangsrichtungen in J auch verschiedene Endpunkte.

Jedem Segment G’ der Linge =/ V'max K, dessen Anfangsrichtung ¢’ zum
Intervall J gehort, ist durch folgende Bedingungen eindeutig ein konjugiertes
Segment H' zugeordnet: H' ist konjugiert, hat den Endpunkt ¢’ von @' als
Endpunkt und das von der Anfangsrichtung ¢’ von G’ und der Anfangsrich-
tung ¢’ von H' gebildete Intervall [¢', '] hat minimale Lénge.

Die Existenz und Eindeutigkeit von H' ergeben sich dabei ebenso wie oben,
wo wir durch die gleichen Bedingungen dem Segment @ das Segment H zu-
geordnet hatten. Insbesondere folgt also aus G' = @, dal H' = H ist.

Nun gehort die Anfangsrichtung ' des dem Segment G’ zugeordneten Seg-
ments H' dem Intervall [o, ] an, und zwar sogar dem Inneren des Intervalls,
wenn G’ £ G ist. Denn wenn @ # G ist, so gehort der Endpunkt ¢’ von
@’ zum Inneren des durch G und H begrenzten Teils N der Eifliche M ; H’
hat also seinen Endpunkt im Inneren von N und folglich seine Anfangsrich-
tung im Inneren von [g, 7].

Ein Segment G’ der betrachteten Art und das ihm zugeordnete Segment
H' begrenzen, dhnlich wie die Segmente G und H, einen der abgeschlossenen
Halbsphire homeomorphen Teil N’, der ganz iiberdeckt wird von den von p

ausgehenden Segmenten der Lénge n/l/max K mit der Anfangsrichtung im
Intervall [o¢', 7']. Offenbar ist N’ ganz in N enthalten.

Indem wir jeder in J gelegenen (nichtkonjugierten) Anfangsrichtung o
eines Segments G’ die Anfangsrichtung 7’ des durch G' wie oben bestimmten
Segments H' zuordnen, erhalten wir eine Abbildung ¢ des in I = [g, 7] ge-
legenen Intervalls J = [0, ¢] in das Intervall I —J von I. Diese Abbil-
dung ¢ ist streng monoton fallend im folgenden Sinne: Wenn o¢”" ¢J auf
o’ eJ folgt, so liegt das Bild " = ¢(¢”) vor 7’ = @(0’). Denn nach den
vorstehenden Betrachtungen ist der von dem Segment G mit der Anfangs-
richtung ¢” und dem Segment H” mit der Anfangsrichtung 7" = ¢(0”") be-
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grenzte Teil N” von M ganz in dem von den Segmenten G’ mit der Anfangs-
richtung ¢’ und H' mit der Anfangsrichtung ©' = ¢(¢’) begrenzten Teil N’
enthalten.

Diese Abbildung ¢:J — I — J ist vielleicht nicht stetig, aus der strengen
Monotonie ergibt sich jedoch, daBl es zu jedem ¢ > 0 aufeinander folgende,
verschiedene Richtungen ¢’ und ¢” vom Abstand < ¢ gibt derart, daB auch
die Richtungen 7" = @(¢") und 7’ = @p(¢’) einen Abstand < ¢ haben. o
und o” sowie 1" = ¢(¢”") und 7’ = @(d’) sollen jetzt Richtungen mit dieser
Eigenschaft sein. Da, wegen des Ausschlusses von B, der gemeinsame End-
punkt ¢’ von G’ und H’ verschieden ist von dem gemeinsamen Endpunkt ¢”
von G" und H”, sind 7" und t’ voneinander verschiedene konjugierte Rich-
tungen.

Es konnen jedoch nicht alle zwischen 7 und v’ gelegenen Richtungen kon-
jugiert sein, denn dann wiirde, auf Grund von Satz 4.2, lings aller Segmente

der Linge x/V/max K mit Anfangsrichtung im Intervall [t”, '] die Kriim-
mung K = max K = const. sein, und dies wiederum wiirde zur Folge haben,
daf} alle diese Segmente einen gemeinsamen Endpunkt besitzen, wihrend doch
der Endpunkt ¢” von H” verschieden ist von dem Endpunkt ¢’ von H'.

Es gibt also ein nichtkonjugiertes Segment H* der Linge =/ Vmax K,
dessen Anfangsrichtung t* zum Innern des Iutervalls [7”, 7'] gehort. Der
Endpunkt ¢* von H* ist folglich gleichzeitig Endpunkt eines zweiten, wegen

des Ausschlusses von B, konjugierten Segments G* der Linge n/l/max K.
Da ¢* im Innern des durch G’ und H' begrenzten Gebietes N', aber au3erhalb
des durch G” und H” begrenzten Gebietes N” gelegen ist (denn g* ist, wegen
des Ausschlusses von B, verschieden sowohl vom Endpunkt ¢’ des nichtkon-
jugierten Segments G’ als auch vom Endpunkt ¢” des nichtkonjugierten
Segments @”), liegt die Anfangsrichtung ¢* und G* entweder zwischen ¢’ und
¢" oder zwischen 7" und 7’. Die erste Moglichkeit fillt aus, da o*, als konju-
gierte Richtung, nicht dem aus nichtkonjugierten Richtungen bestehenden
Intervall J angehoren kann. Also liegt o*, ebenso wie t*, im Intervall [7”, 7]
der Linge <.

Wir wollen nun die Zahl ¢ > 0 von vorneherein so klein gewihlt annehmen,

daB zwei von p ausgehende Segmente der Linge n/l/max K, die einen ge-
meinsamen Eudpunkt haben und deren Anfangsrichtungen in einem Intervall
der Linge < ¢ gelegen sind, im Endpunkt sich mit einem Winkel < n/4
treffen. Die Existenz eines solchen ¢ ergibt sich aus der stetigen Abhingigkeit
eines Segments der Lénge n/l/max K von seiner Anfangsrichtung.

Die Segmente G* und H* treffen sich also in dem gemeinsamen Endpunkt
g* mit einem Winkel < z/4. Da mit der Anfangsrichtung 7* von H* auch
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alle geniigend zu 7* benachbarten Richtungen in p nichtkonjugiert sind, bil-
den die Endpunkte der von p mit einer geniigend zu 7* benachbarten An-

fangsrichtung auslaufenden Segmente der Linge n/V/ max K eine durch g*
laufende Kurve, deren Tangente in ¢* senkrecht steht zur Endrichtung von
H*. Da nun aber die Endrichtungen von G@* und H* in ¢* einen Winkel
< w/4 < x/2 bilden, gibt es beliebig nahe an H* gelegene, von p ausgehende

Segmente der Lénge n/l/max K, die das Segment G* schon vor seinem
Endpunkt g¢* treffen — ein Widerspruch zu der Tatsache, dafl zwei verschie-
dene, von p ausgehende Segmente sich friihestens im Abstand /) max K
wieder treffen konnen.

Damit ist Satz 4.6 und damit das Lemma 2 und damit auch Theorem 2
bewiesen.

Anhang. Beweis von Theorem 3

Da die rechte Ungleichung in (3) schon auf BoNNET zuriickgeht, begniigen
wir uns mit dem Beweis der linken Ungleichung in (3).

Dazu wihlen wir auf der Eifliche M zwei Punkte p, ¢ mit maximalem in-
neren Abstand: d(p, q) = d(M). Durch p und ¢ legen wir eine Ebene. Diese
Ebene trifft die Eifliche M in einer konvexen Kurve C'. Die beiden von p
nach ¢ laufenden Bogen der Kurve C haben jeder mindestens die Linge

d(p, q) und wegen Theorem 2 also mindestens die Linge n/ Vmax K. Ferner
ist der dullere Durchmesser D (M) von M mindestens so groB wie der duflere
Durchmesser D(C) von C. Unter Verwendung der Ungleichung L(C)
< aD(C) erhalten wir daher

27/Vmax K < 2d(M) = 2d(p, q) < L(C) < aD(C) < xD(M)

und dies liefert die linke Ungleichung in (3).
Falls die &ulleren Terme der vorstehenden Folge von Ungleichungen iiber-

einstimmen, gilt insbesondere =/} max K = d(M), und daraus folgt nach
Theorem 2, daB M eine Sphére ist.
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