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Tensorielle Abbildungen

von W. Graeub, Zurich

1. Einleitung. Die folgenden Betrachtungen beziehen sich auf Tensoren in
einem festen n-dimensionalen Raume E. Als Koeffizientenbereich soll dabei
ein beliebiger kommutativer Kôrper A der Charakteristik Null zugrunde ge-
legt werden. E\ bezeichne die Gesamtheit aller p-fach kontra- und g-faeh
kovarianten Tensoren liber dem Raume E oder, wie wir kurz sagen werden,
die Gesamtheit der Tensoren der Stufe (p,q). Dièse ist ein linearer Raum
der Dimension np+q. Mittels der wertweisen Multiplikation der Tensoren ist
in je zwei Ràumen E\ und E\ eine bilineare Abbildung in den Raum Epq\r8

definiert. Als eine weitere Opération hat man die Verjungung, die jedem Tensor
der Stufe (p, q) einen Tensor der Stufe (p — 1, q — 1) zuordnet. Dièse wird
gewôhnlich mit Hilfe einer Basis des Raumes E durch Summation ùber ein
Indexpaar definiert, man kann sie jedoch auch ohne Beniitzung einer Basis
einfuhren (vgl. [1], Kap. V, § 4). Es ist der Zweck der vorliegenden Arbeit, zu
zeigen, daB die oben erwàhnten Operationen im wesentlichen die einzigen
« kanonischen » sind. Dabei ist unter einer «kanonischen» Opération eine solche
verstanden, die sich ohne Zuhilfenahme einer Basis des Raumes E und der
Tensorkomponenten erklâren làBt. Um dies zu prâzisieren, benôtigen wir den
Begriff der tensoriellen Abbildung.

2. Tensorielle Abbildungen. Wir betrachten neben E den dualen Raum E*
(vgl. [1], Kap. II, § 5) und bezeichnen mit (#*, x) die bilineare Funktion (mit
Werten in A), welche die Dualitàt festlegt. Ein Tensor der Stufe (p, q) ist
dann definitionsgemâB eine multilineare Funktion von p Vektoren des Raumes
jE* und q Vektoren des Raumes E mit Werten in A. Ist oc ein Automorphismus
des Raumes E und a* der duale Automorphismus, so kann man jedem Tensor
0 einen Tensor ot@ derselben Stufe durch die Gleichung

»0(x*19... x*p) xx... xq) Q^x*1,.. .#*#**; a,~1xly.. .orxx^ (1)

definieren. Das so erklârte Produkt zwischen Automorphismen und Tensoren
hat folgende Eigenschaften, die sich unmittelbar aus der Définition ergeben:

(ocA) 10 0 (1 identischer Automorphismus).

22 CMH vol. 34
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Nun seien E\ und E\ zwei beMebige Tensorr&ume ûber E und A eine
lineare Abbildung von E* in Erg. Die Abbildung A heiBt tensoriell, wenn
ftir jeden Automorphismus a die Beziehung

.4 (<%<£) ce (A0) (2)

besteht (vgl. auch [2], § 4, n° 2). Zum Beispiel ist die Verjûngung eines Ten-
sors ûber ein beliebiges Argumentepaar eine tensorielle Abbildung von E* in
E\Z\ - Entsprechend versteht man unter einer bilinearen tensoriellen Abbildung

B zweier Râume E% und E$ in einen Raum Ert eine bilineare
Abbildung, fur die

W) (3)

gilt. Die Multiplikation zweier Tensoren der Stufen (p, q) und (pr, qr) ist eine
tensorielle Abbildung der Râume E\ und Ep in den Raum E*££'.

Unser Ziel ist, wie bereits erwàhnt, eine Ûbersicht ûber die tensoriellen Ab-
bildungen zu erhalten. Ist das einmal gelungen, so hat man auch eine Ûbersicht
ûber die bilinearen tensoriellen Abbildungen. Wegen der Tensorprodukteigen-
schaft lâBt sich nâmlich jede bilineare Abbildung B in der Form

B($>, W) A(0-W) (0eE*, VeE*',)

schreiben, wobei A eine eindeutig bestimmte lineare Abbildung ist. Ist nun
die Abbildung B tensoriell, so folgt

was man auch in der Form

schreiben kann. Da die Produkte 0 • W den ganzen Raum E*$$! erzeugen,
folgt daraus, daB fur jeden Tensor X c E*+fi die Beziehung

bestehen muB, das heiBt, die Abbildung A ist tensoriell. Aile bilinearen
tensoriellen Abbildungen sind daher von der Form

B{0, W)^A{0W)9 (4)

wobei A eine tensorielle Abbildung ist, und Entsprechendes gilt von den multi-
linearen tensoriellen Abbildungen.

3. Das duale Produkt. Um die Klassifikation der tensoriellen Abbildungen
auf eine einfachere Frage zurûckzufûhren, fûhren wir zunâchst eine zur Tensor-
multiplikation duale Opération ein. Dazu beachten wir zunâchst, daB man in



Tensorielle Abbîldungen 315

je zwei Râumen E% und Eqp eine nichtausgeartete bilineare Funktion (0, W)
einfuhren kann mittels der totalen Verjungung

(<p,w)= z ^;::;;îPr;v;;;j. (5)

Von dieser zeigt man leicht, daB sie die Eigenschaften eines skalaren Pro-
duktes (vgl. [1], Kap. II, § 5) zwisehen den Tensoren der Râume E\ und Eq
hat. Je zwei solche Râume werden damit zueinander dual. Speziell wird jeder
Raum Evv zu sich selbst dual. Ist oc ein Automorphismus des Raumes E, so
besteht die Beziehung

(oc0,*¥) (0, W) (6)

Es sei jetzt 0 ein fester Tensor des Raumes E%. Dann definiert die Zu-
ordnung

A+\ W->0W VP*Erg)

eine lineare Abbildung des Raumes Er8 in den Raum Evq~+l• Wir betrachten
die duale Abbildung

und setzen

At(X)=Xl_0 {XeElW). (7)

Damit ist fur je zwei Tensoren 0 e E% und X c EqJ+r ein Produkt erklârt,
das im Raume E\ liegt. Aus der Definitionsgleichung (7) ergibt sich zwischen
dem gewôhnlichen und dem soeben definierten dualen Produkt der Zusammen-
hang

+. (8)

Setzt man hier speziell r 0, s 0 und fur W den Skalar e (1-Elément
von A) ein, so ergibt sich die Formel

xl.0 (x,0) (0eJey,z«fl«), (9)

welche zeigt, daB das duale Produkt als eine Verallgemeinerung des skalaren
Produktes (5) anzusehen ist.

Fur das duale Produkt gelten neben der Bilinearitât folgende Gesetze :

(Dj) <x(Xlmm0) ocXL-<x0 {oc Automorphismus von E)

(D2) Aus X L 0 0 fur festes X und aile 0 folgt X 0

Die Formel (Dj) besagt, daB das duale Produkt eine tensorielle bilineare
Abbildung ist.

Wir zeigen als nâchstes, daB sich jede lineare Abbildung A des Raumes
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E\ in einen Raum E\ als duales Produkt mit einem festen Tensor X c

schreiben lâBt. Dazu ordnen wir jedem Tensor X € Eqp\'r die Abbildung Ax
zu, die durch

(0 e E*)

gegeben ist. Die Zuordnung X -> Ax definiert dann eine lineare Abbildung
des Raumes E^*r in den Raum L(E%,E'r) der linearen Abbildung von Epq

nach E'r. Aus dem Gesetz (D2) folgt, daB dièse Zuordnung eineindeutig ist.
Nun ergibt sich aus einer Dimensionsbetrachtung, daB man auf dièse Art wirk-
lich aile Abbildungen von E\ in E\ erhâlt. Es ist nâmlich

v
und

dim L(E*, E8r) n*+*-n*+* dim

und somit muB die Zuordnung X -> Ax eine Abbildung auf den Raum
L(E*,E°r) sein.

Es sei jetzt speziell A eine tensorielle Abbildung und X der durch A be-
stimmte Tensor, so daB also

A{0) X-0.
Dann gilt fur jeden Automorphismus oc von E

A(oc0) =<x-A(0)
und somit

XL.OL0=OC(XL_0).

Andererseits ist aber nach (Dx)

<x(XL.0) =ocXL.oc0
und somit folgt

XL.OL0=OCXL.OC0.

Da dies bei festem X und <x fur aile Tensoren 0 gilt, folgt nach (D2)

X <xX.

Der Tensor X muB somit gegen aile Automorphismen des Raumes E
invariant sein. Ein solcher Tensor soll ein invarianter Tensor genannt werden.

Die obige Betrachtung zeigt, daB man jede tensorielle Abbildung als duales
Produkt mit einem invarianten Tensor schreiben kann. Damit ist die Frage
nach den tensoriellen Abbildungen auf die nach den invarianten Tensoren zu-
rûckgefûhrt1).

*) Wegen âhnlicher Fragen der Invariantentheorie vgl. [3], Chap. II.
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4. Eigenschaften invarianter Tensoren. Es sei 0 ein invarianter Tensor des
Raumes E\. Dann gilt fur jeden Automorphismus oc die Beziehung

0(oc*x*1,...oc*x**; <x-1x1...or1xq) ^(a;*1... a**; x1...xq). (10)

Setzt man hier speziell
oc X'i (A € A, A # 0)

so ergibt sich

0(x*19...x*v; xx xq) (AP~« - e) 0

und somit, wenn 0 nicht der Nulltensor ist,

X*-* e

Dies muB fur aile Elemente X des Kôrpers A gelten und ist, da A die
Charakteristik Null hat, nur môglich, wenn p q. Ein von Null versehiede-
ner invarianter Tensor hat somit gleich viele kontravariante und kovariante
Argumente. Man kann daher einfach von einem p-stufigen invarianten Tensor
sprechen.

Mit Hilfe des skalaren Produktes in den Râumen E* und E kann man
sofort p invariante Tensoren ^-ter Stufe angeben, nâmlich die Tensoren

Jo(x*i, ...x*'; xx...x9) (s*1, xa(1))... [x**, xa(p)) (11)

wobei a eine beliebige Permutation der Zahlen (l...j>) ist.
Als weitere Eigenschaften invarianter Tensoren merken wir noch die fol-

genden an:
1. Wird ein invarianter Tensor ùber irgendein Argumentepaar verjiingt, so

erhâlt man wieder einen solchen. Bezeichnet nâmlich V) den Verjûngungs-
operator uber das i-te und ?'-te Argument, so gilt fur jeden Automorphismus
oc von E und jeden Tensor 0 e Evv

oc(V}0)= V){oc0).

Ist nun 0 invariant, so folgt

das heiBt, auch der Tensor V\0 ist invariant.
2. Steht ein Tensor 0 des Raumes Evv auf allen Tensoren Ja p-ter Stufe

senkrecht2), so steht der verjungte Tensor V)0 auf allen Tensoren JT der
Stufe (p — 1) senkrecht. Dies ergibt sich aus der Beziehung

wobei t eine beliebige Permutation der Zahlen (l...p—1) bezeichnet und
*) Dabei ist das Senkrechtstehen in bezug auf das durch (5) definierte Skalarprodukt gemeint.
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die Permutationen t' a und q dureh die Gleichungen

x(v) (v 1 p — 1)

a{v)

gegeben sind.

(v l i — l)
(v i...p — 1)

(v p)
q(v)

v (v 1 j - 1)

v + 1 (v j p — 1)

/ (v p)

B. Die Frage nach der Gesamtheit der invarianten Tensoren wird nun durch
den folgenden Satz beantwortet :

Jeder invariante Tensor ist eine lineare Kombination der Tensoren Ja.
Dem Beweis dieser Behauptung schicken wir zwei Hilfssâtze voraus.

Hilfssatz 1. Es sei 0 ein invarianter Tensor p-ter Stufe, der auf allen
Tensoren Ja senkrecht steht. Dann gilt

0{x*, ...x*; x... x) 0

Beweis: Setzt man

F(x*y x) &(x*,...x*; x...x) (12)

so ist die Funktion F in #* und x homogen vom Grade p und hat ferner die
Invarianzeigenschaft

F(oc*x*, arix) F{x*, x) (13)

Hieraus kann man zunâchst schliefien, daB der Funktionswert F(x*, x) nur
vom skalaren Produkt (x*, x) abhângt. Dazu seien a*, a und 6*, b zwei
Vektorpaare, for die

(a*, a) (6*, 6) (14)

gilt. Wir nehmen zunâchst an, daB dieser gemeinsame Wert von Null verschie-
den ist. Die von den Vektoren a und a* erzeugten eindimensionalen Unter-
râume bezeichnen wir mit (a) bzw. (a*). WegenderVoraussetzung (a*,a)^0
ist a nicht im orthogonalen Komplement von (a*) enthalten, und man kann
daher den Raum E in der Form

E - (a) + (a*)^

zerlegen. Entsprechend erhâlt man zu den Vektoren b und 6* die Zerlegung

E (6) + (6*)-L

des Baumes E. Nun sei oc ein Automorphismus von E, der a in 6 und den
Raum (a*)1- in den Raum (6*)-1 ûberfûhrt. Der duale Automorphismus fiihrt
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dann die orthogonalen Komplemente dieser Unterraume ineinander tiber, ins*
besondere also 6* in ein Vielfaches von a*,

Dabei ist der Faktor X durch die Gleichung

(<x*b*,a) X{a*,a)

gegeben. Hier erhâlt man fur die linke Seite wegen (14)

(**&*, a) (6*, <xa) (6*, b) (a*, a),
und somit folgt

X(a*,a) {a*9a).

Da nach Voraussetzung (a*, a) =£ 0, erhâlt man X s, das heiBt

Nun ergibt sich aus (13)

F(a*, a) JF(**&*, *-l6) i^(6*, 6)

Es bleibt noch der Fall (a*, a) 0 zu betrachten. Dann folgt, behaupten
wir, f(a*,fl) 0. Um das zu zeigen, zerlegen wir den Raum E in der Form

E (a) + A

wobei J[ einen zweiten direkten Summanden bezeichnet. Der duale Raum E*
zerfâllt dann in die beiden orthogonalen Komplemente

Nun sei ot der Automorphismus, der durch die Zuordnung

__ jXt in (a), (A^O)
OC \ M

\i in i
bestimmt ist. Dann gilt fur den dualen Automorphismus

in A1-

i in (a)-1.

Insbesondere ist also a*a* a*, da a* nach Voraussetzung im Raume
(a)x enthalten ist. Daher wird

jF(**a*, oc-ia) F(a*9 X^a) X-pF(a*, a),

und somit folgt wegen (13)

F{a*,a){X9 -e) 0.
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Da dies fur aile X ^ 0 aus A gilt, folgt hieraus weiter

JF(a*,a) 0,
womit unsere Behauptung bewiesen ist.

Nun kann man eine Funktion / im Kôrper A definieren, indem man

F(x*,x) (qcA) (15)

setzt, wobei #*, x irgendein Vektorpaar ist, fur das

(#*, x) q

gilt. Ersetzt man q durch Xq, so folgt

f(XQ) F(x*9 Xx) X'F(x*, x) X*.f(Q)

und man hat daher die Funktionalgleichung

f(XQ) X».f(Q)

Setzt man hier insbesondere q e, so ergibt sich

f{X) X>-f(e) yX>, (y f(e)) (16)

Aus den Gleichungen (15) und (16) ergibt sich jetzt

F(x*, x) y(x*,x)p

oder, wenn man zum Tensor 0 zuruckgeht,

0(x*,... a;*; x x) y- J(x* #* ; # x) (17)

wobei J den invarianten Tensor

J^*1,... **"; ^ x9) (a?*1, Xj)... (a?*», a;,)
bezeichnet.

Es bleibt noch zu zeigen, daB die Konstante y den Wert Null hat. Dazu
erklâren wir den Tensor W mittels

V=0-yJ.
Dann lautet die Gleichung (17)

W(x*,...x*; x...x) 0. (18)

Hieraus folgt aber, daB der total symmetrische Teil des Tensors W ver-
schwinden muB. Diesen total symmetrischen Teil kann man in der Form
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schreiben, wobei Wxa fiir irgend zwei Permutationen a und x den Tensor

bezeichnet. Aus (18) folgt somit

oder, wenn man zum Tensor 0 zuriickgeht,

Bildet man nun das Skalarprodukt mit einem festen Tensor JQ, so folgt

2(0l,J*) ypli:(Ja,JQ). (19)

Nun gilt fiir je zwei Tensoren 0 und W des Raumes Evv

(0l,W) (0iWaZ11), (20)

und somit wird die linke Seite von (19) gleich

und es folgt a-r

J^) Q, (21)

da 0 nach Voraussetzung auf allen Tensoren Ja senkrecht steht. Auf der
rechten Seite von (19) erhàlt man fiir das Skalarprodukt (Ja, JQ) durch Aus-
rechnen

^1)

Dièses Skalarprodukt ist somit fiir je zwei Permutationen ein ganzzahliges
nicht négatives Vielfaches des Einselementes. SpezieU erhâlt man fur die
Permutation a q"1

(V)

und somit folgt, da die Charakteristik von A nicht Null ist,

27(Jff,J«)#O. (22)
a

Aus den Gleichungen (19), (21) und (22) folgt jetzt y 0 und damit nach (17)

0(x*,... a;*; x x) 0

womit der Hilfssatz bewiesen ist.

Hilîssatz 2. Ein invarianter Tensor, der auf allen Tensoren Ja senkrecht
steht, ist der Nulltensor.
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Wir fïlhren den Beweis dieser Behauptung durch eine doppelte Induktion
nach der Stufe des Tensors und der Dimension des Raumes und formulieren
sie dementsprechend folgendermafien :

Satz Tvn. Ein invarianter Tensor p-ter Stufe in einem w-dimensionalen
Raum, der auf allen Tensoren Ja p-ter Stufe senkrecht steht, ist der Null-
tensor.

Zum Beweis zeigen wir, dafi die folgende Implikation gilt :

rpS' '"rpl \=>Tl (p,n l,2...). (23)
-L n_i • • • 1 n-l j

Es sei also 0 ein invarianter Tensor p-ter Stufe im ?i-dimensionalen Raume

fur aile Permutationen a. Wir wàhlen zwei Vektoren a* e E* und a e E,
so daB ^(a*, a) e,

und bezeichnen die orthogonalen Komplemente der Râume (a*) und (a) mit
A bzw. A*. Dann zerfallen die Râume E und iî* gemâB

E =(a)@A

wobei die beiden Râume A und A* wieder zueinander dual sind. Um zu
zeigen, daB 0 der Nulltensor ist, genûgt es, festzustellen, daB

Z Sa (v=i...P),
denn dièse beiden Mengen erzeugen die Râume E* und E. Mit anderen Wor-
ten darf man sich darauf beschrânken, daB jeder der Vektoren x*v entweder
in A* liegt oder gleich a* ist und Entsprechendes von den Vektoren
xv (v 1.. .p) gilt. Es ist also zu zeigen, daB fur je zwei ganze Zahlen r, s
des Intervalles 1 ^ r ^ p bzw. 1 <S s gj q die Gleichung

0(x*1,... x*r, a* .a*; xt... x8, a .a) 0 besteht,

x*v € A*, (v l...r)

8) Dabei ist angenommen, daû jeweils die ersten Vektoren bzw. x*v bzw. xv in A* bzw. A
liegen. Dies kann man immer erreichen, indem man 0 dxirch den Tensor 0^ ersetzt, wobei o und

r zwei passend gewâhlte Permutationen sind. Der Tensor &P hat dann wieder die Eigenschaften,
die von 0 vorausgesetzt sind.
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Setzt man

WÇx*1... #*r; xx... x8) — 0(x*x,.. #*r, a* .a*; xx... xr, a.. .a),
so wird y ein Tensor der Stufe (r, 5) im Raume A. Dieser ist gegen aile
Automorphismen von A invariant. Ist nàmlich p ein solcher Automorphismus,

so erhâlt man daraus einen Automorphismus (x von E, indem man
1 in (a)

setzt. Der duale Automorphismus lautet dann

1 in (a*)
{ 0* in A*

und somit ergibt sich aus der Invarianz des Tensors 0

W(ot*x*1...oc*x*r) or1x1...or1x8) 0(a*x*1,.. .a*a;*r, a* .a*;
a"1^ or1x9, a .a)
&(<x*x*1. .<x*a;*r, oc*a*,.. a*a* ; oc~~1x1... tx""1^, a."1^,... ot^a)
(Pfa;*1,... #*r, a*,.. .a*; ^ x89 a .a) Wfa*1... a;*r; xt...x8)

Hieraus folgt zunâchst, daB ï7 der Nulltensor ist, falls r ^ s. Man kann
also r 5 setzen. Wir zeigen weiter, daB der Tensor W auf allen Tensoren

Ja der Stufe r senkrecht steht. Dabei gentigt es wieder auf Grund der Bezie-

hung (20), dies fur den Tensor

J(x*\ ...»*";«!...*,) (ic*1, x±)... (x*r, xr)

zu zeigen. Um das skalare Produkt {W, J) zu bilden, wâhlen wir in den Ràu-
men A, -4* ein Paar dualer Basen ev, e*v (v 1... n — 1). Dann wird

(W, J) 27y(e** e** ; cn... eVf) (24)
(«)

Wir fuhren dièse Verjûngung schrittweise aus und beginnen mit den beiden
letzten Argumenten. Dann entsteht der Tensor

27 ¥(x**... x*'-\ e*v'; xx... xr_Xi eVf)
Vf

Ftigt man hier noch den Wert

Wix*1... a*1"-1, a* ; x1... xr_x> a)

hinzu, so erhâlt man den im Raume E ûber die beiden r-ten Argumente ver-
jungten Tensor 0, also den Tensor Vrr0, und zwar seinen Wert an der Stelle

a;*1... a*1*-1, a* •.. a* ; xx... xr^x, a...a
Dies ergibt sich daraus, daB die Vektoren ev, e*v zusammen mit den beiden

Vektoren a und a* ein Paar dualer Basen von E und E* bilden. Der
Tensor Vrr0 ist aber wegen der Eigenschaften 1 und 2 (Nr. 4) ebenfalls in-
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variant und steht auf allen Tensoren Ja der Stufe (p — 1) senkrecht. Er
mu8 daher nach dem Satz jPJJ""1 gleich Null sein, und es folgt

1,... x*'-\ e**; xx xr_l9 eVf) - W{x*K x*'~\a*; xx... xr^,a).
Vf

Verjûngt man nun ûber die beiden (r — l)-ten Argumente und verfàhrt wie
oben, so erhàlt man unter Verwendung des Satzes T*~2

** -* \x x e e Xi. xr_2 > ^ty-x evr)

ï7^*1... x*r~2, a*, a*; xx... xr-2, a, a)

und schlieBlieh nach r Schritten

ZW(e^.. .e*^; c01... e,f) (- l)^(a*,.. .a*; a .a)

Hier ist die rechte Seite nach Définition von W aber gleich

(—l)'<p(a*....a*; a....a)
und somit nach Hilfssatz 1 gleich Null. Es folgt somit aus (24)

{V, J) 0.
Somit ist W ein invarianter Tensor r-ter Stufe im (n — l)-dimensionalen

Raume A, der auf allen Tensoren Ja der Stufe r senkrecht steht. Hieraus
folgt aber nach Satz Trn_x (r 0 p), daB W der Nulltensor ist, und man
hat die Gleichung

^(ic*1... x*r, a*.. .a*; xx.. .xr, a .a) 0 (r 0 p)

Aus dieser folgt aber, wie bereits zu Anfang erwahnt, daB 0 der Nulltensor
ist, und die Implikation (23) ist bewiesen.

Nun ergibt sich der Satz Tvn, wenn man noch beachtet, daB die Sâtze

Tf(p= 1,2...) und T°n(n 1,2...) richtig sind, was sich unmittelbar
einsehen laBt. Setzt man in der Implikation (23) n 2, so kann man die
zweite Zeile weglassen und erhàlt die Implikation

(î7g,...î7r1)=>T?.
Hieraus folgt induktiv der Satz T%. Setzt man nun in (23) n 3 und

lâBt die untere Zeile weg, so erhàlt man die Implikation

{T\... Tf1) => T\
und hieraus den Satz T\. Indem man so weiterschlieBt, erhàlt man aile
Sâtze Tpn.

6. Beweis des Hauptsatzes. Nun sind wir in der Lage, den in Nr. 5 erwàhnten
Satz zu beweisen. Dazu bezeichne UP den Raum aller invarianten Tensoren
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p-ter Stufe und Vp den von den Tensoren Ja erzeugten Raum. Dann gilt
jedenfalls die Inklusion V cz U (25)

und es ist zu zeigen, da8 dièse unecht ist. Der Hilfssatz 2 lâBt sich jetzt durch
die Gleichung ^ F± 0 (26)

ausdrùcken, wobei V^- das orthogonale Komplement des Raumes Vp be-
zeichnet. Hieraus folgt wegen (25)

Der Raum VP hat also mit seinem orthogonalen Komplement nur den
Nullvektor gemeinsam, und somit muB die direkte Summe dieser Râume der

ganze Raum Evv sein, jp ~ y ç&y^-

Bildet man nun den Durehschnitt mit dem Unterraum U9 und beachtet
die Beziehungen (25) und (26), so folgt

9

womit der Satz bewiesen ist.

7. Lineare Unabhangigkeit der Tensoren Ja. Im Falle p ^n kann man
ûberdies zeigen, daB die Tensoren JQ linear unabhângig sind und somit eine
Basis des Raumes der invarianten Tensoren bilden. Dazu wâhlen wir in den
Râumen E und E* je p Vektoren av und a*v (v 1... p), so daB

und bilden aus ihnen den Tensor

A(x*\ ..**»; xx...x9) (a:*1, ax)... {x**, ap)(a*\ xx)... (a*», xp)

und fur jede Permutation r die entsprechenden Tensoren AT. Dann wird

(A\ Ja) Ja(a*«v... a**™ ;«!... a9)

(«*T(1), aa{l))... (a*^>, aa(3))) ô$>... «^ (27)

Dies ist genau dann von Null verschieden, wenn a r und hat dann den
Wert nv-e. Man kann somit die Gleichung (27) in der Form

(AT,Jo)=n*-e.ôra
schreiben, woraus sich unmittelbar die lineare Unabhangigkeit der Tensoren

Ja ergibt.

8, Anwendung au! die tensoriellen Abbildungen. Nun kann man leicht ein
Erzeugendensystem fur die tensoriellen Abbildungen zwischen zwei Râumen

E\ und E\ angeben. Wie bereits in Nr. 3 gezeigt, ist jede solche Abbildung
von der Form A(0)=JL.0, (28)
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wobei J einen invarianten Tensor der Stufe (q + s, p + r) bezeichnet. Dar-
aus folgt zunàchst, da8 eine rriehttriviale tensorielle Abbildung zwischen E\
und E'r nur môglich ist, falls p + r q + s. Ist dièse Bedingung erfullt,
so kann man in (28) fur J die Tensoren Ja einsetzen und erhâlt so ein Er-
zeugendensystem fur die tensoriellen Abbildungen von E\ in E\. Das sind
die (p + r) Abbildungen

Ao(0)=JoL.0.
Im Falle p -\- r ^n sind dièse iiberdies linear unabhangig und bilden eine

Basis des Raumes der tensoriellen Abbildungen.
Als Beispiel seien noch die môglichen tensoriellen Abbildungen fur drei ein-

fache Fâlle wirklich aufgezâhlt :

1. E\ ~> JETj : Dann ist der zugehôrige invariante Tensor von erster Stufe
und somit bis auf einen Faktor gleich dem Einheitstensor (x*, x). Die
Abbildung besteht dann in der Verjûngung.

2. E\ -> E\ : Dann hat man fur den Tensor J bereits zwei Môglichkeiten,
nâmlich

J(a;*1, a;*2; xl9 x2) (a;*1, xt) (x*2, x2)
und

J{x*\ x*2; xl9 x2) (x*\ x2).(x**, xx)

Im ersten Fall ist die Abbildung A die Identitât, im zweiten besteht sie aus
der Verjûngung und der Multiplikation mit dem Einheitstensor.

3. El -> E\ : Jetzt hat man fur J bereits sechs Môglichkeiten. Ihnen ent-
sprechen folgende tensorielle Abbildungen : Zunàchst kann man die Tensoren
des Raumes El auf vier verschiedene Arten ûber ein Argumentpaar verjûn-
gen. Ferner kann man sie auf zwei Arten total verjiingen und den erhaltenen
Skalar mit dem Einheitstensor multiplizieren.

9. Ânwendung auf die invarianten Funktionen von Endomorphismen. Eng
verwandt mit dem Begriff des invarianten Tensors ist der der invarianten
Funktion im ïtaume der Endomorphismen eines linearen Raumes E. Dieser
spielt in der Théorie der linearen Ûbertragung eine Rolle (vgl. [4], chap. III,
n° 4). Es bezeichne L(E) den Raum der linearen Selbstabbildungen des

Raumes E und P eine p-fach lineare Funktion im Raume L(E) mitWerten
im Koeffizientenkôrper A. Dièse Funktion heifit invariant, wenn fur jeden
Automorphismus oc von E die Beziehung

• • • • <Pp) (V*

besteht. Zwischen diesen invarianten Funktionen und den invarianten Ten-
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soren p-ter Stufe besteht eine umkehrbar eindeutige Beziehung, die mit Hilfe
des Tensorproduktes hergestellt werden kann. Dabei wàhlen wir als Modell des
Raumes E*®E den Raum L(E) und verstehen unter dem Produkt a*® a
die lineare Selbstabbildung

x -> (a*, x)a

des Raumes E. Dann entspricht jeder p-faeh linearen Funktion P im
Raume L(E) ein Tensor der Stufe (p, p) gemâB

0(x*x,... x*v\ xx... xp) P(x*x 0 a?!,... x*p® xp)

Die Funktion P sei jetzt insbesondere invariant. Dann erhâlt man fur den
entsprechenden Tensor 0 unter Beachtung der Identitàt

a"x(x^iS) x)oc ot*x*® ot^x
die Beziehung

0{oc*x*1,...<x*x**\or1x1,.. .(X^x,,) P(<x~1(#*1® «i)«, • • .<x-1(x*p® xP)a)

P(#*1® xl9...x**®x9) (Pfc*1,... a;*p; ^ ...«,),
das heiBt, der Tensor 0 ist invariant. Umgekehrt erhâlt man aus jedem in-
varianten Tensor ^p-ter Stufe eine 2î-fach lineare invariante Funktion P, in-
dem man dièse zunâchst fur die Tensorprodukte definiert, gemâB

Piz*1® xl9... o;*p® x9) 0(x*19 ...x**; xx...x9)
und dann linear auf den ganzen Raum L(E) erweitert. Nach dem Satz in
Nr. 5 bilden somit die invarianten Funktionen, die durch die Gleichung

Pa(z*i® xl9... x*»® x9) (a:*1, xail))... (»*», xa{p)) (29)

bestimmt sind, ein Erzeugendensystem fur aile invarianten Funktionen. Um
hieraus einen expliziten Ausdruck fur die Funktion Pa zu erhalten, zerlegen
wir die Permutation a in ihre Zyklen. Wir beginnen mit der Ziffer 1 und
bilden die Zahlen ^ 8(1) ^ 1 (30)

wobei ; der erste Exponent ist, fur den man wieder 1 erhâlt.
Greift man aus dem Produkt (29) die entsprechenden Faktoren heraus, so

erhâlt man das Teilprodukt

(s*1, *<,<!>)(**aU)> *-(«) • • • • (^*o/"1(1), *i) • (31)

Nun besteht fur je p Vektoren a*v und av die Beziehung*)

(a*1, at)(a**, a,)... (a*", at) Sp[(a**® ai)(a**® a,)... (a**<g> a,)],
4) Dabei ist Sp ein Symbol fur die Spur der Abbildung.
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die sich unmittelbar aus der Définition des Tensorproduktes ergibt, und somit
kann man das Teilprodukt (31) in der Form

schreiben.
Kommen in der Reihe (30) noch nicht aile Zahlen (1.... n) vor, so wàhle

man eine Zahl /*, die nicht auftritt, und bilde entsprechend den Zykel

or(/i),cr«(Ai)...or'(iM) /i. (32)

Dieser ist zum Zykel (30) elementfremd, und somit bestimmt er ein neues
Teilproduktlj xj (x**1-^* ® xai-Hfi))]

Indem man so fortfâhrt, bis aile Zahlen (1... n) erschôpft sind, erhâlt man
fur die invariante Funktion P die Darstellung

Pix*1 ® xl9... x*» ® xp) SpKx*1 ® xx)... x*aJ~Hl) ® xaj-Hl)]
l

Da die Tensorprodukte a;*® x den ganzen Raum L(E) erzeugen, folgt
hieraus

> - - • <Pp) p

Die Funktion P ist somit ein Produkt von Spuren, wobei jeder Faktor
einem Zykel der Permutation a entspricht und in jeder Spur so viele
Abbildungen auftreten, als der Zykel Elemente besitzt. Speziell erhâlt man fur die
identische Permutation die Funktion

und fur die zyklisehe Permutation a : v -> v + 1 (mod p) die Funktion
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