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Tensorielle Abbildungen

von W. GRAEUB, Ziirich

1. Einleitung. Die folgenden Betrachtungen beziehen sich auf Tensoren in
einem festen n-dimensionalen Raume E. Als Koeffizientenbereich soll dabei
ein beliebiger kommutativer Korper A der Charakteristik Null zugrunde ge-
legt werden. E7 bezeichne die Gesamtheit aller p-fach kontra- und g-fach
kovarianten Tensoren iiber dem Raume K oder, wie wir kurz sagen werden,
die Gesamtheit der Tensoren der Stufe (p,q). Diese ist ein linearer Raum
der Dimension n?+4. Mittels der wertweisen Multiplikation der Tensoren ist
in je zwei Rdumen E? und Ej eine bilineare Abbildung in den Raum E?f7
definiert. Als eine weitere Operation hat man die Verjiingung, die jedem Tensor
der Stufe (p, q) einen Tensor der Stufe (p — 1,9 — 1) zuordnet. Diese wird
gewohnlich mit Hilfe einer Basis des Raumes E durch Summation iiber ein
Indexpaar definiert, man kann sie jedoch auch ohne Beniitzung einer Basis
einfithren (vgl. [1], Kap. V, § 4). Es ist der Zweck der vorliegenden Arbeit, zu
zeigen, dafl die oben erwdhnten Operationen im wesentlichen die einzigen
«kanonischen» sind. Dabei ist unter einer «kanonischen» Operation eine solche
verstanden, die sich ohne Zuhilfenahme einer Basis des Raumes £ und der
Tensorkomponenten erkliren 148t. Um dies zu prézisieren, benstigen wir den
Begriff der tensoriellen Abbildung.

2. Tensorielle Abbildungen. Wir betrachten neben K den dualen Raum E*
(vgl. [1], Kap. II, § 5) und bezeichnen mit (z*, x) die bilineare Funktion (mit
Werten in A), welche die Dualitét festlegt. Ein Tensor der Stufe (p,q) ist
dann definitionsgemd eine multilineare Funktion von p Vektoren des Raumes
E* und q Vektoren des Raumes £ mit Werten in A. Ist x ein Automorphismus
des Raumes E und «* der duale Automorphismus, so kann man jedem Tensor
@ einen Tensor «® derselben Stufe durch die Gleichung

a®(x*, ... x2*?; 2,...2,) = P(a*a*!, .. . .a*z*?; al,,... 07 x,) (1)

definieren. Das so erklidrte Produkt zwischen Automorphismen und Tensoren
hat folgende Eigenschaften, die sich unmittelbar aus der Definition ergeben:

(1) (D + D,) = Dy + &P,

(ex3) x(PV) =aD-a ¥V

(03)  (xB)P = (BD)

(0¢q) 1D = @ (i identischer Automorphismus).

22 CMH vol. 34
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Nun seien E] und E; zwei beliebige Tensorrdume iiber £ und A eine
lineare Abbildung von E? in E;. Die Abbildung A heit tensoriell, wenn
fiir jeden Automorphismus « die Beziehung

A(x®P) = x(AD) (2)

besteht (vgl. auch [2], § 4, n° 2). Zum Beispiel ist die Verjiingung eines Ten-
sors iiber ein beliebiges Argumentepaar eine tensorielle Abbildung von E} in
E?~}. Entsprechend versteht man unter einer bilinearen tensoriellen Abbil-
dung B zweier Réume E? und E? in einen Raum Ef eine bilineare Ab-
bildung, fiir die

Bu®, «¥)=«B(D, V) (3)

gilt. Die Multiplikation zweier Tensoren der Stufen (p, ¢) und (p’, q') ist eine

tensorielle Abbildung der Réume E? und E% in den Raum E?}Z".

Unser Ziel ist, wie bereits erwihnt, eine Ubersicht iiber die tensoriellen Ab-
bildungen zu erhalten. Ist das einmal gelungen, so hat man auch eine Ubersicht
iiber die bilinearen tensoriellen Abbildungen. Wegen der Tensorprodukteigen-
schaft 148t sich ndmlich jede bilineare Abbildung B in der Form

B@,¥)=A(D-¥) (DB, ¥cE")

schreiben, wobei A4 eine eindeutig bestimmte lineare Abbildung ist. Ist nun
die Abbildung B tensoriell, so folgt

AD-a¥)=aA(DPY),
was man auch in der Form
A(x(PV)) = A(DPYV)

schreiben kann. Da die Produkte @ - ¥ den ganzen Raum E?}? erzeugen,

o+
folgt daraus, daB fiir jeden Tensor X ¢ E?}% die Beziehung

AxX) =n(4X)
bestehen muf3, das heiflt, die Abbildung A ist tensoriell. Alle bilinearen ten-
soriellen Abbildungen sind daher von der Form
B(®,¥)=A(D-¥), (4)

wobei A eine tensorielle Abbildung ist, und Entsprechendes gilt von den multi-
linearen tensoriellen Abbildungen.

3. Das duale Produkt. Um die Klassifikation der tensoriellen Abbildungen
auf eine einfachere Frage zuriickzufiihren, fiihren wir zunéchst eine zur Tensor-
multiplikation duale Operation ein. Dazu beachten wir zunéchst, dafl man in
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je zwei Rdumen E7 und Ej eine nichtausgeartete bilineare Funktion (@, ¥)
einfithren kann mittels der totalen Verjiingung

(P, ¥)= 2 &p.p2 Wi gt (5)
@), (1)

Von dieser zeigt man leicht, daf} sie die Eigenschaften eines skalaren Pro-
duktes (vgl.[1], Kap. I, § 5) zwischen den Tensoren der Réume E] und EJ
hat. Je zwei solche Rdume werden damit zueinander dual. Speziell wird jeder
Raum E? zu sich selbst dual. Ist « ein Automorphismus des Raumes ¥, so
besteht die Beziehung

xP,a¥)= (D, V). (6)
Es sei jetzt @ ein fester Tensor des Raumes E?. Dann definiert die Zu-
ordnung
Ay: V>0V  (Pek)
eine lineare Abbildung des Raumes E; in den Raum E?}’. Wir betrachten
die duale Abbildung
Ay : Eot. — B

P+T
und setzen

AAX)=XL® (XeE). (7)

Damit ist fiir je zwei Tensoren @ ¢ Ef und X ¢ EZt% ein Produkt erklirt,
das im Raume E?! liegt. Aus der Definitionsgleichung (7) ergibt sich zwischen

dem gewthnlichen und dem soeben definierten dualen Produkt der Zusammen-
hang

(XLO,¥)=(X,0¥) (PeEl, Pk, XecE). (8)

Setzt man hier speziell r = 0, s = 0 und fiir ¥ den Skalar ¢ (1-Element
von A) ein, so ergibt sich die Formel

XL®=(X,0) (DPekE?,XecEl), (9)

welche zeigt, daf das duale Produkt als eine Verallgemeinerung des skalaren
Produktes (5) anzusehen ist.

Fiir das duale Produkt gelten neben der Bilinearitdt folgende Gesetze:
(D, (XL P)=aXL a® (xAutomorphismus von E)
(D,) Aus XL @ = 0 fiir festes X und alle @ folgt X = 0.

Die Formel (D,) besagt, dall das duale Produkt eine tensorielle bilineare Ab-
bildung ist.

Wir zeigen als nichstes, daf sich jede lineare Abbildung 4 des Raumes
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E? in einen Raum E; als duales Produkt mit einem festen Tensor X ¢ EZ1?

schreiben 1i8t. Dazu ordnen wir jedem Tensor X e E%t5 die Abbildung A4
zu, die durch
Ay (@) =XL D (DPeED)

gegeben ist. Die Zuordnung X — Ay definiert dann eine lineare Abbildung
des Raumes EZ*% in den Raum L(E?, E}) der linearen Abbildung von E?
nach Ej. Aus dem Gesetz (D,) folgt, daBl diese Zuordnung eineindeutig ist.
Nun ergibt sich aus einer Dimensionsbetrachtung, da8 man auf diese Art wirk-

lich alle Abbildungen von E? in E; erhilt. Es ist nimlich

dim EZt% = nate.nrir

und
dim L(E?, E?) = n?+9.n%" = dim E%*% ,

und somit mulBl die Zuordnung X —> 4, eine Abbildung auf den Raum
L(E?, E3) sein.
Es sei jetzt speziell A eine tensorielle Abbildung und X der durch A be-

stimmte Tensor, so daf} also
AP)=X-D.

Dann gilt fiir jeden Automorphismus « von £

AD) = - A (D)
und somit
XLoad=ua(XL D).

Andererseits ist aber nach (D,)

a(XLD)=axXL o,
und somit folgt
XLad=aXLad.

Da dies bei festem X und « fiir alle Tensoren @ gilt, folgt nach (D,)
X =aX.

Der Tensor X mufl somit gegen alle Automorphismen des Raumes E in-
variant sein. Ein solcher Tensor soll ein ¢nvarianter Tensor genannt werden.

Die obige Betrachtung zeigt, daf man jede tensorielle Abbildung als duales
Produkt mit einem invarianten Tensor schreiben kann. Damit ist die Frage
nach den tensoriellen Abbildungen auf die nach den invarianten Tensoren zu-
riickgefiihrt ).

1) Wegen éhnlicher Fragen der Invariantentheorie vgl. [3], Chap. II.
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4. Eigenschaften invarianter Tensoren. Es sei @ ein invarianter Tensor des
Raumes E7. Dann gilt fiir jeden Automorphismus « die Beziehung

D(x*a*l, .. .a¥x*?; alx, ... .o lx) = P(x*¥1...2*?; x,...2,). (10)

Setzt man hier speziell
x=~A1t (Aed, 2#£0),
so ergibt sich
D(x*,...2*%?; x...2,) (A2 —¢) =0

und somit, wenn @ nicht der Nulltensor ist,
Al=c¢.

Dies muf} fiir alle Elemente A des Korpers A gelten und ist, da A die
Charakteristik Null hat, nur méglich, wenn p = ¢. Ein von Null verschiede-
ner invarianter Tensor hat somit gleich viele kontravariante und kovariante
Argumente. Man kann daher einfach von einem p-stufigen invarianten Tensor
sprechen.

Mit Hilfe des skalaren Produktes in den Rdumen E* und E kann man
sofort p! invariante Tensoren p-ter Stufe angeben, ndmlich die Tensoren

Jo (¥, o a*?; my .. xy) = (K, X)) .. (R0, 2,) , (11)

wobei o eine beliebige Permutation der Zahlen (1...p) ist.

Als weitere Eigenschaften invarianter Tensoren merken wir noch die fol-
genden an:

1. Wird ein invarianter Tensor iiber irgendein Argumentepaar verjiingt, so
erhilt man wieder einen solchen. Bezeichnet nimlich Vi den Verjiingungs-
operator iiber das i-te und j-te Argument, so gilt fiir jeden Automorphismus
« von E und jeden Tensor @ ¢ E7

(VD) = Vi(x®) .
Ist nun @ invariant, so folgt
x(Vid) = Vid,

das heiBt, auch der Tensor Vi@ ist invariant.

2. Steht ein Tensor @ des Raumes EJ auf allen Tensoren J, p-ter Stufe
senkrecht 2), so steht der verjiingte Tensor V}Qﬁ auf allen Tensoren J, der
Stufe (p — 1) senkrecht. Dies ergibt sich aus der Beziehung

(V;:@’ J'r) = (P, Jar’q»l) ’

wobei v eine beliebige Permutation der Zahlen (1...p — 1) bezeichnet und

%) Dabei ist das Senkrechtstehen in bezug auf das durch (5) definierte Skalarprodukt gemeint.
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die Permutationen 7', 0 und ¢ durch die Gleichungen

r’(v):{t(v) w=1...p—1)

r (@=p)),

v w=1...2 —1) v w=1...9—1)
cv)=lv+1w=1...p—1) o) ={v+1lw=9...p—1)
g (v =), j (v =)

gegeben sind.

b. Die Frage nach der Gesamtheit der invarianten Tensoren wird nun durch
den folgenden Satz beantwortet:

Jeder invariante Tensor ist eine lineare Kombination der Tensoren J .
Dem Beweis dieser Behauptung schicken wir zwei Hilfsséitze voraus.

Hilfssatz 1. Es sei @ ein invarianter Tensor p-ter Stufe, der auf allen Ten-
soren J, senkrecht steht. Dann gilt

D(x*,...z%¥; z...2)=0.
Beweis: Setzt man

F(x*, z) = D(x*,...2*%;, x...2), (12)
so ist die Funktion F in z* und x homogen vom Grade p und hat ferner die
Invarianzeigenschaft

Fo*z*, a—lz) = F(x*, x) . (13)
Hieraus kann man zunichst schlieBen, daf3 der Funktionswert F (z*, z) nur

vom skalaren Produkt (z*, ) abhéngt. Dazu seien a*,a und b*,b zwei
Vektorpaare, fiir die

(a*, a) = (b*, b) (14)

gilt. Wir nehmen zunéchst an, daf dieser gemeinsame Wert von Null verschie-
den ist. Die von den Vektoren a und a* erzeugten eindimensionalen Unter-
rdume bezeichnen wir mit (@) bzw. (a*). Wegen der Voraussetzung (a*, a) #0
ist @ nicht im orthogonalen Komplement von (a*) enthalten, und man kann
daher den Raum £ in der Form

E = (a) + (a¥)t
zerlegen. Entsprechend erhilt man zu den Vektoren b und b* die Zerlegung
E = (b) + (b*)*

des Raumes £. Nunsei « ein Automorphismus von £, der a in b und den
Raum (a*)! in den Raum (b*)L iiberfiihrt. Der duale Automorphismus fiihrt
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dann die orthogonalen Komplemente dieser Unterrdume ineinander iiber, ins-
besondere also b* in ein Vielfaches von a*,

x*¥b* = Aa*.
Dabei ist der Faktor 4 durch die Gleichung
(6*b*, a) = A(a*, a)
gegeben. Hier erhilt man fiir die linke Seite wegen (14)

(x*b*, a) = (b*, xa) = (b*, b) = (a*, a),
und somit folgt
Ala*, a) = (a*, a) .

Da nach Voraussetzung (a*, a) # 0, erhdlt man A = ¢, das heil3t

oa*b* = a* .
Nun ergibt sich aus (13)

F(a*, a) = F(a*b*, a-1b) = F (b*, b) .

Es bleibt noch der Fall (a*, a) = 0 zu betrachten. Dann folgt, behaupten
wir, F(a*, a) = 0. Um das zu zeigen, zerlegen wir den Raum & in der Form

E=(a) + 4,

wobei A einen zweiten direkten Summanden bezeichnet. Der duale Raum E*
zerfillt dann in die beiden orthogonalen Komplemente

E* = 41 4 (a)l.
Nun sei & der Automorphismus, der durch die Zuordnung

Av in (a), (A5#0)
¢ in A4

bestimmt ist. Dann gilt fiir den dualen Automorphismus

«_ JAc in AL
=1 in (@)t

Insbesondere ist also «*a* = a*, da a* nach Voraussetzung im Raume
(@)L enthalten ist. Daher wird

F(x*a*, x~la) = F(a*, Ala) = A?F(a*,a),
und somit folgt wegen (13)
F(a*,a)(A?» —e) =0.
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Da dies fiir alle 15~ 0 aus A gilt, folgt hieraus weiter
F(a*,a) =0,

womit unsere Behauptung bewiesen ist.
Nun kann man eine Funktion f im Kérper A definieren, indem man

flo) =F(a*,2) (oed) (15)
setzt, wobei z*, x irgendein Vektorpaar ist, fiir das
(2%, 2) = o
gilt. Ersetzt man g durch Ag, so folgt
f() = F(x*, Ax) = A F (x*, ) = A*-f(o) ,
und man hat daher die Funktionalgleichung
f(2e) = 2%-f(o) .
Setzt man hier insbesondere ¢ = ¢, so ergibt sich
f(A) = 27-f(e) = y-47, (v =[(e)) . (16)
Aus den Gleichungen (15) und (16) ergibt sich jetzt
F(x*, ) = y(x*, z)?
oder, wenn man zum Tensor @ zuriickgeht,
D(x*,...2%; z...2x)=9-J(z*...2*; 2...2), (17)
wobei J den invarianten Tensor

J(z*, ... 2% x...2) = (¥, 2,) ... (z*?, o)
bezeichnet.
Es bleibt noch zu zeigen, daB die Konstante y den Wert Null hat. Dazu
erkliren wir den Tensor ¥ mittels

V=0-9yJ.
Dann lautet die Gleichung (17)

Y(*,...z2*; z...2)=0. (18)

Hieraus folgt aber, daB3 der total symmetrische Teil des Tensors ¥ ver-
schwinden muB3. Diesen total symmetrischen Teil kann man in der Form

(—1—)22 p
p!

0,7
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schreiben, wobei ¥ fiir irgend zwei Permutationen ¢ und 7 den Tensor
Yolz*t, .. .a*?; xp...2) = P(o* W a*®) 0 xoy To)
bezeichnet. Aus (18) folgt somit
2V, =0

0,7

oder, wenn man zum Tensor @ zuriickgeht,

2O =yXJ.=y-pl.2J,.

Bildet man nun das Skalarprodukt mit einem festen Tensor J,, so folgt
2(D5, Jo) = y-p! 2(Jg, o) - (19)

Nun gilt fiir je zwei Tensoren @ und ¥ des Raumes EJ
(D, V)= (D, ¥, (20)
und somit wird die linke Seite von (19) gleich

2(D, J 1)
und es folgt o
2(D,Jp) =0, (21)
da @ nach Voraussetzung auf allen Tensoren J_, senkrecht steht. Auf der
rechten Seite von (19) erhilt man fiir das Skalarprodukt (J,,J,) durch Aus-
rechnen
(Jos Jo) = (%;’ Oty * 02y €+
Dieses Skalarprodukt ist somit fiir je zwei Permutationen ein ganzzahliges
nicht negatives Vielfaches des Einselementes. Speziell erhdlt man fiir die Per-
mutation ¢ = p~!
(Jgm1,Je) = 2 8,1 .... 8,2 =nP-¢
®
und somit folgt, da die Charakteristik von A nicht Null ist,

2 (J,,Je) #£0. (22)

(4]

Aus den Gleichungen (19), (21) und (22) folgt jetzt 9 =0 und damit nach (17)
O(x*,...2*%; z...2) =0,
womit der Hilfssatz bewiesen ist.

Hilfssatz 2. Ein invarianter Tensor, der auf allen Tensoren J, senkrecht
steht, ist der Nulltensor.
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Wir fiithren den Beweis dieser Behauptung durch eine doppelte Induktion
nach der Stufe des Tensors und der Dimension des Raumes und formulieren
sie dementsprechend folgendermafien:

Satz 7%. Ein invarianter Tensor p-ter Stufe in einem n-dimensionalen
Raum, der auf allen Tensoren J, p-ter Stufe senkrecht steht, ist der Null-
tensor.

Zum Beweis zeigen wir, dafl die folgende Implikation gilt:

™, ... TP

™ =T (p,n=1,2...). (23)

Es sei also @ ein invarianter Tensor p-ter Stufe im n-dimensionalen Raume

E, so da (@,J,) =0

I

fiir alle Permutationen o. Wir wihlen zwei Vektoren a* ¢ £* und ac E,
so daf3

(a*,a)=c¢,
und bezeichnen die orthogonalen Komplemente der Réume (a¢*) und (a) mit
A bzw. A*. Dann zerfallen die Rdume E und E* gemiB

E =(@a)®d4d

und B* = (%) @ 4%,

wobei die beiden Riume 4 und A4* wieder zueinander dual sind. Um zu
zeigen, dafl @ der Nulltensor ist, geniigt es, festzustellen, dafl

2*? € (a*) v A*

*1 *P . — _
D(z*,...2*?; x...2,) =0, falls {x,,e(a)uA (v=1...p),

denn diese beiden Mengen erzeugen die Réume E* und E. Mit anderen Wor-
ten darf man sich darauf beschrinken, daf3 jeder der Vektoren z*v entweder
in A* liegt oder gleich a* ist und Entsprechendes von den Vektoren
z,(v=1...p) gilt. Es ist also zu zeigen, daB fiir je zwei ganze Zahlen r, s
des Intervalles 1 <r < p bzw. 1 < s < ¢q die Gleichung

D(x*1, ... 2*,a*%...a%; 2,...2,,a...a) =0 besteht,

¥ e A*, (v=1...7)

falls Vo c4, w=1...5.9

3) Dabei ist angenommen, daB8 jeweils die ersten Vektoren bzw. z*? bzw. zy in A* bzw, 4
liegen. Dies kann man immer erreichen, indem man @ durch den Tensor QD‘; ersetzt, wobei ¢ und
7 zwei passend gewihlte Permutationen sind. Der Tensor @7 hat dann wieder die Eigenschaften,
die von @ vorausgesetzt sind.



Tensorielle Abbildungen 323

Setzt man
Y(*t,..a¥; z,...2,) =D(z*,...2*,a*...0%; z,...7,,a...0a),

so wird ¥ ein Tensor der Stufe (r,s) im Raume 4. Dieser ist gegen alle
Automorphismen von A4 invariant. Ist ndmlich 8 ein solcher Automorphis-
mus, 8o erhélt man daraus einen Automorphismus « von £, indem man

el in (a)
~|Bin 4
setzt. Der duale Automorphismus lautet dann
e m (a*)
p* in A*
und somit ergibt sich aus der Invarianz des Tensors @

Y (aka*r, . o*a*T; ol . ..o lx,) = O(ax*¥x*l, .. .a*x* a*...a*;
otz .. .alx,,a...a) =

= D(a*x*l...a*x¥, a*a*,... . a*a*; a7 lx;... 072, ta,...a7la) =

=@Q(x*,...2¥,a*%,...0%; 2;...2,,a...a) = ¥(x¥...2*; 2;...2,).

Hieraus folgt zunichst, dal ¥ der Nulltensor ist, falls r £ s. Man kann
also r = s setzen. Wir zeigen weiter, dafl der Tensor ¥ auf allen Tensoren
J, der Stufe r senkrecht steht. Dabei geniigt es wieder auf Grund der Bezie-
hung (20), dies fiir den Tensor

J(x*¥, ... x¥; 2. x,) = (¥, xy) ... (27, 2,)

zu zeigen. Um das skalare Produkt (¥, .J) zu bilden, wéhlen wir in den Réu-
men A, A* ein Paar dualer Basen e,,e*? (v =1...n — 1). Dann wird
(P, J)=ZWP(*™...e"; e, ...¢,). (24)
(v
Wir fiihren diese Verjiingung schrittweise aus und beginnen mit den beiden
letzten Argumenten. Dann entsteht der Tensor
Z W@l o, 6N m . my,e,)
vr

Fiigt man hier noch den Wert

1

T(x*l e o 0 x*r~1, a*; xl e s 0 x,._l, a)
hinzu, so erhilt man den im Raume £ iiber die beiden r-ten Argumente ver-
jiingten Tensor @, also den Tensor V]®, und zwar seinen Wert an der Stelle
x*l...x*r—l, a*..-a*; xloo-xr_l, a.taa-

Dies ergibt sich daraus, daf die Vektoren e,, ¢*? zusammen mit den beiden
Vektoren ¢ und a* ein Paar dualer Basen von E und E* bilden. Der
Tensor Vi@ ist aber wegen der Eigenschaften 1 und 2 (Nr. 4) ebenfalls in-
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variant und steht auf allen Tensoren J, der Stufe (p — 1) senkrecht. Er
mufBl daher nach dem Satz 727! gleich Null sein, und es folgt

TP (x*1, ... ¥ ¥ ... Tr_y, €)= — ¥ (x*1... 2% L a*;x,...2,4,0).
vy
Verjiingt man nun tiber die beiden (r — 1)-ten Argumente und verfihrt wie

oben, so erhiilt man unter Verwendung des Satzes 722

- Kvp_ *vp .
2 WX, .. M e e @y Ry, €y s €,)
V-1,V
= ¥(x*l...2*™% a*, a*; 2,...%,_,,a,a)

und schlieBlich nach » Schritten

TP (.. .e*r; e ) = (— 1y ¥(a*,...a*;a...a).
(v)
Hier ist die rechte Seite nach Definition von ¥ aber gleich

(—1yd(@*....a*; a....a)
und somit nach Hilfssatz 1 gleich Null. Es folgt somit aus (24)
(P,J)=0.

Somit ist ¥ ein invarianter Tensor r-ter Stufe im (n — 1)-dimensionalen
Raume A, der auf allen Tensoren J, der Stufe r senkrecht steht. Hieraus
folgt aber nach Satz T, _, (r =0...p), daB ¥ der Nulltensor ist, und man
hat die Gleichung

D(x*t. .. x*", a*...a*; 2;,...2,,a...a) =0, (r=0...p).

OIS

Aus dieser folgt aber, wie bereits zu Anfang erwihnt, da @ der Nulltensor
ist, und die Implikation (23) ist bewiesen.

Nun ergibt sich der Satz 7%, wenn man noch beachtet, daB} die Sdtze
T°(p=1,2...) und T%(n=1,2...) richtig sind, was sich unmittelbar
einsehen ldaBt. Setzt man in der Implikation (23) n = 2, so kann man die
zweite Zeile weglassen und erhilt die Implikation

(T°,...TP~Y = T? .

Hieraus folgt induktiv der Satz 7'7. Setzt man nun in (23) » = 3 und
148t die untere Zeile weg, so erhilt man die Implikation

(Ty... Ty Y= T}

und hieraus den Satz 77. Indem man so weiterschliet, erhdlt man alle
Sitze T?.

6. Beweis des Hauptsatzes. Nun sind wir in der Lage, den in Nr. 5 erwédhnten
Satz zu beweisen. Dazu bezeichne U, den Raum aller invarianten Tensoren
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p-ter Stufe und ¥V, den von den Tensoren J, erzeugten Raum. Dann gilt
jedenfalls die Inklusion V,cU,, (25)

und es ist zu zeigen, daf} diese unecht ist. Der Hilfssatz 2 148t sich jetzt durch
die Gleich
ie Gleichung Upn Vi =0 (26)
ausdriicken, wobei V. das orthogonale Komplement des Raumes ¥, be-
zeichnet. Hieraus folgt wegen (25)
Vorn ViE=0.

Der Raum V, hat also mit seinem orthogonalen Komplement nur den
Nullvektor gemeinsam, und somit mufl die direkte Summe dieser Rdume der
B o
ganze Raum K7 sein, BE=V,®V).

Bildet man nun den Durchschnitt mit dem Unterraum U, und beachtet
die Beziehungen (25) und (26), so folgt

womit der Satz bewiesen ist.

7. Lineare Unabhingigkeit der Tensoren J,. Im Falle p <n kann man
iiberdies zeigen, daB} die Tensoren J, linear unabhéngig sind und somit eine
Basis des Raumes der invarianten Tensoren bilden. Dazu wéhlen wir in den
Réumen E und E* je p Vektoren a, und a*’ (v =1...p), so daB

(a*?, a,) = 6 ¢
und bilden aus ihnen den Tensor
A(z*, .. 2*?; 2. .. x,) = (2%, ay) ... (%2, a,) (@*, 2y) . . . (a*?, z,)
und fiir jede Permutation 7 die entsprechenden Tensoren A7. Dann wird

(A7, J,) = J (a*™ @, a*T?); q,...0,) =

1
= (@D, Gyy) - (@D, @) = S .. 5 (27)

Dies ist genau dann von Null verschieden, wenn ¢ = v und hat dann den
Wert n?.e. Man kann somit die Gleichung (27) in der Form

(47, J,) = n?-¢- 4,
schreiben, woraus sich unmittelbar die lineare Unabhéngigkeit der Tensoren
J, ergibt.

8. Anwendung auf die tensoriellen Abbildungen. Nun kann man leicht ein
Erzeugendensystem fiir die tensoriellen Abbildungen zwischen zwei Rdumen
E? und E; angeben. Wie bereits in Nr. 3 gezeigt, ist jede solche Abbildung

von der Form A@) =JL o, (28)
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wobei J einen invarianten Tensor der Stufe (¢ + s, p + r) bezeichnet. Dar-
aus folgt zuniichst, daB eine nichttriviale tensorielle Abbildung zwischen E?
und E; nur moglich ist, falls p + r = ¢ 4+ s. Ist diese Bedingung erfiillt,
so kann man in (28) fiir J die Tensoren J, einsetzen und erhilt so ein Er-
zeugendensystem fiir die tensoriellen Abbildungen von E} in E;. Das sind
die (p + r)! Abbildungen

A,(DP)=J, L.

Im Falle p + r < n sind diese iiberdies linear unabhingig und bilden eine
Basis des Raumes der tensoriellen Abbildungen.

Als Beispiel seien noch die moglichen tensoriellen Abbildungen fiir drei ein-
fache Fille wirklich aufgezihlt:

1. E} — E}: Dann ist der zugehorige invariante Tensor von erster Stufe
und somit bis auf einen Faktor gleich dem Einheitstensor (z*, z). Die Ab-
bildung besteht dann in der Verjiingung.

2. E} — E;: Dann hat man fiir den Tensor J bereits zwei Moglichkeiten,
némlich
J(@*, %25 2y, 2,) = (2%, 7y) (2%, 7,)
und
J(2*1, a*2; 2y, z,) = (2%, x,)- (22, 2,) .

Im ersten Fall ist die Abbildung A4 die Identitit, im zweiten besteht sie aus
der Verjiingung und der Multiplikation mit dem Einheitstensor.

8. E: — E}: Jetzt hat man fiir J bereits sechs Moglichkeiten. Thnen ent-
sprechen folgende tensorielle Abbildungen: Zunéchst kann man die Tensoren
des Raumes K3 auf vier verschiedene Arten iiber ein Argumentpaar verjiin-
gen. Ferner kann man sie auf zwei Arten total verjiingen und den erhaltenen
Skalar mit dem Einheitstensor multiplizieren.

9. Anwendung auf die invarianten Funktionen von Endomorphismen. Eng
verwandt mit dem Begriff des invarianten Tensors ist der der invarianten
Funktion im Raume der Endomorphismen eines linearen Raumes E. Dieser
spielt in der Theorie der linearen Ubertragung eine Rolle (vgl. [4], chap. 11T,
n° 4). Es bezeichne L(E) den Raum der linearen Selbstabbildungen des
Raumes E und P eine p-fach lineare Funktion im Raume L (E) mit Werten
im Koeffizientenkérper /. Diese Funktion heiflt invariant, wenn fiir jeden
Automorphismus « von E die Beziehung

P gy, ...a7 p,0) = Ppy....9,)  (py ¢ L(B))

besteht. Zwischen diesen invarianten Funktionen und den invarianten Ten-
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soren p-ter Stufe besteht eine umkehrbar eindeutige Beziehung, die mit Hilfe
des Tensorproduktes hergestellt werden kann. Dabei wihlen wir als Modell des
Raumes E*® E den Raum L(E) und verstehen unter dem Produkt a*® a
die lineare Selbstabbildung

x — (a*, 2)a

des Raumes ZE. Dann entspricht jeder p-fach linearen Funktion P im
Raume L(E) ein Tensor der Stufe (p, p) gemiB

D(x*t, ... 2% zy...2,) = P(a*' Q@ xy,...2%*Q x,) .

Die Funktion P sei jetzt insbesondere invariant. Dann erhilt man fiir den
entsprechenden Tensor @ unter Beachtung der Identitit

xH2*Q 2)a = a*¥x* Q" lx

die Beziehung
D(o*a*?, .. a*¥x*? a7 lay, ... 07lx,) =P (x"H(2*1® %), ... 07 (2*PQ x,)x)
= P(z*1® @,,...2*?Q =x,) = D(z*!,...z*?; z,...2,),

das heiB3t, der Tensor @ ist invariant. Umgekehrt erhilt man aus jedem in-
varianten Tensor p-ter Stufe eine p-fach lineare invariante Funktion P, in-
dem man diese zunéchst fiir die Tensorprodukte definiert, gemi

P(x*'@ zy,...2*¥?Q x,) = D(x*L,...2*?; 2,...2,)

und dann linear auf den ganzen Raum L(E) erweitert. Nach dem Satz in
Nr. 5 bilden somit die invarianten Funktionen, die durch die Gleichung

Pa(x*1® Liseen x*¥?Q xp) = (x*la xo(l)) was (x*p’ xo(y)) (29)

bestimmt sind, ein Erzeugendensystem fiir alle invarianten Funktionen. Um
hieraus einen expliziten Ausdruck fiir die Funktion P, zu erhalten, zerlegen
wir die Permutation ¢ in ihre Zyklen. Wir beginnen mit der Ziffer 1 und

bilden die Zahlen a(1), 02(1)...o'(1) =1, (30)

wobei j der erste Exponent ist, fiir den man wieder 1 erhlt.
Greift man aus dem Produkt (29) die entsprechenden Faktoren heraus, so
erhilt man das Teilprodukt

(%1, Zo(0) (FFW, Toay) . ... (2% D, ) (31)
Nun besteht fiir je p Vektoren a*® und a, die Beziehung?*)
(a*1, a,)(a*?, as) . .. (@*?, @) = Sp[(a*'® a,) (@**® a,) . .. (a**® a,)],

4) Dabei ist Sp ein Symbol fiir die Spur der Abbildung.
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die sich unmittelbar aus der Definition des Tensorproduktes ergibt, und somit
kann man das Teilprodukt (31) in der Form

%l —1
SPLE*1® ) (T*° W Zop) . . . (%7 'O, 2,521

schreiben.
Kommen in der Reihe (30) noch nicht alle Zahlen (1....7n) vor, so wihle
man eine Zahl u, die nicht auftritt, und bilde entsprechend den Zykel

a(u), o*(p)...al(u) = u. (32)

Dieser ist zum Zykel (30) elementfremd, und somit bestimmt er ein neues
Teilprodukt

(&%, Zy) <o (@50, 2) = S @ 3,) ... (2% W @ waa,)] -
Indem man so fortfihrt, bis alle Zahlen (1...%) erschopft sind, erhélt man
fir die invariante Funktion P die Darstellung
Pa*1® z,,... z2** Q@ z,) = Sp[(z* 1 @ z,) . .. 2 T g Thi—1p)] -
Splz*r @ z,) ... o' T ® Z,i-1,] - - -
Da die Tensorprodukte 2*® x den ganzen Raum L(FE) erzeugen, folgt
hieraus
P((pls i34 (pp) == Sp [‘pl(pa(l) 4 & '(pci—l(l)] * Sp[(PH,SUa(,,,) % e e 99,,1—-1(#)] R
Die Funktion P ist somit ein Produkt von Spuren, wobei jeder Faktor
einem Zykel der Permutation o entspricht und in jeder Spur so viele Abbil-
dungen auftreten, als der Zykel Elemente besitzt. Speziell erhélt man fir die
identische Permutation die Funktion
Plpr,...9,) =8p@1...8p g,

und fiir die zyklische Permutation ¢: v —-v 4+ 1 (mod p) die Funktion

Plpy, . 9p) =8p(@1...9p) .
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