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A Manifold which does not admit any Differentiable Structure

by MiceHEL A. KERVAIRE, New York (USA)

An example of a triangulable closed manifold M, of dimension 10 will be
constructed. It will be shown that M, does not admit any differentiable struc-
ture. Actually, M, does not have the homotopy type of any differentiable
manifold.

Also, a 9-dimensional differentiable manifold X*® is obtained. X? is homeo-
morphic but not diffeomorphic to the standard 9-sphere S°.

Use is made of a procedure for killing the homotopy groups of differentiable
manifolds studied by J. MiL~oR in [6]. I am indebted to J. MLNoOR for sending
me a copy of the manuscript of his paper.

Although much of the constructions (in particular the construction of M)
generalizes to higher dimensions, I did not succeed disproving the existence
of a differentiable structure on the higher dimensional analogues of M,. A
more general case of some of the constructions below will be published in a
subsequent paper, with other applications.?)

§ 1. Construction of an invariant

Let M0 be a closed triangulable manifold. Assume that M1 is 4-connected.
(M0 ig connected, and =;(M) = 0 for 1 <7 < 4.) It follows from PoIiNcARE
duality and the universal coefficient theorem that H?(M;G) =0 for
5<qg<10, and HS5(M) is free abelian of even rank 2s, say. (If no coef-
ficients are mentionned, integer coefficients are understood.)

Let Q = 28% be the loop-space on the 6-sphere. It is well known that
H3(Q)=2Z, H*(Q)= Z, and if n: Q X Q — 2 is the map given by the
product of loops, then

n¥(e) =¢,®1+1Qe, and
n*e,) =61 +1Qe +¢, e,
where e,, e, are the generators of HS5(2) and H?(Q) respectively, and

H*(Q x Q) is identified with H*(Q) ® H*(2) by the KUNNETH formula.
(Compare R. Bort and H. SamMELsoN [1], Theorem 3.1.B.)

Lemma 1.1. Let X ¢ H5(M) be given. There exists a map f: M — Q such
that f*(e,) = X.

1) This paper was presented at the International Colloquium on Differential Geometry and
Topology, Zurich, June 1960.



258 MiorEL A. KERVAIRE

Proof. Let K be a triangulation of M. Define f by stepwise extension on
the skeletons K@ wusing obstruction theory. f| K% is taken to be the con-
stant map into a base point on 2. Let X, be a representative cocycle of X.
For every 5-dimensional simplex s; of K, define f|s; to be a representative
of X,[ss]-times the generator of z;(2) L 74(S¢) L Z. The obstruction co-
cycle to extend f| K® in dimension 6 is zero. The next obstruction is in
dimension 10 with values in 7y(2) L 7,,(8%) = 0. (See [9], § 41.) Thus the
lemma is proven.

Define a function ¢,: H5(M) — Z, by the following device. For every
X e H5(M), take a map f: M — 2 such that f*(e;) = X. Then, ¢,(X) =
= f*(u,)[M], where u, e H®(Q; Z,) is the reduction modulo 2 of e, ¢ H°(£),
and f*(u,)[M] is the value of the cohomology class f*(u,) on the generator
of Ho(M*; Z,).

Lemma 1.2. The function ¢o: H*(M) — Z, 18 well defined, i.e., @y(X)
does mot depend on the choice of the map f: M — 2 such that f*(e,) = X.

Proof. Let f,g: M — 2 be two maps such that f*(e;) = g*(e,). We
have to show that f*(u,) = g*(u,). Let K again be a triangulation of M.
Since f*(e;) —g*(e,) = 0, it follows that f and g are 5-homotopic. (See
S. T. Hu [2], Chap. VI.) Since H?(M ; = (22)) = 0 for 5 < q < 10, it follows
that f and g are 9-homotopic. Hence, we may assume that f|K® =g | K®.
Let w'(f, g) e C°(K ; ,0(£2)) be the difference cochain. Then,

(F* () — g*(uy)) [810] = us[hw(f, g) [810]]

for every 10-simplex s,o, where h: 7,o(2) - H,o(f2) is the HurEWICZ homo-
morphism. According to J. P. SERRE, w%,[hx] is the mod. 2 HopF invariant
of the element in 7, (S®) represented by « € 7,4(£25%). (Compare [8], Lemme
2.) Since no element of odd Horr invariant occurs in 7., (S¢), it follows that
f*(uy) = g*(»,), and the proof is complete.

Lemma 1.3. Let X, Y e H5(M) be two integer cohomology classes of M.
Then,

Po(X + Y) = ¢o(X) + @o(Y) + 2y,

where z-y 1is the value on the generator of H,,(M°; Z,) of the cup-product
zvy. (x,y are the mod. 2 reductions of X and Y respectively.)

Proof. Let f,g: M — 2 be maps such that f*(e;) = X and g*(e,) = Y.
By definition, go(X) = f*(ug)[M], and @o(¥) = g* (uy) [M].

Let fxg: MxM — 2x82 be the product of f and g. (L.e., f xg(u,v) =
= (f(w),g(v)).) Let D: M —- M x M be the diagonal map. Define F : M -
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by F=mo(f X g)oD, where n: 2 X 2 - Q is given by the multiplica-
tion of loops. Since D* maps the tensor product of cohomology classes into
their cup-product, we have F*(e,) = D*(X® 1+ 1Q® Y) = X + Y. There-
fore,

Po(X + Y) = F*(u,) [M] .
On the other hand,

F*(up) = D*(f*(ug) @ 1 + 1 @ g*(uy) + f*(u,) ® g* (u,))
= f*(ug) + g* (uy) 4 f*(u,) v g* (u,)
= f*(uy) + g*(uy) +xvy.

(u, is the reduction modulo 2 of e,.) This proves Lemma 1.3.

The function ¢,: H3(M) - Z, induces a function ¢: H5(M; Z,) > Z,
satisfying ¢(x + y) = ¢(x) + ¢(y) + z-y. Indeed, if X is an integer class
whose reduction modulo 2 yields z ¢ H3(M ; Z,), we define ¢@(z) = @4(X).
It follows from

Po(2Y) = @o(Y) + @o(¥Y) +yy=yy=0,

that ¢(x) ¢ Z, depends only on z e H3(M ; Z,).

The function ¢: H3(M ; Z,) - Z, is then used to construct the number
D (M) as follows. A basis z,,...,%,,¥;,...,y, of H3(M; Z,) as a vector
space over Z, will be called symplectic if z;-o; =y,-y; =0, and =z;-y; = 8
forall 4, j=1,...,s. Clearly, symplectic bases always exist. Moreover, it
is well known that since the function ¢: H%(M ; Z,) — Z, satisfies the equa-
tion

ez +y) =9 + el + 2y,
the remainder modulo 2
(M) = Z19(x,) - (y:)

is independent of the symplectic basis z;,..., Z;, Y1, .-, Ys-

The rest of the paper is devoted to investigating the properties of the
invariant @.

Clearly, @ is an invariant of the homotopy type of 4-connected closed
manifolds of dimension 10.

Our objective is the proof of the following theorems.

Theorem 1. If M0 has the homotopy type of a C'-differentiable 4-connected
closed manzifold, then @ (M) = 0.

(It can be shown that the converse of this theorem would follow from the
conjecture that the cohomology ring H* (M) and @(M) are a complete set
of invariants of the homotopy type of the triangulable 4-connected closed
manifold M of dimension 10.)
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Theorem 2. There exists a closed 4-connected combinatorial manifold M, of
dimension 10 for which @ (M) = 1.

(In fact a specific example will be constructed.)

In § 2, the proof of Theorem 1 will be carried out taking Lemmas 4.2 and
5.1 for granted. (Lemma 4.2 is used in the proof of Lemma 2.2, and Lemma
5.1 is used to deduce Theorem 1 from Lemma 2.4.) The Lemmas 4.2 and
5.1 are proved at the end of the paper, in § 4 and § 5. Theorem 2 will be
proved in § 3.

§ 2. Proof of Theorem 1
Let M1 be a closed C!-differentiable manifold which is 4-connected.
Lemma 2.1. M1° i3 a -mansfold.

Proof. Let M c R*1% be an imbedding with n large. We have to
show that the normal bundle » is trivial. This is done by constructing
a field of normal n-frames f,. Let K be a triangulation of M. Since
7,(S0,) = 0, and M is 4-connected, it follows that H*(M ;= (SO,)) = 0
for 0 < ¢ < 9. Thus, there is only one possibly non-vanishing obstruction
o(v, f,) e HO(M ; ny(S0,)) L 7y(SO,) to the construction of the field f, of
normal n-frames. By Lemma 1 of [7], o(», f,) is in the kernel of the HorF-
WHITEHREAD homomorphism Jy: 7,(S0,) = 7,,,(S*). But J, is a mono-
morphism. (Compare proof of Lemma 1.2 of [4].) Hence, o(v, f,) = 0, and
the lemma is proved. (Recall that the proof of the assertion: J, is a mono-
morphism, was based on Corollary 2.6 of J. F. ApDaMS paper On the structure
and applications of the Steenxrop algebra, Comm. Math. Helv. 32 (1958),
180-214. This statement also follows from the portion of the PosTNikov de-
composition mod. 2 of S* given below in § 5.)

The THOM construction associates with every framed manifold (M; f,),
where M c R™4mM  an element o(M; f,) € Ty, am x(S*). We say that
(M10; f.) is homotopic to zero if the corresponding element «(M; f,) is the
neutral element of 7, ,,(S").

Lemma 2.2. If (M?9; f,) 18 homotopic to zero, where M?° 1is 4-comnected,
then ®(M) = 0.

Proof. The assumption that (M;f,) is homotopic to zero implies the
existence of a framed manifold (V1!; F,) with boundary M?°. (Compare
R. THOM [10].) We may assume that V is connected, and hence has a trivial
tangent bundle. We can therefore apply to V — M the procedure for killing
the homotopy groups of a differentiable manifold studied by J. MILNOR.
Specifically, using Theorem 3 of [6], we obtain a new 11-dimensional differen-
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tiable manifold with boundary M?° which is also 4-connected. This new 4-
connected manifold will again be denoted by V1. We can now forget about
the fields of normal frames.

We proceed to compute @(M). Consider the cohomology exact sequence
of the pair (V, M) with coefficients in Z,,

. > HS(V) S HS (M) S HO(V, M) > -+ -
Using relative PoincARE-LEFscHETZ duality (over Z,), and the formula
uvox(V, M]=1t*(u)vz[M],

where wu e H%(V), x e H3(M) and [V, M], [M] are the generators of
H.(V,M;Z,) and H,,(M; Z,) respectively, it follows that HS(M; Z,)
has a symplectic basis z;,...,2,,¥%,,...,¥, say, such that =z,,...,z, is
a vector basis of Ker §. Consequently, in order to prove ®(M) = 0, it is
sufficient to show that @(x) = 0 for every « ¢ Ker 4.

Let X ¢ H®(M) be an integer class whose reduction modulo 2 is z, and let
f: MY - Q= Q8% be a map such that f*(e;) = X. We have to show that
f*(u,) = 0, where u, generates H!°(2; Z,). Let Q* be the space obtained
from Q by attaching a cell of dimension 6 by a map S5 -2 of degree 2.
By Lemma 4.2 in § 4, below, for every map g: S — Q*, one has g*(u,) = 0,
where we denote by wu, e H°(2*; Z,) again the class corresponding to the
old u, e H10(£2; Z,) under the canonical isomorphism H°(Q; Z,) © H®(Q*; Z,).

We attempt to extend f: M — Q* to a map of V into 0Q*. Let (K, L)
be a triangulation of (V, M). The stepwise extension of f on the skeletons
K@ o L leads to obstructions in the groups H'(K, L; n,(2*)). For
q<b, 7w, (£2%) = 0. We meet a first obstruction for ¢ =5 in H¢(K, L; Z,).
By the Hopr theorem, this obstruction is éz. (See S. T. Hu [2].) Since dx = 0,
it is possible to extend f on K® o L. Using H¥*Y(K,L;G) =0 for
5<qg<10 (since V is 4-connected), it follows that there exists a map
F: K —v— Q% where v is some 11-dimensional simplex in K — L, such
that F|L = f. Let S'° denote the boundary of v, and let g: 819 — Q* be
the restriction of F on 8. Since 9(K — 1) =L — 8%, and g*(u,) = 0,
it follows that f*(u,) = 0. The proof of Lemma 2.2 is complete.

Corollary 2.3. If two 4-connected framed manifolds (M ; f,) and (M'; f)
of dimension 10 define the same element o« = (M ; f,) = a(M'; fl) by the
TroM construction, then @ (M) = O (M').

This is obtained by observing that @ is additive with respect to the connected
sum of manifolds.

It follows that @ provides a homomorphism from a subgroup of x,.,,(S")
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into Z,. We denote this homomorphism by & again. Actually, @ is defined
on every element of =, ,,(S"). Indeed, using spherical modifications [6], it
is easy to see that every element « e€,,,,(S") is obtainable from a 4-con-
nected framed manifold by the THOM construction. This remark will not be
used in the present paper.

It follows from Corollary 2.3 that Theorem 1 is equivalent to the statement
that @(x) = 0 for every o« e, ,0(S"), provided P(x) is defined.

Since @D (x) is obviously zero for every element « of odd order, and by
J. P. SERRE’s results =, ,,(S") contains no element of infinite order, it is
sufficient to show that @ annihilates the 2-component of the group =, ,,(S").
By Lemma 5.1 in § 5 below, every element « in the 2-component of =, ,,(S")
is representable in the form

x=fon,
where 7 e m,,,0(8"+?) is the generator of the stable 1-stem, and f ez, 4(8").
Hence, Theorem 1 will follow from the

Lemma 2.4. Every element o e, 10(S") of the form o« = Bon, with
N €T, 10(8™?), and P em, (8" s obtainable by the THom construction from
a framed manifold (X'°; f,), where X'° has the homotopy type of the 10-sphere
A

Proof. We first show that g e, ,(S") is obtainable by the THOM construc-
tion from a framed manifold (2?; f,), where X® has the homotopy type of
the 9-sphere.

It is well known that f is obtainable by the THOM construction from some
framed manifold (M?; f,). We have to show that (M?; f,) is homotopic
to a framed manifold (2?; f,), where X*® is a homotopy sphere. This is done
by simplifying M?® by a series of spherical modifications. (See J. MiLNOR [6].)

Assuming by induction that M?® is (p — 1)-connected (0 < p < 4), we
have to prove that (M ; f,) is homotopic to a p-connected framed manifold
(M'; f,). Recall that a spherical modification of type (p + 1,q + 1) applied
to a class Aenm,(M® consists of the following construction. Represent 1 by
an imbedding

f: 87 x DI+l » M?

with p + ¢+ 1 = 9. (This is possible for p < 4 since M?® is a z-manifold
and the normal bundle of any imbedding S? — M?® is stable in this range of
dimensions.) The manifold M is then replaced by

M =M — f(S? x Dat+1)) v (DP+1 x 89)

under identification of f(8? x 89) regarded as the boundary of f(S? x D%+1)
with 87 x 8¢ regarded as the boundary of D#+! x 8¢. By Theorem 2 of
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[6], the manifolds M and M’ bound a 10-dimensional differentiable manifold
w=ow(M,f), and f:8? x DI+l —~ M?® can be chosen such that the field f,
(over M) is extendable over w as a field of normal n-frames. (We can think
of w as imbedded in R"*® with M < R**® x (0) and M' c R"+® x (1)
since n can be taken as large as we please.) Hence spherical modifications of
type (p+ 1,9+ 1) with 0 <p =<4 can be performed so as to carry
(M; f,) into a homotopic framed manifold. It is known (Theorem 3 of [6])
that for p < 4, spherical modifications simplify the manifold. More precisely
7, (M') is isomorphic to the quotient of x,(M) by the subgroup generated
by 4, and #n,(M) Qxn,(M') =0 for + < p. Hence, it is easy, using [6], to
obtain a 3-connected framed manifold homotopic to (M?; f,). The case
p = 4 requires special care. If 1 ex,(M?®) is the class we want to kill, there
exists an imbedding f: 84 x D5 — M?® such that f|S%Xx (0) represents 1.
Let M' = (M, f) be the 9-dimensional manifold obtained from M and f
by spherical modification. (f is supposed to be chosen so that (M'; fl) with
some f, is homotopic to (M; f,).) In general, however, f| xz, x (bdry D5)
represents a non-zero element of x,(M’). Thus, it is not clear a priori that a
series of spherical modifications of type (5, 5) will carry M into a 4-connected
manifold, and hence a homotopy sphere.

If 2 is a generator of the free part of =n,(M) L H,(M), there exists by
PoiNncaArE duality a class u e Hg(M) whose intersection coefficient with 2
(or hA rather, where h is the HUREWICZ homomorphism) is 1. It follows that
in this case the cycle given by f| x, X (bdry D®) is homologous to zero in
M —f(S%x D%, and hence in M'. Thus H,(M') L n,(M') has strictly
smaller rank than H,(M) L =,(M), and the torsion subgroup is unchanged.

I claim that if Aenm, (M) is a torsion element, the homology class of the
cycle f| x, X (bdry D%) is of infinite order for any f representing A. Hence,
one more spherical modification will lead to a manifold with 4-dimensional
homology group of not bigger rank than H,(M) and with a strictly smaller
torsion subgroup. (I.e., a series of spherical modifications will lead to a 4-
connected framed manifold homotopic to (M?®; f,). By PoiNcArRE duality,
a closed 4-connected manifold of dimension 9 has the homotopy type of §°.)

Since the BETTI numbers p,, p; of M and M’ (in dimension 4) differ at most
by 1, and differ indeed by 1 if and only if A’ (represented by f| x, X (bdry D"))
in M’ is of infinite order, it is sufficient to show that p; + p, = 1 mod. 2.
Since p} = p, for 0 <4 < 3, this is equivalent to showing that the semi-
characteristics E*(M) and E*(M') of M and M' (over the rationals, say)
satisfy E*(M') + E*(M) = 1 mod. 2. We use the formula

Ex(M')+ EX(M) =E(w) +r mod. 2,
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where B (w) is the EULER characteristic of the manifold @ with boundary & =
M’ — M, andristherank of the bilinear form on H%(w, ®; Q) defined by the
cup-product. (Compare M. A. KERVAIRE [3], § 8, formula (8.9).) It is easily
seen that F(w)=1, up tosign, andsince u-u =0 forevery u ¢ H}(w, @; Q),
the rank r must be even: r =0 (mod. 2). Hence, E*(M') + E*(M) =1
mod. 2.

Summarizing, we have proved so far that every f e =, ,(S") is obtainable
by the THOM construction from a framed manifold (2?; f,), where the
manifold X® has the homotopy type of S?.

Taking a representative f: S§"+10 —» §n+% of 5 such that f-1(8"+° — z,)
is diffeomorphic to S* x (8*+?* — z,), we obtain that « = f o7 is obtainable
by the THOM construction from (8* x X°?; f,).

It remains to show that (8! x 29; f,) is homotopic to a framed manifold
(21, f/), where X0 is a homotopy sphere.

Apply once more the spherical modification theorems (Theorems 2 and 3
of [6]), this time to the class A ex,(S! x 2°) represented by S! X (2,). The
resulting framed manifold is homotopic to (8! x 2?; f,) and has the homo-
topy type of the 10-sphere. This completes the proof of Lemma 2.4.

To complete the proof of Theorem 1 it remains to prove the Lemmas 4.2,
and 5.1. This is done in § 4 and § 5.

§ 3. Construetion of M,

This section relies on J. MILNOR’s paper [5]. Let f,: S+ - SO, be a
differentiable map whose homotopy class (f,) satisfies

7:* (fo) = 3?35 ’

where 0: 75(S®) — 7,(SO;) is taken from the homotopy exact sequence of
S0/S0s, and ¢: SO, - SO; is the usual inclusion. Define f, = f, = ¢ o f,.
Using f,, fy: 8* - S0O;, a diffeomorphism f: 8% x 84— 84 x §4 is given
by f(z,y) = (&', y'), where y' = f,(x)-y, and @ = fo(y/)-2’. Let M (f,, fy)
be the MiLNor manifold obtained from the disjoint union of D% x S4 and
S84 x D% by identifying each point (x,y) in the boundary of D% x S§¢ with
f(z,y), considered as a point on the boundary of S* x D5. By Lemma 1 of
[5], together with the remark at the bottom of page 963 in the proof of Lemma 1
in [5], it follows that the differentiable manifold M (f,, f,) is homeomorphic
to the 9-sphere. It will follow from Theorem 1 in this paper, that M (f,, f,)
is not diffeomorphic to the standard S?. Let W20 be the differentiable mani-
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fold with boundary M (f,, f,) obtained using the construction on page 964 of
[6]. W can alternately be described as follows. Let U be a tubular neighbor-
hood of the diagonal 4 in 8% x S5. It is well known that U is the space of
the fibre bundle p: U — 8% with fibre D5 associated with the tangent bundle
of §5. The differentiable manifold W is obtained by straightening the angles
of the quotient space of the disjoint union of two copies U’ and U” of U
under an identification of p'-1(V) with p”"-*(V) such that the images of
4" and A" in W have intersection number 1. (V is an imbedded 5-disc on
S8, and p'-1(V) @ D3 x D5 is identified with p"-1(V) @ D5 x D5 under
(u,v) <> (v,u), u, veDs)

Since W is a 10-dimensional manifold whose boundary M (f,, f,) is homeo-
morphic to §?, the union of W with the cone over the boundary is a 10-dimen-
sional closed manifold M,. Since M (f;, f,) is combinatorially equivalent to S°,
it follows that M, possesses a combinatorial structure. (Compare J. MILNOR, On
the relationship between differentiable manifolds and combinatorial manifolds,
mimeographed notes 1956, §4.)

It is easily seen that M is 4-connected.

We proceed to compute @ (M,). Let x, y e H3(M,; Z,) be the cohomology
classes dual to the homology classes of the imbedded spheres §', j”: 8% — M,
given by the images in W of the diagonals A4’ and 4” in U’ and U” respec-
tively. Clearly, z, y is a symplectic basis of H5(M,; Z,). (L.e.,, z-z =y-y =0,
and z.-y = 1.) To show that ¢(x) = ¢(y) = 1, observe that the normal
bundles of j' and j” (regarded as imbeddings of 85 in the differentiable mani-
fold W) are non-trivial. These bundles are isomorphic to p: U — 85. Let
K be the THOM complex of this bundle. (I.e., the space obtained by collapsing
the boundary of U to a point.) It is well known that K admits a cell decompo-
sition S® v el® where the attaching map S° — 85 is a representative of the
WHITEHEAD product [, 75]. On the other hand, the THOM construction pro-
vides a map f,: M, — K suchthat f;(e;) = X, the dual class of j': 85— M,,
and f¥(u,)[M,] = 1, where e, generates HS5(K;Z) and wu, generates
H“K;Z,). Amap f: M, —> Q8¢ is obtained by composition of f, with the
usual inclusion 85 v el® —» Q8¢ (Recall that 28¢ has a cell decomposition
Q88 =85 ueldvelduey ..., where the attaching map of e!° represents
[is, %].) Then, f: M, — 28¢ has the properties f*(e,) = X, f*(u,) =1,
showing that ¢(x) = 1. The same construction applied to Y, the dual class
of §7: 85 - M, yields ¢(y) = 1. Hence @ (M,) = ¢(x)-¢(y) = 1.

If M(,,f,), with the differentiable structure induced by W (of which
M (f,, f,) is the boundary) were diffeomorphic to S° with the standard diffe-
rentiable structure, the differentiable structure on W could be extended to
a differentiable structure over the cone CM (f,, f,), providing a differentiable

19 CMH vol. 34
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structure on M,. However, @(M,) = 1 and Theorem 1 show that a differ-
entiable structure on M, does not exist. Hence, M (f,, f,), homeomorphic
to §?, is not diffeomorphic to S?.

§ 4. The auxiliary space 0Q*

Let Y = 85%v ,, e® be the space obtained by attaching a 6-cell to S° by
a map S5 — 85 of degree 2.

Lemma 4.1. Let x eng(Y) L Z, be the generator, then [x,x] # 0 emy(Y).

Proof. We identify Y with the STIEFEL manifold ¥V, ,. Consider the exact
sequence

¢ > 7030(89) = 4 (8%) 5 7y (Vy 0) > -

Since 7,4(S®) = 0, and [7;, %] is non-zero in my(S%), it follows that
i[85, 0] = [35 (35) » 25 (45)] = [, ] # 0.

Let Y* = Y v el® be the space obtained from Y by attaching a 10-cell
€% using a representative f: S® - Y of [x,«]. Since Y is 4-connected, the

characteristic map ;\: (D1, 89 — (Y*, Y) of e induces an isomorphism
fr: 730(D10, 8%) >y (T*, ¥) .

(Compare J.H. C. WHITEHEAD [12], Theorem 1.) Thus the relative HURE-

wICZ homomorphism hg: m,o(Y*, Y) > H, (Y*, Y) L Z is an isomorphism.

Consider the homotopy-homology ladder of (Y*, Y):

e >y (Y) —_>n10(Y*)ign10(Y*a Y)—a’ﬂs(y) —> e

) Vh Y he )
s >0 > Hyo(Y*BH (YY) >0

Since 9 sends the generator of =, (Y*, Y) into [«,«] %0, and 2[x,x] =0,
it follows that every element in Im {A: 7, (Y*) - H((Y*)} can be halved.

It follows that for every map g,:S8%® — Y *, the induced homomorphism
ge: H®(Y*; Z,) — H®(8%; Z,) is zero.

Let Q be the space of loops over S¢. Up to homotopy type
Q=_8uvel0veldby  with e!° attached by a map of class [¢;,¢5]. Let
Q* = 0Q ve®, where e® is attached by a map of degree 2 on 8% ¢ 2. There
is a natural inclusion Y* — Q* which induces an isomorphism on cohomology
groups in dimension 10. Hence, we have the

Lemma 4.2. Let g: S - Q* be a map, and let u, be the generator of
HwQ*; Z,) © Z,. Then, g*(u,) = 0.
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§ 6. A lemma on homotopy groups of spheres

Lemma 6.1. The map =, (S") = #,.10(8"), for n = 12, defined by com-
position with the generator n of m, . ,o(S™®) is surjective on the 2-component.

This lemma was communicated to me without proof by H. TopA who has
also proved that the 2-component of =,, ,,(8") is Z,. (See H.Topa [11],
Corollary to Proposition 4. 10.)

We give a sketch of proof by computation of the PosTNIKOV decomposition
modulo 2 of 8" for large n, up to dimension » -+ 10.

We begin with a remark which will yield Lemma 5.1 whenever a long
enough portion of the PosTNIKOV decomposition of S” is obtained. Let X =
K(Z,,n+9) x ;K(Z,,n -+ 10) be the space of the fibration over K(Z,,n + 9)
associated with the k-invariant ke H*"*(Z,,n + 9; Z,). Let f: S*t?* > X
be a map representing the generator of =, (X) ¥ Z,. Then, the composition

fon: 810 » X where 7: Sn+10 — Snto

represents the generator of =z, ,,(8"*+?), is essential if and only if k = Sq?(¢),
where ¢ is the fundamental class of H"+%(Z,,n + 9; Z,).

Since Sg¢2(¢) generates H™(Z,,n + 9; Z,), it follows that k £ Sq?(e)
implies k = 0. Hence, fo7 isinessential if k 7= S¢?(e).

If k=S8ge), let f:Sm9o emtll » X o, el be the map induced
by f. Let s e H™®(8™® o entll; Z,) be the generator. We identify
Hrt9(X ventll; 7,) and H™®(X; Z,) with H"+%(Z,,n + 9; Z,). Since
f*(e) = s, and Sq%(s) % 0, it follows that Sq¢?(e) # 0 in HrH11(Xuentll; 7.,
To show that fo# is essential, it is therefore sufficient to show that Sq?(e) =
=0 in H*"(X; Z,). This follows from the commutativity of the diagram

0« H*%(X; Z,) < H"*(Z,n + 9; Z,) < 0
| 8¢ ~ 8¢
Hry(X 5 Z,) < H™(Z,, n + 9; Z,) < H19(Z,, 0 + 10; Z,),

where the rows are taken from the exact sequence of the fibration defining X
(in the stable range), and 7 is the transgression.

Let Y,y—»>Yy—> -+ —>Y,>Y, ,—>--->Y,=K(Z,n) be the mo-
dulo 2 PosTNikOV decomposition of 8. (I.e., p;: Y, - Y, , is a fibration
with fibre F, = K(n;,n + ¢), where z; is the 2-component of the stable
group =,,,(S*), and H*(Y,;Z,) contains Z, in dimension 0 and =,
HY(Y,;Z,) =0 for 0<g<mn, and H"*(Y,;; Z,) =0 for 0 <k <t 4 2.)
By the @-theory with € = the class of finite groups whose order is prime to
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2, a map 8" — Y, inducing an isomorphism H*(Y,; Z,) & H*(S"; Z,) in-
duces an isomorphism of the 2-component of =x,,,(S") with =, .(Y,) for
k <i. (Compare J.P.Serrk([8].) We have ny2Z,+ Z,+ Z, and
70 L Z, as will be seen below, thus

FOZK(227”’+9) X K(Z2an+9) X K(zz,n+9),

and Lemma 5.1 follows by showing that the restriction of the fibration
Y0 = Y, over one of the factors of Fy is K(Z,,n + 9) X K(Z,,n + 10)
with k= 8gq?. This is equivalent to showing that H»*1(Y,; Z,) © Z, is ge-
nerated by a class u, such that i, (u,) = Sq?(e,), where &, is one of the
fundamental classes of H®(Fy; Z,), and i4: Fy — Y, is the inclusion.

In a similar way, it can be read off from the tables below that com-
position with % provides injective maps =, ,(8") ® Z, ==, s(S") and
R, 8(8") = 7, (8") in the stable range. Using =,(S0,) L Z, n4(S0,) L Z,,
and 7,(S0,) L Z,, this implies that J,: 7y(S0,) = 7,,,(8") is a mono-
morphism.

We proceed to a partial description of the modulo 2 cohomology of the
spaces Y,.

H*(Y,) is given by J. P. SERRE in [9]. This result of J. P. SERRE and the
ADEM relations between the STEENROD squares are the essential tools in com-
puting H*(Y,; Z,) for k> 0. Since we stay in the stable range, the spectral
sequences of p,: Y, — Y, , reduce to exact sequences

* *

s Bt (Y, ) & Hme(Fy) < B a(Y,) < BWe(Y, )« -

It is therefore sufficient to determine at each step the kernel and the image
of the transgression 7. Since the cohomology of Y, is independent of k up to
dimension #, we omit to mention the non-vanishing cohomology groups in
dimension =< n. The direct sum of the subgroups of H*(Y,; Z,) in dimen-
sions > n is denoted H*(Y,).

The symbol ¢, stands for the composition p,op,0---0p,, and g, de-
notes the fundamental class of H"*(G,n + k; G).

I omit Y, and Y, whose cohomology is straightforward, but has to be
computed up to dimension n + 17 and = + 16 respectively. H"*t4(Y,; Z,)
is generated by ¢)(Sq*e,), and H™5(Y,; Z,) by a class u, such that
iy () = S¢°(¢y).

Fy = K(Zg,n + 3), with z(e}) = ¢} (Sq*s;) and 7(Be;) = u,, where B
is the BOCKSTEIN operator associated with the sequence of coefficients
0—>2Z,—>2Z4—>2Zy—0, and &} is the mod. 2 reduction of ;.
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H+*(Y,) has a bastis consisting of

uz in dimension n + 7, such that iy (u;) = Sqeh;

Sq'(us), g5 (Sq8eo); Sq(uy), v, such that F (v,) = Sq°Bey; Sq3(u,);
8¢t (uy); Sgd(us), Sq*8q (us), g3 (Sqe) ; 8¢ (us), S¢S (us), Sg*(vs);
8q°8q* (us), Sg88q*(u,), g5 (Sq'e,) ;

8q8(us), 8q"8q* (us), Sq°S8q?(us), Sq°(vs), g3 (Sq%¢y); . . .

Y4=Y5=Y3. (7t4=7t5=o.)

Fo= K(Z,,n + 6) with 7(g) = p:pf(%).
H+(Y,) has a basis consisting of
q; (Sq®eq); Py 13 i (v5), ug such that ig(ue) = Sq2Sq eq;
Sg'(ug); nothing in dimension n + 11; ¢f (Sq%2e,), Sq2Sq* (ue);
Py P Vi (S4403), S (us), vs such that i (ve) = Sq7es;
Qf(Sql‘eo), Sq5(ug); qs (Sq*®eo), Py s Py (Sq8v3), - ..
(and possibly other classes of dimension n -+ 15).
F; = K(Zy, n+ 7) with T(eé) = Q:‘(queo) and t(f'e;) = p*p:pax(”a)s

[
where g’ is the BoCKSTEIN operator of 0 — Z, - Z;, - Z,, =0, and ¢

is the reduction modulo 2 of ¢,.

H+(Y,) has a basts consisting of

4, in dimension 7 + 9, such that i, (u,) = Sq%(&}), vy (u,);

Sq(us), Py (Sq*ug), v, such that iy (v,) = Sq?f'e,;

8¢ (v7); 84?8 ¢* (us), P7 (SPSG us), - - . (8q%(v;) = 0.)

Fo=K(Z,+ Z,, n + 8) with 7(&}) = u,, 7(c5) = p3 (ug), where &, and
g are the two fundamental classes in H™8(Fg; Z,).

H+(Yg) has a basts consisting of

s (v3), ug, vg, Where ig(ug) = Sq?(e5) and i3 (vg) = 8¢%(e5);
8¢ (ug), Sq*(vg), Ps (Sq'vy);

qu(us), qu(”s)’ e

Fy=K(Z,+ Z, + Z,, n + 9) with fundamental classes &, &5, &f which
are send by transgression on p; (v,), ug, vg respectively.

Hr2\(Y,y; Z,) L Z,(uy), where "::(us) = Sq?(e,) .

We have seen that this statement implies Lemma 5.1, hence the proof is
complete.
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