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Â Note on the Samelson Product in the Qassical Groups

by Raoul Bott1), Harward University, Cambridge (Mass.)

In a topological group G the correspondance (x, y) -^y-x-y^-x-1 defines
a map

c: G#G-+G

where as usual G §G stands for the identification space G x GjG xe^exff,
with e the identity of G. This map c induces a pairing of nn{G) with nm(G)
to 7tn+m(G) in the plausible manner: if oc: Sn ->G, p : 8m -> are maps
based at the identity, the composition c o (oc % fi) : Sn # Sm -> G détermines
an élément of 7in+m(G) in view of the homeomorphism of Sn$Sm with
8n+m. That the induced function is actually a bilinear one was shown by
Samelson [4]. (See also G. Whitehead [6].)

The commutator c thus induces a ring structure on n* (G). If G is homo-
topy abelian this product, which we will refer to as the Samelson product
and dénote by <<%, /?>, is clearly trivial. Therefore {oc, /?> can be thought
of as an obstruction to homotopy commutativity.

In [5], Samelson used this criterion to show that the unitary group in two
variables, U2, was not homotopy abelian. He showed that if oc €7tz(U2) was
a generator, then <#, <%> ^ 0.

Recently James and Thomas [3], considerably extended this resuit ; they
showed, for instance, that among the classical compact groups only the truly
commutative ones were homotopy abelian. Their method is again to find
éléments oc enn {G) with <<x, oc) ^ 0.

Both authors essentially conduct their search for nontrivial squares <<x, oc},
not in C?, but in the classifying space, Bg of G. This is possible in view of
another of Samelson's results [4], according to which the natural isomorphism
^ : 7Cn+i(jB(?) -*ttn(@) transforms the Whitehead product on Bq, into the
i 'commutator" product on G :

In this note we study the ring n*{Ut), where Ut is the unitary group in
^-variables, directly from its définition, and show that with the presently
known information about n^UJ), a quite elementary degree argument
évaluâtes the first potentially interesting Samelson products. Recall that [1],

*) The author holds an A. P. Sloan fellowship.
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Hence the first interesting instance occurs when <x € n%r+x{Ut), fi € 7tZ8+1(Ut) ;

(t r + s + 1), the produet <<x, /?> being an élément of Z/tlZ. Our resuit
can be stated as follows :

Theorem 1. The kernel of the homomorphism

which talces a (g) fi into <<%, /?> is divisible by precisely tl/rlsl.
Corollary. If «cn2r+1 (Ut), fien28+1 (Ut), y €n2t(Ut), are suitable genera-

tors, then <<%, fi} rlsly. This élément does not vanish unless y 0, ihat
is, unless r — s — 1.

We also give an analogous formula for the symplectic group 8Pn. (Theorem

2 of § 2.)
In the orthogonal groups thèse methods can also be used to show the non-

triviality of certain Samelsok products. However hère this produet vanishes
for stable homotopy classes. We hope to return to this case in the future, and
hâve, for that reason, described the initial constructions for the whole family
of classical groups.

2. A suspension formula. We will follow the notation of James (2) : if K
is one of the three fields over the real numbers, Km dénotes the right IT-module
of m-tuples of éléments of K :

x (xl9...,xm)
An inner produet is defined on Km by the formula (x, y) Ex^i where
the bar dénotes the conjugation in K. The group of automorphisms of Km
which préserve this inner produet is denoted by Om. Hence if K is real field,
Om is the orthogonal group in m variables, and when K is the complex field
Om is the unitary group, Um, in m variables. In the case when K is the field
of quaternions, Om becomes the symplectic group SPm in m-variables.

Let fy, (j 1,..., m) be the m-tuple with jth coordinate 1 and ail others
0. If n < m we distinguish two imbeddings of On in Om.

(2.1) i : On -> Om identifies On with the subgroup of Om leaving the last
m — n éléments of the basis el9... em point wise fixed.

(2.2) i1 : On-+Om identifies On with the subgroup of Om which leaves
the first m — n éléments of this basis point wise fixed.
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Consider the map :

On$Om^Ot$Ot-^Ot (2.3)

where c is the commutator map of the introduction. If t ^ n + m, then
this composition yields the trivial map as then iOn and i'Om commute. If
t n -\- m — k with k> O this is no longer true, but the map (2.3) may
still be factored whenever k is less than both n and m. (We will make this
assumption throughout the rest of this note.)

Indeed the two image groups of the following compositions :

commute with iOm and i'On respectively. Hence if we write Onk for
0n/i0n_k and O'm1c for Omji'Omtk and dénote the natural projections by n
and n' respectively, the map (2.3) induces a map: 0njk $0rmk-*0t which
makes the following diagram commutative :

0A0. co<ifi<)

n$n'\

Consider next the fibering. Ot -X 0t+k -> Ot+kk, where again Ot+k% k is equal
to Ot+k/iOt in accordance with the James notation.

We assert that the map A, which takes values in the fiber of this fibering,
is suspendable in the total space, and we will construct an explicit suspension
kE: E(0ntk%0rmile) ->0t+k>k for it. That X can be suspended is plausible
enough : It was already remarked earlier that the map

On % Om > Ot+k

was trivial because 0t+k On+m. However c © (i # i;) and i o % o (n % n1)

are homotopic as maps into Ot+k. A déformation between them followed by
the projection on Ot+ktk should therefore yield the suspension.

Explicitly we proceed as follows. Let X 0ntk$0'mtk. For convenience
we represent the suspension of X, that is EX, as the quotient X X [0, rc/2]/
(X x 0 ^ X x nj2). Also, for each 6 e [0, jr/2] we détermine an élément
ae € Ot+k according to this prescription: Let <x n —k, then

cos 0ea+i + sin 6et+i 0 < i < k

— sin 0eot4.i + cos 6et+i 0 < i < k

Ail other basis vectors are to be pointwise fixed. We also let Aq : Ot+k -> 0<+fc
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be the inner automorphism induced by o,q : Aef a^-f-a^1, f € Ot+k. Clearly
a0 is the identity whereas an{2 maps the plane spanned by the ca+t, 0 < i < k,
onto the plane spanned by the et+t, 0 < i < k. As a resuit, if ix and i2 are
the compositions

'tfc

the two groups t*i(On) and -^^(O^) commute.
Further the éléments in the image of :

On-kXon^Ot+k and 0m_k±0mX0t+k

commute with ae for ail 0 < 0 < nj2.
It is now easily verified that the function

s: On # Om x [0, */2] -> Ot+fc On+m

defined by :

5(/, g, 6) [4e o tag, h/] feOn,geOm,e€[o, n/2]
induces a map of CX X x [0,^r/2]/X X [?r/2] into O^+fc whose restriction
to J X [0] is precisely X. This proves that A is suspendable, and we may
take for Xe the map induced by to5, on EX.

Thèse constructions hâve the following conséquence :

Proposition 2.1. Consider the map c © (i$ir) : On%Om -> Ot. Then the

induced homomorphism in homotopy has the following factorization :

{co{i$i')}* Ao}*oEo(n$n%
where n % nf : On % Om -> On k # Ofmtlc is the natural projection and
E dénotes suspension. The homomorphism A^ is induced by the map
Xe: E(Ontk %Ofmtk) -> 0M_fc)fe, and A dénotes the boundary operator in the

exact séquence of the fibering Ot -> Ot+k ~> Ot+k> k.
Consider now the case k 1. If d is the dimension of K over the real

field, Onl is homeomorphic to a sphère of dimension dn — 1. In this case,

then, Xe will be a map from E {Sdn__x % Sdm^) to /Sd<tt+TO)-1. Thus Xe is a

map between sphères of equal dimension. In the next section we will prove
the following proposition :

Proposition 2.2. Consider the situation of proposition 2.1, with k 1. The

map Xe is then a map of >Sd(n+w)_1 onto $d(W+TO)_i with degree 1.
As a corollary to thèse two propositions we bring the proof of theorem 1.

Let then K be the complex field, whence d 2. From the homotopy

séquence of the fibering : Or-1 -> Or -> $dT-i one concludes that : [1],
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(&) rc<fr_i(0r) is stable. (Use r + 1 for r in the above séquence.)
(b) The section of the séquence 7rdr^1(Or) ->ftdr-i(#dr-i) -* ^-2(^-1) -> 0

is given by Z^1 Z -+Zj{r — \)\Z ->0.
Suppose now that o^€7tdn^x{On) and /? € tc^.!(Ow) are generators. Then

according to the factorization of proposition (2.1),

According to (b) rc* multiplies by (n — 1)! while n^ multiplies by (m — 1)!.
The suspension E is a bijection in the pertinent dimension, and according to
proposition (2.2) so is Aj. Finally A projects Z onto Z/(n + m — l)\Z.
Hence the order of <ioc, irfi} is (n + m — l)!/(n — l)!(m — 1)!. Finally
because we are in the stable range i and i' are bijections. This proves theorem
1, once n and m are replaced by n + 1 ftnd m + 1 respectively.

The quaternionic case can be treated entirely the same way. In this case

nnd-i (0n) is again stable and isomorphic to Z, and the séquence in question
has the form :

(^dr-l) -+Kdr-2(Or-2) -+ 0

where ir (2r — 1) if r is odd, and kr (2r — 1) 2 if r is even. The
analogue of theorem 1 therefore takes the following form :

Theorem 2. The kernel of the homomorphism

induced by the Samblson product is precisely divisible by kn+mjkn-km where

__
(2r — 1)!2 r even*'- (2r -1)! r odd.

For the real field, this argument fails because 7rdw_i(0n) is not stable any-
more. As a conséquence the Samelson product of two stable éléments in
rc*(0n) vanishes.

3. Proof oî proposition 2.2. We hâve to show that our map

A*: E{Ontl$O'mtl}->On+ntl
has degree one.

For this purpose let Kn+m ~A-\-a-\-B-\-b be the orthogonal
décomposition in which A is spanned by e1?..., en-1, the plane B is spanned by
en+i • •., ^n+m-i > while a is the line spanned by en ea and 6 is the Une

spanned by en+m eô.

Let 0* be the image of On -X On+m_1 -> On+m, and let (?*_! be the image
of *On-i c On under this map. Similarly let 0* [()*_!] be the image of 0m



254 Raottl Bott

and V (0m^.1) c 0m under the map 0m -> 0m+n__t -> 0m+n. Clearly thèse sub-

groups are characterized by the following properties :

0* - leaves B + à pointwise fixed
O*-i leaves a -\- B -\- b pointwise fixed
0^ leaves A -\- b pointwise fixed
O^_tleaves A -\- b -\- B pointwise fixed.

Let Sdn_t be the unit sphère of A -\- a. Clearly the map / -> fea, f e 0*
identifies 0*fl with /S^^. Similarly g -+gea, g c 0* identifies 0*tl with
the unit sphère /8dTO_1 of the plane a+JS. Finally the map /->/e6, /€0n+fn
identifies 0W+TO>1 with the unit sphère /S^.^).! in Xn+m. In this realization
our map

is described in the following manner :

If a; c Sdn_x, y e S^^, 6 c [0, rc/2] are given, then

where gr and / are any éléments of 0* and 0* respectively subject to :

fea x; gea y
and Aq is, as in the earlier section, the inner automorphism by ae eOn+m.

(Recall that in the présent case a%ea cos 6ea + sin 0e6 ; aee& — sin 0ea-{-

+ cos 0e& while ail other basis éléments are held fixed.)
Let us write gre for JLe?. Then XB(x9 y, 6) (^e/^ë1/""1)6» ^e/^1^, (the

last step follows from feb e&).

Consider the orthogonal décompositions :

x /~1ea a?' + eo«; a;' € ^
so that (l {ea, g"ixeh) (gQea) eb), whence p (eh9 gQea) while « (ca, a?).

We hâve therefore, in order :

f97\ (x1 + eaoc)p + w

y 0) {x1 + (geea)(* - 1)}^+ eb (3.1)

It is clear that x'', a and /? are fonctions of x,y and 0 above. On the other
hand, so is geea. Indeed a straight-forward computation yields:

a^1co eo cos 0 — eb sin 0

^1a y cos 0 — eb sin 0
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Let y eay + y' with y' € B, be an orthogonal décomposition of y, so that :

gajxea eay cos 0 + 2/' °os d — eb sin 0

whence

a^ga^xea (ea cos 0 + e6 sin 0)y cos 6 -\- y1 cos 0 — — ea sin 0 + eb cos 0) sin0

so that

gQea eo(y cos20 + sin20) + y' cos 0 + eb(y — I) sin 0 cos 0. (3.2)

The formulae (3.1) and (3.2) completely describe the map Xe, and show fur-
thermore, that considered afunctionon the manifold #dn_x x S^^ x [0,tt/2],
the map Xe is smooth. To détermine its degree it is therefore sufficient to
examine the inverse image of a regular point.

Lemma 3.7. Let P be the point — eb e #d(n+m)_i. The inverse image of P
under Xe consista of the single point Q — ea, — ea, n/4).

Proof. The condition XE{x,y,d)= — eb implies that

(eb,g*ea)(oc -l)J= -2
as is aparent from (3.1). From our définition of p this is équivalent to
j3(a — l)jS —2. Now | /? | and | oc \ are non-negative numbers less than
or equal to 1. Hence this relation holds only if <x — 1, and | /3 | 1.
From (3.2) we see that p (y — 1) sin 0 cos 0. Therefore, as 0 < \y j < 1 ;

0 < 0 < n/2 the condition | p \ 1, implies y — 1, and 0 rc/4. Now
a — 1 implies x — ea, and similarly y — 1 implies t/ — ea.
The lemma is therefore established.

Lemma 3.2. The differentiol of Xe at Q is an isomorphism. Thus P is a
regular point of Xe

Prooî. We may identify the tangent space to P with the real vector space
Kn+mjLb where Lb dénotes the real Une e&-r, r a real number. We also write
Ib for the real vector space spanned by those ebq, qcK for which q= — q,
and define Ia analogously. Hence Kn+mjLb is spanned by the real vector
space A + a + B + Ib, mod Lb. Similarly, the tangent space at Q is identi-
fied with the real vector space 31 + 23 + (£ where 31 is spanned by A + Iai
93 is spanned by Ia + B and G is spanned by 3/90. If z (x, y, 6) is a
triple in this space, the difïerential dXE, is seen to take the form:

dXE(x, y, 0) - x + 2gQea + eb(à + 2/F) modLb

where the dot dénotes differentiation in the direction z. (Recall that at Q,
geca — eb, while <x 0 y= —1.)
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Using this formula it is clear enough that the image of dXE spans ail of the
tangent space at P, except possibly the real multiples of eo. (The space Ih
can be obtained by setting x /*eo, (/à — Ji), y 0, 6 0). To obtain
thèse multiples of ea, consider the variation (0, 0, djdO). One finds k 0,
^8=0, x 0, while *gQea 2ea. Hence dXE is onto, and therefore an
isomorphism.

The two lemmas clearly imply that Xe is a map of degree one. It was this
that was to be established.

A question. In [2] I. James considers a map of the join of Onk with Omk
into On+mk which is the natural extension of the usual join map of Sn * Sm

onto 8n+m+1. If we think of a point of Onk as a &-frame / (ft,..., fk) in
Kn and of Omtk as a i-frame g (gl9..., gk) in Km, then the James map,
which we dénote by AJ, attaches the frame

cos 0/ + sin 6 g in Kn + Km

to the triple (f,0,g)€Ontk*Omtk. (We hâve again used the interval [0, ti/2]
to parametrise the join.) In view of the fact that On&*OwA. and E {Onfc # Om k}

are of the same homotopy type, XJ has the same domain of définition, and

image space, as our map Xe For k 1, the James map clearly has degree
one. Hence proposition (2.2) can be thought of as showing that the two maps
are équivalent in this case, and the problem of comparing the two maps in
gênerai immediately arises. In view of the beautiful properties which James
discovered for his map, it would be very encouraging if XJ and Xe turned
out to be homotopic.

BIBLIOGRAPHY

[1] R. Bott, The space of loops on a Lie group. Michigan Math. J. 5 (1958), 35-61.
f2] I. James, The intrinsic join; A study of the homotopy groups of Stiefel manifolds. Proc.

London Math. Soc. 32 (1958), 507-535.
[3] I. James and E.Thomas, Which Lie Groups are Homotopy-abelian? Proc. Nat. Ace. Se.

(XJ.S.A.) 45 (1959), 131-140.
[4] H. Samelson, A connection between the Whitehead product and the Pontryagin product.

Amer. J. Math. 75 (1953), 744r-752.

[5] H. Samelson, Groups and Spaces of Loops. Comment. Math. Helv. 28 (1954), 278-286.

[6] G. Whitehead, On mappings into group like spaces. Comment. Math. Helv. 28 (1954),
320-328.

(Received April 4, 1960)


	A Note on the SAMELSON Product in the Classical Groups.

