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Invariance of Vector Form Operations under Mappings ")

by ALFRED FROLICHER and ALBERT NIJENHUIS

Introduction. In a previous paper [4] the authors have presented a theory
of derivations on the ring of C* differential forms over a manifold, in which
a vital role was played by vector forms2). The commutators of certain kinds
of derivations were found to be intimately related to a previously published
[7] differential concomitant [L, M] of vector forms L and M ; and several
identities involving this concomitant were derived in a very simple fashion.

If X and Y are C* manifolds, and F: X — Y is a C* mapping, there are
associated mappings F, on tangent vectors, and F* on differential forms;
the first being a covariant functor; the second a contravariant one.

For mixed tensors on X or Y there are, in general, no induced mappings in
either direction. However, they may nevertheless be related in some fashion
through F. At present we restrict ourselves to vector forms, and define the
concept of F-relatedness. This relation is a mapping only in special cases
(cf. § 3, 4), but is always transitive with respect to composites of mappings?).

We study the behavior of differential concomitants of vector and scalar
forms with respect to F-relatedness. The main result (Theorem 1, § 2) is that
the notion of F-relatedness is invariant under the formation of the differential
concomitants in question?). In sections 3 and 4 conditions for F-relatedness
will be deduced for special classes of mappings, namely —roughly speaking —
imbeddings (§ 3) and projections (§ 4). Section 5 also deals with fiber bundles
and develops machinery for Lik differentiation of certain tensor fields which
are only defined along the fibers of the bundle.

Two applications of the theory have presented themselves. The first, dis-
cussed in § 6, deals with the existence of almost-complex and complex struc-
tures which are invariant under the action of a transitive L1e group of trans-
formations. The respective Theorems 8 and 9 of § 6 were proved in [3] (cf. also

1) Research sponsored by an Office of Naval Research contract at the University of Washing-
ton,

2) Vector forms are differential forms whose values at any point are not numbers, but tangent
vectors. Ordinary differential forms are called scalar forms.

3) Only from & formal functorial point of view (cf. [2]) does F-relatedness satisfy the conditions
for “mappings” in a category.

4) This result is not true for all differential concomitants: if F: X — Y imbeds X as a sub-
manifold in a RiemaxnNian manifold ¥, then the induced metric on X is F-related to the metric
on Y, while the corresponding curvature tensors are not F-related. In fact, the generalization of
Gavss’ Theorema Egregium states that the deviation from F-relatedness can be expressed in
terms of the second fundamental forms.
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[1, 6, 9]), but the proofs have been greatly simplified. A second application,
to deformations of complex structures on compact manifolds, requires exten-
sive use of § 5, and is forthcoming as a separate paper [5].

§ 1. Operations on scalar and vector forms. This section is a brief intro-
duction into the concepts used later in this paper. Since most facts can be
found elsewhere in the literature, only occasional sketches of proofs will be
given.

Let X denote a C* manifold, and @, the ring of C” functions over X.
The field of real numbers, denoted by R, can be considered as subring of @,
(the constant functions). If fe ®,, f, denotes the value (restriction) of f at
zeX. A tangent vector u, at e X is a mapping®) u,: &, > R, linear over R,
which satisfies the LEiBNITZ rule for products u,(fg) = g, u.f + f. - %.9 -
T, denotes the tangent space at x; 7' = U T, is the tangent bundle; and

r€X

v: T - X the projection mapping in this bundle.

A C* vector field w over X is a map %: X -7 with * - wu,eT,, such
that for any f e ®, the map X - R, by =z — u,f, is a C* function, denoted
by uf. Thus, u represents a derivation on @D,.

Tangent vectors are local operators, that is u,f = u,g9 if f, =g, forall y
in some neighborhood of z. As a consequence, u, can be defined to operate
on C* functions defined only in some neighborhood of z.

Let f be a C* function over an open subset U of X ; then df shall denote
the real-valued function on the tangent bundle 7'(U) = v~1(U) defined by
df(u,) = u,f. The restriction (df), of df to one fiber 7',, x ¢ U, is a linear
function on T,.

If X1,..., X" are functions defined on an open set U of X, and if they
form a coordinate system there, then X%o7, ..., X% 17, dX1,...,dX" are
2n functions defined on 7'(U). Let Y'..., Y* denote coordinate functions
in an open set V, then, if UN V is not empty,in U N V the Y* are func-
tions of the X*:

Yi(z) = &' (X (x), ..., X" (), 1=1,...,n, (1.1)
or$)
Yi=@{(X1, ..., X", 1=1,...,n, (1.2)

5) In index-notation, %z = ui . The properties stated constitute a complete axio-

ort |z
matic characterization of tangent vectors to C* manifolds. For manifolds of class C¥(k < o),
a small modification is needed.

%) For the composite of two functions, say f and g, the symbol go f is customary, and stands
for — (go f) () = g(f(x)). If g is a function of, say, 2 variables, there is no standard notation
for the function z— g(fi(2), fo(#)). One may, for instance, use go(f X fy), or g(h,fs).
We have chosen the latter.
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where @*(£, ..., &") depends in a C” manner on the real numbers £1,...,
&r. Then, we have
Yior = @ (Xlo7,...,X"01),

i (1.3)
aYyi = 2 [8@7 (Xtor, ..., X”or)]dX",
where (&1, ...,&", 0%, ..., 0" — @&, ..., &) and

" n n [ ot n )

R R R Ly | B
are 2n C* functions in the 2n real variables &', ..., ¢&", ¢, ... ¢*. Thus,
the functions X'o7,...,X"07,dX',...,dX"” on v 1(U), derived from
the coordinate functions X', ..., X on U, determine a C* structure on

T, and, clearly, 7 is a C* projection map. —If f is a C* function on X,
then for and df are C* functions on 7. A vector field u is of class C* if
and only if #: X — T is a O™ section.
A scalar g-form w, at x e X is an R-multilinear, skew-symmetric, real-
valued function of g vectors in 7',: w,(uy,...,u,)eR for u,eT,, 1 =1,
., q. Denoting by @7, the set of g-tuples of elements of 7',, w, is an
R-multilinear, skew-symmetric map @7, - R. Since the bundle @7 =

= U (®?T,) is,in a natural fashion, a C* manifold, a C® scalar ¢g-form w
z€X

over X is a C” mapping w: @27 — R whose restriction w, = o |®?7,
to @T,, for all e X, is a scalar ¢-form at . —If u,,...,u, are C®
vector fields over X, then w(uy,...,%,) is a function over X which, as a
composite of C* functions in the sense of footnote 6), is a C* function.

The method of constructing C* scalar forms over X as functions on some
bundle over X can be used to give instrinsic definitions of C® tensor fields
over X of any degree. For our further investigations, however, we are interested
only in certain particular tensors and tensor fields, which we define as follows.

A vector l-form L, at x e X is an R-multilinear, skew-symmetric mapping
L,.®7T,—->T,.—A C* vector I-form L over X is a C* map L: @'T —T
whose restriction L, = L |®'T, is a vector I-form at z for all zeX.
L(u,y,...,u;) is a composite of C* maps if u,,...,u; are C* vector fields
over X, and, therefore, is a C* vector field.

Multiplication by elements of @, (functions) for vector fields, scalar and
vector forms, etc., is defined pointwise; for instance, (fw), = f,»,. The set
@, of scalar g-forms and the set ¥, of vector l-forms over X are @;,-modules,
and every scalar (vector) form is a skew-symmetric @;,-multilinear map of
¥, into D, (¥,). Conversely, we have (cf. [4], Prop. (3.4, 5)):

16 CMH vol. 3
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Lemma 1.1, Every skew-symmetric @,-multilinear map of @?¥, into
D, (¥, is a C® scalar (vector) g-form over X.

Remark. The bracket [u,v] of vector fields, defined by [u,v]f =
= u(vf) —v(uf) is a skew-symmetric R-bilinear map ¥, @ ¥, —> ¥,, but,
as the following equation shows, it is not @,-bilinear.

[, fv] = flw, v] + (uf)v . (1.4)
Thus, (u,v) - [u, v] is not representable by a vector 2-form.

Another result, proved in a manner similar to Lemma 1.1, is

Lemma 1.2. The @,linear mappings of @, into @, are in 1-1-correspond-
ence with the C* vector l-forms L over X, where L acts on ¢ e®, as
@ = @A L, the latter being defined by

(PAL) (uy,...,%)=@(L(uy,..., %)) . (1.5)

Let ©Q denote either a scalar or a vector ¢-form; = a scalar p-form. Then
the scalar (vector) (¢ + p)-form QA = is defined by

1
(QAJL')('IIII, ...,uﬁ,)z-ﬂ—a—i—q—!—{la]!)(ual, .o uaq)-n(uaqﬂ, . .,uaq+,), (1.6)

1,....,.p+ ¢

Ky ooy 063,_*.0
denotes the signature of .—If Q is as before, and L a vector I-form, Q7 L

denotes the scalar (vector) (q + ! — 1)-form defined by

where & = ( ) runs over all (p 4 q)! permutations, and |« |

(PAL) (uy,..o., Ugpyq) =
1 (1.7)
mflle(L(ual, .oy ua,), ual“, v euy ua,ﬂ_l)
if ¢g>0; andby QAL=0 if ¢=0.
The exterior derivative dw of a scalar g-form w is defined by its action on
vector fields as follows:

1
da(thy, ..., Ugyy) = ?El“ | %, (@ (tyys - - - ’“aq.,.,))

1
— 2.-(q —1)! fl(x [ w([ua,, u“s]’uds""’“aﬂ,) .

(1.8)

While the definitions (1.6, 7) are meaningful also if %, denotes a vector at
just one paint, in (1.8) it is essential to have vector fields. However, a simple
computation invelving (1.4) shows that the right side of (1.8) is @y-linear in
%;. Lemma 1.1 asserts that, therefore, dw is a scalar (¢ + 1)-form.
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If w and L are as before, then [L, w] is the scalar (¢ + I)-form:
(L, ©] = [do) R L + (— D)d(wi L) . (1.9)
As the following equation shows, [L, w] is not @, linear in w :

[L, fo] = [L, fIN o + f[L, 0] . (1.10)

The bracket [L, M] of a vector I-form L and a vector m-form M over X
is a vector (I 4+ m)-form. If ¢ denotes any scalar 1-form, then [L, M] is
characterized by

eAlL, M]=(—1)"[M,p]aL — (—1)"[M,prx L] — (—1)"[M KL, ¢]. (1.11)

In fact, the right side (not term for term — cf. (1.10)) is @, — linear in ¢;
hence represents a @,-linear map @, P, ., which, by Lemma 1.2, is given
by the A-action of a well-determined vector (I + m)-form.

The operations mentioned here play entirely natural roles in the theory of
derivations on the graded ring of scalar forms (cf.[4]). Numerous identities
hold, but only a few are needed in what follows. If Q is a scalar or vector
form, L a vector form, then

[u, QA L] = [u, Q1AL + Q& [, L]. (1.12)

This formula is a special case of what is known as LEIBNITZ’ rule on the LIk
derivative of a product (with or without contractions) of tensor fields. Further-
more, if A is a vector 1-form, then [A, h] is determined by

3[h, h](u, v) = [hu, hv] — h[hu, v] — h[u, hv] + hh[u,v]. (1.13)

From (1.12), replacing L by v, one obtains [u, QA v] = [u, 2]Av + Q1 [u,v].
Applying this rule repeatedly to Q2(v,,...,v,) = ((2Av) A ...) Av, one ob-
tains, after rearrangement of terms:

[u,.Q](vl,...,vq)=[u,.Q(vl,...,'vq)]——Zq'Q(vl,...,[u,v,-],...,'vq), (1.14)

t=1

where [u, f] = uf, in agreement with (1.9).

§ 2. Mappings; F-relatedness. In this section, F: X - Y denotes a
mapping of C* manifolds X and Y. 7'(X) denotes the tangent bundle of X ;
similarly, @,(Y) the set of scalar g-forms on Y ; etc.

The mapping F: X — Y is of class C* if and only if for every C* function
f on Y the composite fo F, usually denoted as F*(f), is a C* function on
X. Another equivalent condition is that F*(Y*®) is of class C* on X for all
coordinate functions Y* of a certain covering of ¥ by coordinate neighbor-
hoods. — F will be assumed of class C®; then F* is a mapping of @,(Y)

17 CMH vol. 34
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into @,(X); it is a ring homomorphism whose restriction to the constants is
an isomorphism.

If weT, (X), the mapping D,(Y) > R denoted by F,(u,) and defined
by f — u, F*(f) is R-linear and satisfies the LEIBNITZ rule as postulated for
tangent vectors at F(x) e Y. Hence, F, (u,) e Tr)(Y), and we have a map
F,: T(X) - T(Y) which satisfies 7y o F, = F o vy; and whose restriction
F,|T,X) is R-linear.

If fis a C* function on Y, then fo 7, and df are C* functions on 7'(Y).
In particular, if Y* are coordinate functions on Y, then Y‘o 7, and dY*
are coordinate functions on 7'(Y). The map F,: T(X) - T(Y) is proved
to be of class C® by showing that the induced functions (F,)*(Y*o7ry,) and
(Fy)*(dY?) are C* functions on 7'(X). Let f denote any one of the Y* for
any coordinate system on Y. The C® nature of (F,)*(fory) on 7T(X)
follows from

(Fy)*(foty) = F*(floty, (2.1)
since the right side, as composite of C* mappings, is of class C*. (2.1) is
just another way of writing (fo vy)o Fy = (fo F) o vy which follows from

Ty o Fy = F oty by associativity. The C* nature of (F,)*(df) on T(X)
follows from

(Fy)*df = dF*(f) (2.2)

since the right side is a C* function on 7'(X); (2.2) is proved by evaluation
on an arbitrary element %, e 7 (X):

((Fy)*(@f)) (w) = (@f o Fy)(u,) = df (Fy (u,)) = (2.3)
= Fy(u,)f = u, F*(f) = (dF*(f)) (u,) .

The map F,: T(X) - 7(Y) induces a map @7 (X) - @27 (Y) which
is also denoted by F,, and is also of class C*.

Every scalar g-form w over Y represents a C* function on @27 (Y); hence
(Fy)*(w) is a C* function over @¢7T(X). Since (F,)*(w)|®?T.(X) is a
scalar g-form at z e X, (F,)*(w) is a scalar g-form over X. — The more com-
mon notation for (F,)* is F*, which will be used henceforth.

The well-known result d(F*w) = F*(dw) for we®,(Y) is simplest to
prove when F is a map of constant rank, because then every set of vectors
Uggs++ -, Ugp € T,(X) can be extended to vector fields u,,...,u, which, at
least locally, can be mapped by F, into local vector fields on Y. The result
is generally true, since every map F: X —» Y can be represented as the
composite F,o F, of two maps of constant rank, F,: X - X x ¥ and
F,: X X Y - Y being defined by F,(z) = (x, F(z)); Fy(z,y)=1y.

Since, in general, mappings F: X — Y do not induce mappings of vector
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fields and vector forms — the latter not even at one point — we introduce the
concepts of (F, z)-relatedness and F-relatedness. The concepts are easily seen
to be transitive with respect to composition of mappings; and may be formu-
lated for any types of tensors. For vectors and differential forms at one point,
the concept of (F, x)-relatedness is the same as the relation established by
the mappings ¥, and F* respectively.

Definition. A vector I-form L, at z,¢X and a vector I-form L, at
y=F(x)eY are (F, x)-related if for all u,,...,u; e T,(X) one has

F*(La:(ulﬂ M 9'"’1)) = L;(F*(ul)a' *e ’F*(ul)) : (24)

Definition. Scalar or vector forms Q over X and £’ over Y are F-related,
if for all ¢ X and y = F(x), the forms 2, and 2, are (F, z)-related.

Remark. (F, z)-relatedness and F-relatedness can be expressed by com-
mutativity of diagrams like

F,

DT (X) —> ®'T(Y)

Ll L,l (2.5)
Fy

TX) — T(Y)

Theorem 1. Let X and Y be C* manifolds,and F: X — Y a C* mapping.
The following operations are invariant under F-relatedness?):

L,x -LA= U ,v —>[u, v]
o, M—>wonr M M,o—>[M, o]
LM->LxM M,L->[M,L].

The following lemma is useful in the proof.

Lemma 2.1. Let L, be a vector form at xzeX; L, a vector form at
y = F(x). Then L, and L, are (F, z)-related if and only if for every scalar
1-form ¢, at y one has

F*(@) A L, = F*(p, K L) . (2.6)

The corresponding statement holds for F-related fields L and L’.
Proof of the lemma, for (F, z)-relatedness — the other part being a trivial
consequence. Let u,,...,u; €T, (X), then we have

(F*(@y) A L) (uy, ..., up)) = F*(p,) (L, (%y, ..., %)) =
= ‘Pv(F* (Lm(ulﬁ ) ul))) y

) This means, for instance, that if vector fields # and v over X are F-related to vector fields
u’, v’ respectively over Y, then [u,v] is F-related to [u’,v'].

(2.7)
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F*((vaL;)(uli R ’ul) = (vaL;)(F*ul’ R ’F*ul) =

=¢V(L;(F*u1,...,F*ul)) . (2.8)

If L, and L'” are (F, x)-related, the expressions in (2.7, 8) are equal for all
Uy,...,u;, which proves (2.6). Conversely, if (2.6) holds for all ¢, and
%,,...,4%;, then the expressions of (2.7, 8) are equal for all ¢, ; hence (2.4)
follows and L, and L; are (F, x)-related.

Proof of Theorem 1. The statement concerning wax M is proved in the
same manner as Lemma 2.1, using the general definition (1.7) for the opera-
tioni. For LA n and LR M the statement follows by putting o, = ¢,% L,,
where ¢, is a 1-form at y. Thus we have reduced the questions to the cases
woA7n and wa M, the first of which is known to be invariant, while the
second is the previous result. Lemma (2.1) then gives the desired invariance
under (F, x)-relatedness of LA« and Lax M. In the second column, the
first part is a special case of the last. The next part, concerning [M, w],
follows from the behavior of both d and % under F, using the definition (1.9).
Finally, since the right-hand side of (1.11) contains only operations just
proved to be invariant under F-relatedness, Lemma (2.1) gives the result for
(L, M].

Remark. It is clear that the operations mentioned in Theorem 1 constitute
only a sample of all operations known that are invariant under F-relatedness,
However, for the applications in view the ones mentioned are all that is
needed. Other invariant operations are, for example, the bracket operations
for contravariant tensors due to SCHOUTEN (cf. [8, 7]) and the operation which
assigns to an affine connection its RIEMANN-CHRISTOFFEL curvature tensor.
For the latter, F-relatedness of connections is defined in the obvious manner
using coordinates X% (e =1,...,m) inXand Y‘(: =1,...,n) in Y, and
component notation: I"on X and I"” on Y are F-related if

A S ) G
»3Xa ~ 9X¢ oXb it T gXcaXxb

(2.8)

However, the operation which assigns to a RIEMANN metric its CHRISTOFFEL
symbols is not invariant under F-relatedness. More trivial operations not in-
variant under F-relatedness include: the contraction (trace) of a vector 1-form
and the inverse (if it exists) of a covariant tensor of degree 2.

§ 3. Subspaces i: X — Y; restrictions and extensions. In this section the
general C*-mapping F is replaced by a mapping ¢ whose rank is everywhere
equal to the dimension of X (hence 4 is of constant rank and dim ¥ > dim X).
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Consequently, the induced map ¢, | 7,(X) is injective and identifies 7, (X)
with a vector subspace of 7';,,(Y).

Theorem 2. Let :: X — Y be a mapping whose rank equals dim X and
L' a vector form over Y. There exists a vector form L over X which is ¢-
related to L' if and only if L' (u,,...,%,;) ¢ T,(X) whenever u,,...,u, € T (X).
If such a restriction L exists, it is unique.

Proof. a) Necessity of the condition is obvious. b) Let u,,...,u; be
vectorfields over X. Then L' (4,%,,...% %) €ix(T,(X)), and there
exists a unique vector v, e 7T (X) such that L'(t,u;,. .., 05x%) iz = txVs-
If L has to be i-related to L', one must have L(u,,...,wu;), = v,. This

proves the uniqueness of L, and in order to have the existence it remains to
prove that the constructed L is C*. If U is a sufficiently small neighborhood
of xeX, then (iyu;);4, (2" € U), is the restriction of a C” vectorfield v,
over a neighborhood V of i(z) in Y, and hence i,v,. is the restriction of a
C® vector field w over V. Let f be a C*® function over U. If U was taken
sufficiently small, then f = ¢*g, where g is a C® function over V. We have
Voo | = 0,0 (1%9) = (1500 )9 = Wipyd = (WG)srry for ' e U. Hence locally
vf = +*(wg), which proves that vf is C*.

Theorem 3. Suppose that the map ¢: X - ¥ is a proper imbedding?);
that Y is paracompact; and that ¢(X) is a closed subset of Y. Then every
scalar or vector form Q over X can be extended over Y, i.e. there exists a
form Q' over Y such that Q and Q' are i-related.

Proof. a) Special case: Y =X x Z and ¢(x) = (x,2,), where z, is a
fixed point of the manifold Z. Let p: X X Z - X and ¢,: X > X X Z be
defined by p(z,2) =« and 4,(x) = (x,2). o or L being given over X, we
can define ' and L' over X X Z by @' (Uy,...., %) = 0 (PyUy, ..., Psxly)
and L' ('u'l’ e 3uq) = (iz)*L(p*ula i >p*ua) for any vectors U; € T(z,z) (X X Z) .
b) General case. Since 4 is one-to-one, we identify « with ¢(x) and consider X
as subset of Y. Using that ¢ is a proper imbedding one finds that every point
2 ¢ X has a neighborhood U, in Y in which there are local coordinates
Yr,..., Y™ such that U, is described by the inequalities | Y*|<1
(¢=1,...,m) and V,= U,n X by the equations Yt = ... = Y™ = 0.
U, is then diffeomorphic to V, x Em", where E™ " is the open (m — n)-
cell |Yi|<1l ¢=n-+1,...m), and according to a) £ (or rather its
restrictions to V,) has an extension .Q’U‘c over U,. The sets U, together with

8) A C*® mapping ¢:X — Y is a proper imbedding if i) the rank of ¢ is equal dim X;
ii) the topology of X coincides with that induced by <.
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Uy,=Y — X form an open covering W of Y. Put Qp = 0. Let {W },
be a locally finite refinement of i, and g¢: I - X U {0} be a refinement map
so that W, < U, . Define 2 to be the restriction of .ng,) to W,. By

construction we have (Qy,), = 2, whenever xeX n W,. Taking a parti-
tion {@,};c; of unity with respect to the covering {W,};.; and putting
Q' = X 9,2y, we have obtained the desired extension.
iel

§ 4. Fiber bundles p: X — Y; liftings and projections. In this section ¥
will be a mapping p of X onto Y which is a local product structure; i.e. there
exists an (open) covering W = {U,};cy of Y and a manifold Z such that
for all ¢ el there is a diffeomorphism ¥,: U, x Z — p~*(U,) which pre-
serves fibers: p¥;(y,2) =y for all ye U;, zeZ. For brevity p: X - Y
is called a fiber bundle here, though the group of the bundle is not specified.

We study whether a scalar or vector form over Y can be lifted to X. In
the case of a scalar form w one simply takes p*(w). In the case of a vector
form L over Y one proceeds as follows: Let L, be the restriction of L to U,;

i‘ the extension of L, to U, X Z discussed in part a) of the proof of Theo-
Fal

rem 3; L} the vector form over p—1(U,) corresponding to L, by means of

¥,. If now Y is paracompact, there is a locally finite refinement B = {V },.,

of . Choose g¢: J —1I suchthat V, < U,(,, and let L; be the restriction

of L:(i) to p71V,. Let {g@;};e; be a partition of unity for the covering B.

Then L' = X p*(p,;)L; is a global vector form and obviously L' and L are
jeJ
p-related. We have thus proved:

Theorem 4. If p: X — Y is a fiber bundle, and Y is paracompact, then
every scalar or vector form over Y can be lifted to X : there is a scalar or
vector form over X which is p-related to the given one on Y.

Definition. A scalar or vector form 2 over X is called projectable if there
is a p-related scalar or vector form £’ over Y ; the latter is called projection
of the former.

Definition. A scalar or vector form 2 over X is called projectable at x if
there is an 9Q/,,, called projection of Q,, at p(x)eY which is (p, x)-
related to Q,. Q is called pointwise projectable if it is projectable at x for all
reX.

The fact that p: X - Y and p,: T,(X) > T, (Y) are onto implies

Proposition 4.1. If a form 2 over X is projectable (resp. projectable at z),
then the projection of £ (resp. 2,) is unique.
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Notation. The projection of 2 (or £2,), if it exists, is denoted by p, (£2)
(Ol‘ Px ('Qw)) .

Remarks. a) A pointwise projectable form 2 over X is not necessarily pro-
jectable. A necessary and sufficient condition for a pointwise projectable 2
to be projectable is obviously that for all x,, x, ¢ X with p(x,) = p(=,), Q,,
and £, have the same projection.

b) A projectable scalar form w over X is completely determined by its pro-

jection ', since this means o = p*(w’). In particular, w must vanish if
its projection exists and vanishes.

Definition. A vector v, e T, (X) is called vertical if p,(v,) = 0 (i.e. if v,
is “tangent to the fiber through 2’). A vector field v over X is called vertical,
if it is vertical at each point x e X (i.e. if the projection of v exists and is
the zero vector field over Y).

If v is a projectable vector field and f a function over X, f-v is in general
not projectable; it is, if one (at least) of the two following conditions are
satisfied: a) fis constant along the fibers; then f = p*g for some g e @,(Y);
b) v is vertical, in which case f-v is also vertical. We conclude that the set
B of vertical vector fields is a @,(X)-module; the set B of projectable vector
fields a @,(Y)-module.

Definition. A vector I-form L over X is vertical-valued if, for any u,, ..., u,,

L(u,,...,u;) is vertical; or, equivalently, if the projection of L exists and
is the zero vector I-form on Y.

Theorem 5. Let p: X — Y be a fiber bundle; o a scalar and L a vector
form over X. Then w is pointwise projectable if and only if waxv =0 for

all vertical »; L is pointwise projectable if and only if Lz v is vertical-valued
for all vertical v.

Proof. Suppose w, is projectable, i.e. there is w(’w) such that

WUy, oo n, Ug) = Wy (Pylhy, « oo Pxhg) ,  Ugy oo, Uge To(X) . (4.1)
This shows, that if one of the vectors u; is vertical, then w,(%u,,...,%,) =10
and hence w,Av,=0 if v,eT, (X) is vertical. Suppose now, conversely,
that w,xv, = 0 for all vertical v,. This implies that w,(u;,..., %) =0
if one of the vectors u, is vertical. Writing
Wg(Uyy e ey Ug) — WUy, .o, Uy) =
q
= 2 (g (U e ey W gy Wiy oo ey Ug) — @ (UL e vy Wy Ugygy e e s Bg))
i=1
¢
= Z wm(u;, e e sy u;_l, ui - u;, 'u"_*.l, oo ey uq)

i=1
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one finds that therefore w,(%,,...,%,) = o (uy, ..., uy) if py(u,) = py(u!),
(t=1,...,q9); ie. wg,(uy,...,u,) depends only on the projections of
%3, ..., Uy. This shows the existence of a form w(,, at p(x) which is (p, x)-
related with w,. The result for vector forms can be proved analogously or
reduced to the previous one by proving that the following statements are
equivalent:

a) L, is projectable;

b) (p*@,) A L, is projectable for all scalar 1-forms ¢, at y = p(z);

¢) (p*e,AL,)Av =0 for all scalar 1-forms ¢, at y = p(x) and all ver-

tical v e T, (X);

d) L,av is vertical-valued for all vertical v ¢ 7',(X).

c) <= d) Associativity gives (p*¢, A L,)Av = p*¢, A (L,Av); the vanish-
ing of the right side for all ¢, is equivalent to d). b)<= ¢) follows from Theo-
rem 5 for scalar forms which was just proved. a)=>b) is part of Theorem 1.
Remains to show b)=>a). b) means that for every ¢, there is a unique
scalar l-form w, at y such that p*¢,A L, = p*w,. Since L, is fixed and
w, depends linearly on ¢,, there is by the pointwise analogue of Lemma 1.2
a vector I-form L; at y such that w,= ¢, % L,. Hence p*@,x L, = p*(p,A L)
for all ¢,, and by Lemma 2.1 L, and L; are (p, x)-related, hence a).

Proposition 4.2. If a vector form is pointwise projectable, it has a restriction
to any fiber p~1(y). For vector 1-forms pointwise projectability and restric-
tability to the fibers are equivalent.

Proof. Follows from Theorems 2 (§ 3) and 5.

Theorem 6. Let p: X — Y be a fiber bundle whose fiber Z is connected.
The following conditions are, respectively, necessary and sufficient that a
scalar form w or a vector form L over X be projectable:

woAv=0 and [v, w] = 0 for all vertical v;
Laxv and [v, L] vertical-valued for all vertical ».

Proof. The necessity of the conditions follows from Theorem 1( § 2) which
gives Py (wWAV) = PrwAPev =0 and p,[v, o] = [pyv, py 0] = 0 because
Py = 0; similarly for vector forms. The proof of the converse is based on
the fact that if fe @ (X), and vf = 0 for all vertical v, then f is constant
on each fiber, and is the lifting of a C® function f' on Y. Let U be an element
of the covering mentioned in the definition of a fiber bundle, and let u,,..., u,
be vector fields over U; they can be lifted to vector fields %; over p—1(U) C X.
Then for all vertical v (cf. (1.14))

~ ~ ~ ~ q ~ ~ ~
V(w(Uy, o0, ug) =[v, 0] (Ug,..., %) + Z0(Uy,...,[0,%,],...,%,). (4.2)
=1
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The right side vanishes; the last term since p,[v, u;] = [pyv, Put;] = 0
(Theorem 1) shows that [v, ;] is vertical. It follows that the function
(U, ..., u o) 18 constant on each fiber. Given wu,,...,u,, by Theorem 5,
the value w(%,,...,%,) is independent of the specific liftings of u,,. .., u,.
Let ¢: U —>X be a section of the bundle over U and w; = 0*(wey)-
Since @ is pointwise projectable, w,(, projects onto w;, and there-
fore w,(uy, ..., ) = 0(Uy 4, ..., Uy o) for =z =a(y). Since however
@(Uy g, ..., %,z is constant on each fiber, ' is the projection of w. Hence
w is projectable, which proves the sufficiency of the condition for scalar forms.

For vector forms we introduce again scalar 1-forms ¢ on Y and remark that
by (1.12)

[v, p* () R L] = [v, p*(@)]A L + p*(¢) K [v, L] . (4.3)

The middle term vanishes since p* (@) certainly is projectable, and the third
term vanishes because [v, L] is vertical-valued. Furthermore, since L3 v
is vertical-valued, we have

(P*(@)AL) Av=p*(@)A(LAv)=0. (4.4)

(4.3) and (4.4) imply, by the Theorem for scalar forms which was just proved,
that p*(¢)A L is projectable, and together with Lemmas 1.2 and 2.1 the
projectability of L follows easily.

The application in § 6 requires the following lemma.

Lemma 4.3. If B is a set of vertical vector fields on X such that for every
x € X the set of values v, for all v e B spans the space of vertical vectors
at z, then the conditions in Theorems 5 and 6 involving all vertical vector
fields » may be restricted to only those v that belong to B.

Proof. If z ¢ X, every vertical vector field v can, in a neighborhood of z,
be written as v = Xg,v,, where v,¢ B and the g,/s are functions. Then

wrv=2¢;(wAv,), Liv=2g,(Lavy), (4.4)
[v, o] = Z¢;[v;, w] + Z(wAv) A dyg, , (4.5)
[v, L] = Zg;[v;, L] + Z(LAv) A\ dg; — Zv; A\ (dg; A L) . (4.6)

These formulas show, for instance, that wav =0 for vePB implies
warv=0 for all vertical v; and that wav=0,[v,w] =0 for veDB
implies the same for all vertical ». The converse is, of course, trivial.

The proof of the identities (4.5) and (4.6) is & computation in which

(gv)f = g(vf) (4.7)
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[gv, u] = g[v, u] — (dg R w)v (4.8)
are applied to the right side of (1.14) with  replaced by gu.

§ b. Vertical forms over a bundle. Various geometric problems on a fiber
bundle p: X — Y lead to considering objects which are very similar to
scalar or vector forms over X, the difference being essentially that the domain
of definition of the objects is restricted. Many of the previously considered
operations can be defined for the modified objects and have similar properties.

The first concept is that of a vector field v on the bundle space X, as in § 2,
which is, however, defined only at the points of one fiber Z, = p1(y),y e Y;
but is not required to be tangent to the fiber. Such a vector field at the fiber
Z, is thus simply a section in 7'(X) over the subset Z, € X. The concept
of being projectable or not applies to vector fields at Z,. If  is a projectable
vector field at Z,, its projection p, (u) is a vector of T,(Y). Conversely,
if Uy € T,(Y) is given, there is at least one vector ﬁeld u at the fiber Z, with
Py = u,. Any such % is called a lifting of u,. If u is a vector field at Z,
and f a C* function in a neighborhood of Z,, then % f is a C* function on Z,.

The next concept is that of an object acting on g-tuples of vectors in exactly
the same way as a scalar ¢g-form over X, with the only difference that it acts
only on g-tuples of vertical vectors and is therefore called a vertical scalar
g-form over X?®). Denoting by V,(X) the subspace of 7T,(X) formed by

the vertical vectors at ze¢ X, and by V(X)= UV,(X) the submanifold
rz€X
of 7T (X) formed by all vertical tangent vectors to X, we have therefore the

analogous definition as for scalar g-forms (cf. § 1).

Definition. A vertical scalar q-form w over X is a real-valued C® function
on @V (X) whose restriction w, = o |®?V,(X) is, for each z, R-multi-
linear and skew-symmetric.

Since V,(X) is identified with 7,(Z,), y = p(z), by means of the im-
bedding of Z, in X, a vertical scalar ¢g-form w determines for each fiber Z,
an ordinary scalar g-form over Z,. Intuitively speaking, w is the collection
of these scalar g-forms over the fibers; the given definition insures, however,
that that transition from fiber to fiber is sufficiently smooth. If v,,..., v,
are vertical C* vector fields over X, then w(v;...,v,) is a C* function
over X, because it is a composite of C* mappings. w(vy,...,v,) 8 DPy(X)-
linear in each of the v,’s. Conversely, one can prove (in analogy to Lemma
1.1) that the @,(X)-multilinear skew-symmetric mappings of the &,(X)-

%) The English language has good terms to restrict ranges of functions (e.g. “‘real-valued,”
“vertical-valued’’), but the situation for domains seems to force some kind of abuse of language,
since vertical scalar forms are not scalar forms in the proper sense.
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module W of vertical vector fields into @,(X) are in 1-1-correspondence
with the vertical scalar forms over X .

Another way (for paracompact Y) to look at vertical scalar forms is as
follows. Call two scalar forms over X equivalent if for all y ¢ ¥, their restric-
tions to Z, are the same. The equivalence classes of this relation are in 1-1-
correspondence with the vertical scalar forms as defined above. In fact, any
such class can be assigned to the common restriction to the fibers; and con-
versely, every vertical form ' on X is the restriction to the fibers of some
form w on X. A construction of w can be given by a method analogous to the
proof of Proposition 5.1 below.

Definition. A vertical vector I-form L over X is a C* mapping L: @'V (X) —
V(X) whose restriction L, = L | ®'V,(X) is, for each x, a R-multilinear
and skew-symmetric mapping L,: @'V (X) - V (X).

A vertical vector field is obviously the same as a vertical-valued vector
0-form. Not all vector forms over X are restrictable to the fibers; but for the
ones that are, the remarks made for scalar forms hold here, mutatis mutandis.

Proposition 5.1. Let A’ be a vector 1-form on the paracompact base space
Y of a fiber bundle p: X — Y and A" a vertical vector 1-form over X. Sup-
pose that they satisfy the equations x(h') = x(h") = 0, where y is a poly-
nomial whose coefficients are functions on Y. Then there is a vector 1-form
h over X such that:

i) h is projectable, its projection being A';
ii) the restriction of A to the fibers is A”;
iii) y(h) = 0.

Proof. a) In the special case where the fiber bundle is actually a direct
product, X = Y x Z, the proposition is obvious. b) In order to reduce the
general case to the special one, let W = {U,};; and ¥;: U; X Z — p~1(U,)
have the meanings stated in the definition of a fiber bundle (§ 4). We can sup-
pose that U is a locally finite covering. Each set p~1(U;) has, through the
diffeomorphism ¥, a structure of direct product, and according to the case
a) there exists a vector 1-form %A, over p~1(U,) whose projection is A’ (re-
stricted to U, of course) and whose restriction to the fibers is A" (restricted
to p~1(U,), of course) and which satisfies y(h;) = 0. Let {p;};c; be a
partition of unity with respect to the covering U. Then h = X (p*¢;)-h, is

i€l
a vector 1-form over X which projects to 2’ and restricts to A”. It remains
to prove that y(h) = 0. This is a pointwise property and follows from the

equations y(h,) = 0 according to the following:
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Lemma 5.2. Suppose given

a) p: T - H, a homomorphism of a vector space 7' onto an other H;
b) A”: V — V, an endomorphism of V, V being the kernel of p;
¢) A': H—-> H, an endomorphism of H.

Then for any polynomial ¥ (with real coefficients), any endomorphisms
hi,..., h, of T satisfying poh,=h'op and h,|V =0~" ¢ =1,...,n),

n
and any numbers 4,,..., 4, satisfying 2’1, = 1 one has:
i=1

T(llhl % i o }‘nhn) = 11 !p(hu) o IR o }m Yl(hn) .

Proof. For at least one ¢, say ¢=mn, one has 4, %1 (unless n =1,
in which case there is nothing to prove). Writing then

Mhy+ -+ Ak, = (1 — A) (b + -+ + poabny) + 2,0, ,
n—1
one has X u, =1, and therefore the lemma follows by induction on =,
i=1
provided we prove it for n» = 2. Given ¥ there is a polynomial A4 in two
non-commutative variables such that for any two endomorphisms &, { of T
one has

P(E+ ) =Y()+ A, D). (5.1)

With A, +4,=1 and k=h, —h, we have Ak, + Ak, =h, + Ak;
hence

¥(Ahy + A3h,) = T(hl) + A(hy, Ak) . (5.2)

According to the assumptions on &, and h,, their difference ¥ (and hence also
A k) has projection zero and restriction zero, i.e. k(7)< V and k(V)=0.
Together with & (V) € V this implies that all those terms of A(k,, A,k)
which contain at least two factors ¢ vanish, and since 4 has no terms of
degree 0, we conclude that A(h,, A,k) is actually linear in Ak, i.e.
A(hy, Ask) = Ay A(hy, k). Using this and (5.1), we obtain from (5.2);
M+ A4d,=1 and k=hy, —h,:

Y(Mhy + Ashy) = Y(hy) + A(hy, 2sk) = ¥(ky) + A, A (A, k)
= ¥(hy) + A (¥ (b, + k) — Y(h) = 4, ¥ (k) + A ¥ (hy)
which gives the desired formula.
The main subject of this section is to introduce and study Lik derivatives
of vertical forms with respect to projectable vector fields. Intuitively, these

Lie derivatives are meaningful since the mappings exp tu, for projectable u,
send fibers into fibers. However, the domains in which these mappings can

(5.4)
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be defined may create difficulties (unless the fibers are compact, or certain
additional conditions are imposed on the vector fields). Besides, it turns out
that in the more formal approach which is given here, the assumption on the
domain over which « is defined, can be reduced greatly.

Proposition 5.3. Let u be a vector field at one fiber Z,; v a vertical vector
field defined in a neighborhood V of Z,. Then the following holds:

a) The usual definition of [u, v], is meaningful for all z e Z,;
b) [u, fv] =f-[u,v] + (uf)-v  forall fe®(V) ;

o) [fu,v] = f-[u,v] —(@f)-u forall fe®y(Z,) ;

d) u projectable implies [u, v] vertical.

Proof. a) The defining expression for [u, v], is

[, v].f = u (vf) — v (uf),  feD(V). (5.4)

Here vf is defined in a neighborhood of Z,, and since x ¢ Z,, the action of
u, on vf is defined. uf is defined only over Z,, but v, being tangent to Z,,
its action on vf is also defined. b) and c) are as usual, except for the domain
of f, which is obvious. d) If % is an extension of u over a neighborhood of
Z,, then [u,v], = [u,v], for xeZ,; u being projectable, % can be chosen
projectable. By Theorem 1, p,[u%,v] = [pe%, p4v] = 0 since v is vertical,
which proves d).

Thus the action of a projectable vector field » at Z, on functions of &,(X)
and on vertical vector fields are meaningful. This is used in order to extend
the action of u to any vertical scalar or vector ¢-form Q. The action of «
shall have the usual derivation property of a Lit derivative, i.e.

[, 2](vy,...,0,) =[u,2(vy,...,v,)] — 2%’!2(1)1, e [uw, 0], .00, 0)) (5.5)

i=1
Theorem 7. Let u be a vector field at the fiber Z,; Q a vertical scalar
or vector ¢g-form over a neighborhood of Z,; and wv,,...,v, vertical vector

fields over a neighborhood of Z,. Then the right side of (5.5) is meaningful
at points z € Z,; is skew-symmetric and @,(X)-multilinear in the »,’s; and
is vertical in case 2 is a vertical vector form. Thus (5.5) defines a vertical
scalar resp. vector g-form [u, Q] over Z,.

Proof. The skew-symmetry statement is obvious; all the rest is a conse-
quence of Proposition 5.3.

The brackets [L, o] and [L, M] of vertical forms over X are again
vertical forms over X and could be defined according to the derivation ap-
Proach; or by defining their action on (vertical) vector fields analogously as
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for ordinary forms over X. If then the vertical forms w, L, M are the re-
strictions to the fibers of forms @, L, M over X, then the brackets [L, w],

[L, M] so defined are the restrictions to the fibers of the forms [1": , @], [L~ , M ]
(which by Theorem 1 are restrictable to the fibers). This can be used to give
a shorter definition of [w, L] and [L, M]: for given vertical forms w, L, M,
choose extensions o, z, M 19). by Theorem 1 the restrictions to the fibers of
[i, w] and [E , M ] exist and do not depend on the choice of the extensions,
and therefore can be defined to be [L, w] and [L, M]. The same procedure
works of course for wAx L and M ax L. From these definitions it follows at
once, that for vertical forms over X there hold the analogous formulas as
for forms over X.

With Lie derivatives of vertical forms with respect to a projectable vector
field at one fiber Z,, as introduced in Theorem 7, one has to be more careful.
If e.g. v and v are projectable vector fields at Z,, then it is of course not
possible to take LIE derivatives with respect to « and v in succession — unless
# and v are both vertical. However, many properties of ordinary Lir deriva-
tives still hold ; in particular the following ,,LEIBNITZ rules’:

Proposition 5.4. Let u be a projectable vector field at the fiber Z,; 2 a

vertical scalar or vector form and L a vertical vector form over a neighborhood
of Z,. Then

[, L, 2] = [[, L], Q) + [L, [», 21]; (5.6)
[u,QAL] =[u, Q)AL+ r[u,L]. (5.7)

The proof follows from the definition of the operations for vertical forms
and the following.

Lemma 5.5. Let 2 be a vertical form over a neighborhood of Z, and u

a projectable vector field at Z,. If Q is any form over a neighborhood of Z,
whose restriction to the fibers is 2, and % any projectable vector field over a
neighborhood of Z, which is an extension of », then [u, 2] is the restriction

to Z, of [%, 2]. Moreover, such extensions always exist.

The proof consists in evaluating [#%, ﬁ] on vertical vector fields and com-
paring with the equation (5.5) by which [u, 2] was defined. That extensions
exist is trivial if one chooses a neighborhood of Z, which is a direct product.

10) Extensions over X do not necessarily exist. However, since the operations to be defined
are local operations, it is sufficient to choose extensions over one of the sets p~1(U) which has
a product structure (cf. the definition of a fiber bundle).
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§ 6. Homogeneous almost-complex and eomplex structures. Let @ be a real
Lie group, H a closed connected subgroup and G/H the set of left-cosets of
H in G. Then p: Q@ - G/H, where p(a) is the left-coset a H containing
the element a ¢ G, is a fiber bundle of class C«. Since for any a e @ the

left-translation I,: @ — G preserves left-cosets, I, induces a C«® mapping
W,: G/H - G/H characterized by

Weoop=mpol,. (6.1)

A vector form — or any other tensor field — over G/H is called invariant or
homogeneous, if it is invariant under all W,; or, equivalently, if it is W -
related to itself for all @ ¢ G. A vector 1-form J thus is invariant if and only if

Twamy© (Walx = (Wo)y o, (6.2)
forall x e G/H and all a Q.

Lemma 6.1. LetJ be a vector 1-form over G/H. Then the following state-
ments are equivalent:

1) J is invariant
ii) J is the projection of a (projectable) left-invariant vector 1-form K over
G whose restriction to the fibers is zero.

Proof. i)=)>1ii). We first construct K. Let e be the identity element of @,
and z, = p(e). Choose a subspace V of 7T,(GF) which is complementary to
T,(H). Then p, maps V isomorphically onto 7', (G/H). Let q: T, (G/H) -V
be the inverse map. Define the value of K at e by

Ke"_“qo']zoop* (6'3)
and define K over @ by left-invariance:
K,=(lxoK,o (la‘l)* s (6.4)

From (6.4) we obtain, using (6.3) and (6.1):
K, = (la)*°9°Jzo°(Wa—1)*°P* (6.5)

which shows, that K, maps vertical vectors into zero (cf. the definition of a
vertical vector in § 4). Multiplying (6.5) from the left with p,, and wusing
(6.1), (6.2) and the fact that p, o g is the identity on T, (G/H), one obtains

p*oKa__-JWa(xo)op*; (6’6)
and since

Wo(x) = Wa (p(e)) = p(la(e)) - p(a"e) = p(a),
(6.6) states that J is the projection of K.
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il) - i) We consider the diagram

T (G/H) (Wals > T (Q/H)

RN P« l5 Px N
T(@) —(—a—)i T(@)
J 2 K l 1 K l 3 J
T(Q) —-(-l—ali T(@)
Px 4 ¢ Px
; (W :
T(G/H) > T (G/H)

a) Square 1 is commutative, since K is left-invariant.

b) Squares 2 and 3 are commutative, since K and J are p-related (cf. (2.4)).

c) Squares 4 and 5 are commutative according to (6.1).

a), b), ¢) together with the fact that p* is onto immediately imply the com-
mutativity of the outside square, i.e. the invariance of J under W,.

Let g denote the L1k algebra of left-invariant vector fields on G, A the sub-
algebra of those that are tangent to H. ¢ and h are isomorphic to the Lir
algebras of G and H, respectively, and the elements of 4 form a set B in the
sense of Lemma 4.3. A left-invariant vector 1-form K on @ sends left-invariant
vector fields into such, hence induces a linear transformation on g (also denoted
by K). Conversely, a linear transformation of g induces a left-invariant vector
1-form over G.

Lemma 6.2. Let K be a left-invariant vector 1-form over G whose restric-
tion to the fibers is zero. Then the following are equivalent:

i) K is projectable

ii) [v, Ku] — K[v,u]eh forall ueg and veh.

Proof. K, having restriction zero, is certainly pointwise-projectable (Pro-
position 4.2). Condition ii) is equivalent to saying that [v, K] is vertical-
valued for all vertical v (cf. (1.12) and Lemma 4.3). This reduces the Lemma
to Theorem 6 (§ 4).

A homogeneous vector 1-form J on G/H is a homogeneous almost-complex
structure if JxJ = —I. An associated K (cf. Lemma 6.1) then has the
property KKv= —wv for all veV; where now V is precisely the set
K(T,(@)). Denoting by W the subset of those veg for which v,¢ ¥V and
combining with Lemmas 6.1 and 6.2 one thus has:

Theorem 7. G/H admits a homogeneous almost-complex J if and only if
the Lir algebra g of G admits a linear transformation K satisfying
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a) Ku=0 forall ueh;

b) KKv = — v for all v in a subspace W of ¢ complementary to 4;

c) [v, Kul] — K[v,uleh forall veh and ueg.

The relation between J and K is not a one-to-one correspondence, since the
choice of V was involved in the construction of K. The action of K on g/h,
however, is uniquely determined by J. Denoting by (u) the equivalence
class u + h e g/h of the element u € g, h acts on g/h, the action 4, of veh
being

A, uy =<, ul). (6.7)

Theorem 8. The homogeneous almost-complex structures over G/H are
in one-to-one correspondence with those endomorphisms of g/h with square
minus identity which commute with the action (6.7) of 2 on g/h.

Remark. So far we assumed that H is connected. The motivation is that
the transformations 4,, veh (cf. (6.7)) should generate the action of H
on g/k. Since the group which acts effectively on g/k is a factor group H/H,
of H, it is enough to require that H/H, is connected. Here, H, is the normal
subgroup of those elements of H which, when acting on g by the adjoint re-
presentation, keep every element of ¢ fixed modulo A. Another way of for-
mulating the condition is that H, should intersect every component of H.

For the following theorem dealing with complex structures we make use
of the following two facts. The complex structures correspond precisely to
those almost-complex structures J that satisfy the integrability condition
[J,J] = 0; in this one-to-one correspondence the homogeneous complex
structures correspond to the invariant integrable almost complex structures J .

Theorem 9. G/H admits a homogeneous complex structure if and only if
the Lig algebra g of @ admits a linear transformation K satisfying:

o) Ku=0 forall ueh;

B) KKu = — u for all » in a subspace W of g complementary to & ;

y) [Ku, Kv] + KK[u,v] — K[Ku,v] — K[u,Kv]eh forallu, veg.

Proof. a) Suppose J is & homogeneous complex structure. Then [J,J] = 0.
According to Theorem 8 we obtain K satisfying conditions «) and ). K is
p-related to J; hence by Theorem 1 [K, K] is p-related to [J,J] = 0, i.e.
[K, K] must be vertical-valued, and (1.13) therefore shows that condition
y) is also verified.

b) Suppose we have K satisfying «), ), ). We first show that then condition
¢) of Theorem 8 is satisfied. ) gives, for weg and veh (since Kv =20
according to «):

K(K[u,v] —[Ku,v])eh. (6.8)
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This gives condition c¢) of Theorem 8; in fact, for any weg, Kw e h implies
Kw =0 (because K(g) = W) and therefore w ek (because k is the kernel
of K). By Theorem 8 it follows, that K projects onto an invariant almost-
complex structure J over G/H. According to y), [K, K] is vertical-valued,
and thus its projection, which by Theorem 1 is [J, J], is zero. Hence J is
a homogeneous complex structure over G/H .
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