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Invariance of Yector Form Opérations under Mappings*)

by Alfred Fkolicheb and Albert Nijenhtjis

Introduction. In a previous paper [4] the authors hâve presented a theory
of dérivations on the ring of C°° differential forms over a manifold, in which
a vital rôle was played by vector forms2). The commutators of certain kinds
of dérivations were found to be intimately related to a previously published
[7] differential concomitant [L, M] of vector forms L and M ; and several
identities involving this concomitant were derived in a very simple fashion.

If X and Y are C°° manifolds, and F : X -> Y is a C°° mapping, there are
associated mappings F* on tangent vectors, and F* on differential forms;
the first being a covariant functor; the second a contravariant one.

For mixed tensors on X or Y there are, in gênerai, no induced mappings in
either direction. However, they may nevertheless be related in some fashion
through F. At présent we restrict ourselves to vector forms, and define the
concept of F-relatedness. This relation is a mapping only in spécial cases

(cf. § 3, 4), but is always transitive with respect to composites of mappings3).
We study the behavior of differential concomitants of vector and scalar

forms with respect to F-relatedness. The main resuit (Theorem 1, § 2) is that
the notion of .F-relatedness is invariant under the formation of the differential
concomitants in question4). In sections 3 and 4 conditions for F-relatedness
will be deduced for spécial classes of mappings, namely—roughly speaking —

imbeddings (§ 3) and projections (§ 4). Section 5 also deals with fiber bundles
and develops machinery for Lie differentiation of certain tensor fields which
are only defined along the fibers of the bundle.

Two applications of the theory hâve presented themselves. The first, dis-
cussed in § 6, deals with the existence of almost-complex and complex structures

which are invariant under the action of a transitive Lie group of
transformations. The respective Theorems 8 and 9 of § 6 were proved in [3] (cf. also

*) Research sponsored by an Office of Naval Research contract at the University of Washington.

2) Vector forms are differential forms whose values at any point are not numbers, but tangent
vectors. Ordinary differential forms are called scalar forms.

8) Only from a formai functorial point of view (cf. [2]) does F-relatedness satisfy the conditions
for "mappings" in a category.

*) This resuit is not true for ail differential concomitants: if F : X -> Y imbeds X as a sub-
manifold in a RiBMANNian manifold Y, then the induced metric on X is F-related to the metric
on Y, while the corresponding eurvature tensors are not F-related. In fact, the generalization of
Gauss' Theorema Egregium states that the déviation from .F-relatedness can be expressed in
terms of the second fundamental forms.
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[1, 6, 9]), but the proofs hâve been greatly simplified. A second application,
to déformations of complex structures on compact manifolds, requires exten-
sive use of § 5, and is forthcoming as a separate paper [5].

§ 1. Opérations on scalar and vector forms. This section is a brief
introduction into the concepts used later in this paper. Since most facts can be
found elsewhere in the literature, only occasional sketches of proofs will be

given.
Let X dénote a O00 manifold, and <2>0 the ring of C°° functions over X.

The field of real numbers, denoted by R, can be considered as subring of &0

(the constant functions). If /e$0, fx dénotes the value (restriction) of / at
zeX. A tangent vector ux at xcX is a mapping5) ux: 0O-+R, linear over jB,
which satisfies the Leibnitz rule for products ux(fg) gx-uxf + fx-uxg
Tx dénotes the tangent space at x ; T (J Tx is the tangent bundle ; and

X€X
r:T~>X the projection mapping in this bundle.

A C°° vector field u over X is a map u: X ->T with x ->ux € Txi such
that for any / € &Q the map X -> R, by x -> uxf, is a C°° function, denoted
by uf. Thus, u represents a dérivation on &0.

Tangent vectors are local operators, that is uxf uxg if fy gv for ail y
in some neighborhood oî x. As a conséquence, ux can be defined to operate
on C°° functions defined only in some neighborhood of x.

Let / be a C00 function over an open subset U of X ; then df shall dénote
the real-valued function on the tangent bundle T(U) r"1(?7) defined by
df(ux) uxf. The restriction (df)x of df to one fiber Tx, xcU, is a linear
function on Tx.

If X1,..., Xn are functions defined on an open set U of X, and if they
form a coordinate System there, then JC1or, JTwot, dX1, dXn are
2n functions defined on T(U). Let F1..., Yn dénote coordinate functions
in an open set F, then, if U Ç] V is not empty, in U D V the Y* are functions

of the X1 :

»= 1, ...,n, (1.1)
or«)

t=l,...,n, (1.2)

5) In index-notation, ux w* -^—r(707*
The properties stated. constitute a complète axio-

matic characterization of tangent vectors to O00 manifolds. For manifolds of class C* (k < c»),
a small modification is needed.

•) For the composite of two functions, say / and g, the symbol g o / is eustomary, and stands
for x -> (g o /) (x) — g (/(#)). If gr is a function of, say, 2 variables, there is no standard notation
for the function a?-> #(/i(aO, U(%))* One may, for instance, use go(hX h)> or g(fi,U)*
We hâve chosen the latter.
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where 0%(S19 •. -, ?*) dépends in a C°° manner on the real numbers f1,...,
I71. Then, we hâve

where (I1, f», C1, Cn) -> ^(f1, ...,£*) and

n

(is..., r, c1,..., cm)-^
are 2w C00 functions in the 2n real variables I1, I71, C1, £n. Thus,
the functions Pot, ...,InoT, dZ1, dXn on r-1(î7), derived from
the coordinate functions X1, Xn on J7, détermine a C00 structure on
ï7, and, clearly, r is a C00 projection map.—If / is a C00 function on X,
then for and d/ are C00 functions on T. A vector field u is of class C°° if
and only if u : X -> T is a C00 section.

A scalar g-form cog. at x e X is an iî-multilinear, skew-symmetric, real-
valued function of q vectors in Tx : (ox(uly..., uq) e jB for ut€Tx, i 1,

g. Denoting by ©^î7^ the set of g-tuples of éléments of T^, co^ is an
JS-multilinear, skew-symmetric map ®qTx -> B. Since the bundle @qT

U (©^TJ is, in a natural fashion, a C°° manifold, a C00 scalar g-form co

over X is a C00 mapping co : ©^î7 ->iî whose restriction cox co | ®qTx
to ©^T^, for ail #eX, is a scalar g-form at #.—-If %, uq are O00

vector fields over X, then co (%,..., wa) is a function over X which, as a
composite of C°° functions in the sensé of footnote 6), is a C°° function.

The method of constructing C°° scalar forms over X as functions on some
bundle over X can be used to give instrinsic définitions of C°° tensor fields
over X of any degree. For our further investigations, however, we are interested
only in certain particular tensors and tensor fields, which we define as follows.

A vector l-form Lx at x € X is an i?-multilinear, skew-symmetric mapping
Lx : ®lTx -+TX.—A C°° vector Z-form L over X is a C00 map L : ®lT -> T
whose restriction Lx L \ ®lTx is a vector î-form at x for ail x*X.
L(ul9... ,ut) is a composite of C°° maps if %,..., ut are C00 vector fields
over X, and, therefore, is a C°° vector field.

Multiplication by éléments of &0 (functions) for vector fields, scalar and
vector forms, etc., is defined pointwise; for instance, (fco)x fxcox. The set
0Q of scalar g-forms and the set Wt of vector Z-forms over X are #0-modules,
and every scalar (vector) form is a skew-symmetric <P0-multilinear map of
Fo into 0O (ÎPO). Conversely, we hâve (cf. [4], Prop. (3.4, 5)) :

16 CMH vol. 3
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Lemma 1,1, Every skew-symmetric 0o-multilinear map of @qWQ into
&q(W0) is a C°° scalar (vector) g-form over X.

Remark. The bracket [u,v] of vector fields, defined by [u,v]f —

u(vf) — v(uf) is a skew-symmetric i2-bilinear map Wo © WQ -> Wo, but,
as the following équation shows, it is not <P0-bilinear.

(1.4)

Thus, (u, v) ->[%, v] is not representable by a vector 2-form.
Another resuit, proved in a manner similar to Lemma 1.1, is

Lemma 1.2. The #0-linear mappings of 0t into &t are in 1-1-correspond-
ence with the C00 vector ï-forms L over X, where L acts on <p e &± as

<p -> <p Â L, the latter being defined by

(q>ÂL) (u1,...9ul) <p(L(ul9...9ul)) (1.5)

Let Q dénote either a scalar or a vector g-form; n a scalar p-form. Then
the scalar (vector) (q + p)-form Û A n is defined by

[ÛAn)(ul9 ...9u^P)=-~Y-^Z\oc\Û(uûliy w«g)-w(^+1, ..,t^+,), (1.6)

where « ' " * * ' 1 runs over ail (p + ï) permutations, and | oc \

\oct, <x^q)
dénotes the signature of oc.—If Q is as before, and L a vector Z-form, Q"/\L
dénotes the scalar (vector) (q + l — l)-form defined by

if q > 0; and by Q Â £ *= 0 if q 0,
The exterior derivative dm of a scalar g-form eu is defined by its action on

vector fields as follows :

(1.8)

2> (g

While the définitions (1.6, 7) are meaningful also if u{ dénotes a vector at
just one point, in (1.8) it is essentiel to ha-ve vector fields. However, a simple
computation involving (1.4) shows that the right side of (1.8) is (f^-lmear in
u{. Lemma 1.1 asserts that, therefore, dco is a scalar (q + l)-form.
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If o) and L are as before, then [L, co] is the scalar (q + J)-form:

[L,co] (dœ)*L + (-iyd(a)ÂL) (1.9)

As the foliowing équation shows, [L, co] is not #>0-linear in o> :

IL, fco] [L,f]Aa> + f[L, co] (1.10)

The bracket [L, M] of a vector Z-form L and a vector m-form M over X
is a vector (l -f- m)-form. If cp dénotes any scalar 1-form, then [L, M] is
characterized by

<pUL,M] (^ir[M,(p]l{L-(^l)^[M,(p^L]-(^l)m[Ml{L,(p]. (1.11)

In fact, the right side (not term for term - cf. (1.10)) is &0 - linear in <p;

hence represents a $0-linear map 01-+&l+m, which, by Lemma 1.2, is given
by the Â-action of a well-determined vector (l -f- m)-form.

The opérations mentioned hère play entirely natural rôles in the theory of
dérivations on the graded ring of scalar forms (cf. [4]). Numerous identities
hold, but only a few are needed in what foliows. If Q is a scalar or vector
form, L a vector form, then

[u, Q-RL] [>, £]ÂL + Q-R[u, L] (1.12)

This formula is a spécial case of what is known as Leibnitz' rule on the Lie
derivative of a product (with or without contractions) of tensor fields. Further-
more, if h is a vector 1-form, then [h, h] is determined by

U^,h]{u, v) [hu,hv] — h[hu,v] —h[ufhv] + hh[u, v] (1.13)

From (1.12), replacing L by v, one obtains [u, Q'Rv] [u, Q]hV + Qâ[u,v],
Applying this rule repeatedly to Q(v1,..., vq) ((Q Â vt) Â â vq one
obtains, after rearrangement of terms :

O, Q](vl9 ...,vq) [u9Q{vl9..., vq)] — ZQ(vx,..., [u, v{],..., vq) (1.14)

where [u,f] uf, in agreement with (1.9).

§ 2. Mappings ; F-relatedness. In this section, F : X -> Y dénotes a

mapping of C°° manifolds X and Y. T(X) dénotes the tangent bundle of X ;

similarly, <Pq(Y) the set of scalar g-forms on Y ; etc.
The mapping F : X -> Y is of class G°° if and only if for every C00 function

f on Y the composite /o F, usually denoted as F*(f), is a C00 function on
X. Another équivalent condition is that #* F*) is of class C°° on X for ail
coordinate functions Y1 of a certain covering of Y by coordinate neighbor-
hoods. - F will be assumed of class C00; then F* is a mapping of &0(Y)

17 CMH vol. 34
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into &o(X) ; it is a ring homomorphism whose restriction to the constants is

an isomorphism.
If ueTx{X), the mapping &0(Y) -> JB denoted by F#{um) and defined

by / -> uxF*(f) is IMinear and satisfies the Lbibnitz rule as postulated for
tangent vectors at F(x) c F. Hence, F* (ux) e Tf{x)(Y), and we hâve a map
F* : T(X) ->T(Y) which satisfîes rY o F* F o %x ; and whose restriction
F* | TX(X) is IMinear.

If / is a O00 fonction on Y, then / o %Y and df are C°° fonctions on T(Y).
In particular, if Yi are coordinate fonctions on Y, then Y* o rY and dF'
are coordinate fonctions on T(Y). The map F* : T(Z) ->T(F) is proved
to be of class C00 by showing that the induced fonctions (.F*)*(Ft# otf) and

(F+PidY*) are C00 fonctions on T(X). Let / dénote any one of the Y1 for
any coordinate system on Y. The C00 nature of (F*)*(f o ty) on T(X)
follows from

(#*)*(/ OTF) ***(/) oTjr, (2.1)

since the right side, as composite of C00 mappings, is of class C00. (2.1) is

just another way of writing (/ o rY) o F* (/ o F) o rx which follows from
Tro.F* Foxx by associativity. The C°° nature of (F*)*(df) on T(X)
follows from

(F*)*df dF*(f) (2.2)

since the right side is a C°° fonction on T(X) ; (2.2) is proved by évaluation
on an arbitrary élément ux c T(X) :

((F*)*(df)) (ux) - (df o F*)(ux) - df (F* (uj) (2.3)
F*(u.)f u.F*(f) (dF*(f))(ux)

The map #^ : T(Z) -^(F) induces a map ©«^(Z) ->®«T(F) which
is also denoted by F*, and is also of class C00.

Every scalar g-form co over F represents a C00 fonction on ©«^(F) ; hence

(F*)*((o) is a O00 fonction over ®«5T(Z). Since (F*)*{œ)\@*Tm{X) is a
scalar g-form at «cX, (JFrî^)*(co) is a scalar g-form over X. - The more com-
mon notation for (#*)* is J7*, which will be used henceforth.

The well-known resuit d(F*co) -P*(da>) for a)€0q{Y) is simplest to
prove when F is a map of constant rank, because then every set of vectors

%«>•••> uqx € TX(X) can be extended to vector fields ul9... ,uq which, at
least locally, can be mapped by F% into local vector fields on F. The resuit
is generally true, since every map F : X -> F can be represented as the
composite F2 o Fx of two maps of constant rank, Fx : X -» X x F and
F% : X x F -* F being defined by -Fx(a;) (a;, #(a?)) ; #2(x, y) y.

Since, in gênerai, mappings JP : X ~> F do not induce mappings of vector
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fields and vector forms - the latter not even at one point - we introduce the
concepts of (F, #)-relatedness and jF-relatedness. The concepts are easily seen
to be transitive with respect to composition of mappings ; and may be formu-
lated for any types of tensors. For vectors and differential forms at one point,
the concept of (F, #)-relatedness is the same as the relation established by
the mappings F* and F* respectively.

Définition. A vector Z-form Lx at xxe X and a vector Z-form Ly at
y F(x) € Y are (F, #)-related if for ail ut,... ,ute TX(X) one has

F*(Lx(uly..., *,)) Ly{F*{ux),..., F+fa)) (2.4)

Définition. Scalar or vector forms Q over X and Q' over Y are .F-related,
if for ail x € X and y F(x), the forms Qx and Qy are (F, #)-related.

Remark. (F, #)-relatedness and jF-relatedness can be expressed by com-
mutativity of diagrams like

(2.5)L'

T(X) —-+ T(Y)
Theorem 1. Let X and Y be (7°° manifolds, and fiI^TaO" mapping.

The following opérations are invariant under .F-relatedness7) :

(o, M -> co Â M Jtf,ft>-> [M, ca]

L,M ->LâM M,L->[M,L].
The following lemma is useful in the proof.

Lemma 2.1. Let Lx be a vector form at xe X; Ly a vector form at
y F(x). Then Lx and Ly are (F, #)-related if and only if for every scalar
1-form <py at y one has

'. (2.6)

The corresponding statement holds for jP-related fields L and Lf.
Proof of the lemma, for (F, #)-relatedness - the other part being a trivial

conséquence. Let uly..., ut c TX(X), then we hâve

7) This means, for instance, that if vector fields u and v over X are 2^-related to vector fields
u*, v' respectively over F, then [u9v] is -F-related to [u',vf].
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9,(L'9(Filtul,...,F*ul)). ^
If Z^ and 2/ are (#, x)-related, the expressions in (2.7, 8) are equal for ail

%,..., ^j, which proves (2.6). Conversely, if (2.6) holds for ail <py and

ux,... ,ulf then the expressions of (2.7, 8) are equal for ail q>y ; hence (2.4)
follows and Lx and L!y are (.F, #)-related.

Prool oî Theorem 1. The statement concerning o)l\M is proved in the
same manner as Lemma 2.1, using the gênerai définition (1.7) for the opération

Â. For L/\ n and Là M the statement follows by putting a)'y <py'RLfy,

where <py is a 1-form at y. Thus we hâve reduced the questions to the cases

œ/\n and coâM, the first of which is known to be invariant, while the
second is the previous resuit. Lemma (2.1) then gives the desired invariance
under (F, #)-relatedness of L/\ n and La M. In the second column, the
first part is a spécial case of the last. The next part, concerning [M, co],

follows from the behavior of both d and Â under F, using the définition (1.9).
Finally, since the right-hand side of (1.11) contains only opérations just
proved to be invariant under .F-relatedness, Lemma (2.1) gives the resuit for

Remark. It is clear that the opérations mentioned in Theorem 1 constitute
only a sample of ail opérations known that are invariant under JP-relatedness,

However, for the applications in view the ones mentioned are ail that is

needed. Other invariant opérations are, for example, the bracket opérations
for contravariant tensors due to Schoxjten (cf. [8, 7]) and the opération which
assigns to an affine connection its Riemann-Christoffel curvature tensor.
For the latter, .F-relatedness of connections is defined in the obvious manner
using coordinates Xa (a 1,..., m) in X and Yi (i — 1,..., n) in Y, and

component notation : fonl and F' on Y are .F-related if
37* _ dYi dY* „ 8*7*

1 cb dxa "" dxc dxb >* "*" dxcdxb ' K '

However, the opération which assigns to a Riemann metric its Christoffel
symbols is not invariant under .F-relatedness. More trivial opérations not
invariant under .F-relatedness include : the contraction (trace) of a vector 1-form
and the inverse (if it exists) of a covariant tensor of degree 2.

§ 3, Subspaces i : X -> Y ; restrictions and extensions. In this section the
gênerai (7°°-mapping F is replaced by a mapping i whose rank is everywhere
equal to the dimension of X (hence i is of constant rank and dim Y > dira X).
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Consequently, the induced map i* | TX(X) is injective and identifies TX(X)
with a vector subspace of Tiix)( Y).

Theorem 2. Let i : X -> F be a mapping whose rank equals dim X and
Lf a vector form over Y. There exists a vector form .L over X which is i-
related to L'if and only if Lf (%,..., ut) c Tx (X) whenever ux,..., % € ï^ (Jf
If such a restriction L exists, it is unique.

Prooî. a) Necessity of the condition is obvious. b) Let %,...,% be
vectorfields over X. Then L' (i*ux,... i%ut)iix) c i* (TX(X)) and there
exists a unique vector vx c TX(X) such that Lf(i^ux,. i*^i)t(ac) Hvx-
If L has to be i-related to L1, one must hâve L(ul9..., ut)x vx. This

proves the uniqueness of L, and in order to hâve the existence it remains to
prove that the constructed L is C°°. If U is a sufficiently small neighborhood
of x e X, then {i^ui)i{xf), (x1 e U), is the restriction of a C°° vectorfield vs

over a neighborhood F of i(x) in Y, and hence i% vz, is the restriction of a
C00 vector field w over F. Let / be a C°° function over U. If U was taken
sufficiently small, then / i*g, where g is a C°° function over F. We hâve

V/ va;' (i*ôr) (**V)? wi(x')9 (^ï)^*') for ^ € C- Hence locally
vf i*(wg), which proves that vf is C°°.

Theorem 3. Suppose that the map i : X -> F is a proper imbedding8);
that Y is paracompact; and that i(X) is a closed subset of F. Then every
scalar or vector form Q over X can be extended over Y, i.e. there exists a
form Q' over Y such that fi and Q' are i-related.

Proof. a) Spécial case: Y X x Z and i(x) (#, z0), where z0 is a
fixed point of the manifold Z. Let p: X x Z -> X and vl->l xZ be
defined by p(x,z) x and i2(#) (#, z). co ot L being given over X, we
can define oof and !/' over X X Z by <*/(%, uq) co (£>*%,..., p*uq)
and L' (ux,..., tea) (*",)„, L (p* ux,..., p* uq) for any vectors u, e T{ Xt z) (XxZ).
b) General case. Since i is one-to-one, we identify x with i(x) and consider X
as subset of Y. Using that i is a proper imbedding one finds that every point
x € X has a neighborhood Ux in Y in which there are local coordinates

Y1,..., Ym such that Ux is described by the inequalities | F* | < 1

(i 1,..., m) and F,, Ux n X by the équations 7n+1 Ym 0.
t/^ is then diffeomorphic to Vx X Em~~n, where Em~n is the open (m — n)-
cell | F* | < 1 (i n + 1,... m), and according to a) fi (or rather its
restrictions to Vx) has an extension Q^ over Ux. The sets Ux together with

8) A C00 mapping i : X -> F is a proper imbedding if i) the rank of i is equal dim X ;

ii) the topology of X coincides with that induced by t.



236 AliFBKD FrÔLICHER / ALBERT NlJENHITIS

Uo Y — X form an open covering tf of Y. Put Q'Uq 0. Let {W€}i€l
be a locally finite refinement of H, and q : / -> JC U {0} be a refinement map
so that Wi c Upii). Define Q[ to be the restriction of Qfv to W{. By
construction we hâve (OfWi)x — Ox whenever x e X f\ W^ Taking a partition

{<Pi}i€z of unity with respect to the covering {Wi}i€l and putting
Q' S (fiOrWi we hâve obtained the desired extension.

tel
§ 4. Fiber bundles p : X -> F; liftings and projections. In this section JT

will be a mapping p of X onto F which is a local product structure; i.e. there
exists an (open) covering U {Ui)i€l of Y and a manifold Z such that
for ail iel there is a diffeomorphism Wt: V\ x Z -+jr1(Ui) which
préserves fibers: /p*Pi(y,z) y for ail y c Ui9 z e Z. For brevity p : X -> Y
is called a fiber bundle hère, though the group of the bundle is not specified.

We study whether a scalar or vector form over Y can be lifted to X. In
the case of a scalar form œ one simply takes p*((o). In the case of a vector
form L over Y one proceeds as follows : Let Lt be the restriction of L to U4 ;
y\
Lf the extension of L{ to U{ X Z discussed in part a) of the proof of Theo-

/\
rem 3 ; i* the vector form over p-1 U{) corresponding to L{ by means of
Wi. If now Y is paracompact, there is a locally finite refinement 93 { Fi}^€ joflt. Choose q: J->I such that Vj c UpU), and let L^ be the restriction
of i*(?) to p~xVj- Let {^}?€j be a partition of unity for the covering 93.

Then L1 S p'¥{q)j)Lrj is a global vector form and obviously L' and L are

p-related. We hâve thus proved :

Theorem 4, If p : X -> Y is a fiber bundle, and F is paracompact, then
every scalar or vector form over Y can be lifted to X : there is a scalar or
vector form over X which is p-related to the given one on Y.

Définition. A scalar or vector form Q over X is called projectable if there
is a p-related scalar or vector form Q' over Y ; the latter is called projection
of the former.

Définition* A scalar or vector form Q over X is called projectable at x if
there is an Q[x), called projection of Qx, at p(x) e Y which is (p, x)-
related to Qx. Q is called pointwise projectable if it is projectable at x for ail
xeX.

The fact that p : X ~> Y and p* : Tœ(X) -> T9im)(T) are onto implies

Proposition 4.1. If a form Q over X is projectable (resp. projectable at x),
then the projection of Q (resp. -QJ is unique.



Invariance of Voctor Form Opérations under Mappings 237

Notation. The projection of Q (or Qx), if it exista, is denoted by p% (û)
(or

Remarks, a) A pointwise projectable form Q over X is not necessarily pro-
jectable. A neeessary and sufficient condition for a pointwise projectable Q
to be projectable is obviously that for ail xl9 x2e X with p(xt) p(x2), QXi
and QX2 hâve the same projection.

b) A projectable scalar form œ over X is completely determined by its
projection co', since this means co p*(cor). In particular, co must vanish if
its projection exists and vanishes.

Définition. A vector vx c TX(X) is called vertical if p*(vx) 0 (i.e. if vx
is "tangent to the fiber through x"). A vector field v over X is called vertical,
if it is vertical at each point x e X (i.e. if the projection of v exists and is
the zéro vector field over Y).

If v is a projectable vector field and / a function over X, f-v is in gênerai
not projectable; it is, if one (at least) of the two following conditions are
satisfied: a) / is constant along the fibers; then / p*g for some g c &0(Y);
b) v is vertical, in which case fv is also vertical. We conclude that the set
2B of vertical vector fields is a (P0(X)-module; the set *P of projectable vector
fields a 0o(F)-module.

Définition. A vector Z-form L over X is vertical-valued if, for any ttl9..., «,,
L(%,..., ut) is vertical; or, equivalently, if the projection of L exists and
is the zéro vector l-îovm on Y.

Theorem 5. Let p : X -> Y be a fiber bundle ; o> a scalar and L a vector
form over X. Then co is pointwise projectable if and only if coav 0 for
ail vertical v ; Lis pointwise projectable if and only if L Â v is vertical-valued
for ail vertical v.

Proof. Suppose cox is projectable, i.e. there is oy[x) such that

(ox(uXi..., uq) o){x)(p^ux,..., p*uq) ux,...9uq€ Tm(X) (4.1)

This shows, that if one of the vectors u{ is vertical, then œm(ulf...9 ua) 0
and hence a)ai'Rvx 0 if vxeTx(X) is vertical. Suppose now, conversely,
that coxl\ vx 0 for ail vertical vx. This implies that œx(utf..., uq) 0
if one of the vectors ut is vertical. Writing

q

E ((ox(u[,..., u\_i,uiy..., uq) — a>x{u[,..., u'if ui+l,..., uq))
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one finds that therefore cdx(u19 uq) a>0(te£,..., v!q) if
(i 1,..., g); i.e. coa5(^1,..., wfl) dépends only on the projections of

%,..., uq. This shows the existence of a form cd[x) at p(x) which is (p, x)-
related with wm. The resuit for vector forms can be proved analogously or
reduced to the previous one by proving that the following statements are
équivalent :

a) Lx is projectable;
b) (p*(pv) Â Lx is projectable for ail scalar 1-forms ç?y at y p(x);
c) (p*q>y7\Lx) Â v 0 for ail scalar 1-forms <py at y p(x) and ail ver¬

tical VeTx(X)',
d) Lxav is vertical-valued for ail vertical v c TX(X).
c) <=> d) Associativity gives {p*q>y Â Lx) Â v p*cpy â (Lx â v) ; the vanish-

ing of the right side for ail tpy is équivalent to d). b) <=> c) follows from Theo-
rem 5 for scalar forms which was just proved. a) => b) is part of Theorem 1.

Remains to show b) => a), b) means that for every <py there is a unique
scalar Z-form coy at y such that p*(py~t\Lx p*a)y. Since Lx is fixed and

(ox dépends linearly on <py, there is by the pointwise analogue of Lemma 1.2
a vector Z-form Lfy at y such that o)y <py7,Lry. Hence p*<py ÂLx p* {<py7,Lry)

for ail (pyi and by Lemma 2.1 Lx and Lfy are (p, #)-related, hence a).

Proposition 4.2. If a vector form is pointwise projectable, it has a restriction
to any fiber p~1(y). For vector 1-forms pointwise projectability and restric-
tability to the fibers are équivalent.

Proof. Follows from Theorems 2 (§ 3) and 5.

Theorem 6. Let p : X -> Y be a fiber bundle whose fiber Z is connected.
The following conditions are, respectively, necessary and sufficient that a
scalar form wora vector form L over X be projectable:

a) â v 0 and [v, co] 0 for ail vertical v ;

L~Âv and [v,L\ vertical-valued for ail vertical v.

Prooî. The necessity of the conditions follows from Theorem 1( § 2) which
gives p% (o) â v) p* co Â p^v 0 and p*[v, co] [p%v, p* co] 0 because

p^v 0; similarly for vector forms. The proof of the converse is based on
the fact that if / € 0O(X), and vf 0 for ail vertical v, then / is constant
on each fiber, and is the lifting of a C°° function /' on Y. Let U be an élément
of the covering mentioned in the définition of a fiber bundle, and let u1,...,uq
be vector fields over U; they can be lifted to vector fields u{ over p~~l{U) c X.
Then for ail vertical v (cf. (1.14))

uq)) [v, co](%,..., uq) + Z(o{ut,..., |>, 5j,..., îj (4.2)
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The right aide vanishes; the last term since p*[v, ut] [p*v, p*u^\ 0
(Theorem 1) shows that [v,Sj is vertical. It follows that the function
co(ul9..., uq) is constant on each fiber. Given ul9... 9uq9 by Theorem 5,
the value w(ul9... 9uq) is independent of the spécifie liftings of ul9... 9uq.
Let a: U -> X be a section of the bundle over U and coy o*(œaiy)).
Since co is pointwise projectable, o)a{y) projects onto o)y9 and there-
fore coy(uly uq) (o(ulx, uqx) for x a(y). Since however
°>(%,»> • • • > ^a,») ^s constant on each fiber, co' is the projection of co. Hence
co is projectable, which proves the sufficiency of the condition for scalar forms.
For vector forms we introduce again scalar 1-forms <p on Y and remark that
by(1.12)

[v, p*(<p)*L] [v, p*(y)]ÂL + p*(<p) â [v, L] (4.3)

The middle term vanishes since p* (<p) certainly is projectable, and the third
term vanishes because [v,L] is vertical-valued. Furthermore, since L~hv
is vertical-valued, we hâve

(p*(q>) Â L) Â v p*(<p) a (L Â v) 0 (4.4)

(4.3) and (4.4) imply, by the Theorem for scalar forms which was just proved,
that p*(q>)hL is projectable, and together with Lemmas 1.2 and 2.1 the
projectability of L follows easily.

The application in § 6 requires the following lemma.

Lemma 4.3. If 93 is a set of vertical vector fields on X such that for every
x c X the set of values vx for ail v e 93 spans the space of vertical vectors
at x, then the conditions in Theorems 5 and 6 involving ail vertical vector
fields v may be restricted to only those v that belong to 93.

Prooî. If x € X, every vertical vector field v can, in a neighborhood of x9
be written as v Zgivi9 where v{ e 93 and the g/s are functions. Then

o)Âv Zg^coUVi) L'A v Zg^LÂv^ (4.4)

[v, co] Zgi[viy œ] + Z*(coâ^-)A dg€ (4.5)

[v, L] 2^0,, L] + £(LÂvi)Adgi -I^A (dg^L) (4.6)

Thèse formulas show, for instance, that co Â v 0 for v c 93 implies
co Â v 0 for ail vertical v ; and that co Â v 0, [v, œ] 0 for v e 93

implies the same for ail vertical v. The converse is, of course, trivial.
The proof of the identities (4.5) and (4.6) is a computation in which

{gv)f g(vf) (4.7)
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[gv, u] g[v,u] —(dgKu)v (4.8)

are applied to the right side of (1.14) with u replaced by gu.

§ 5. Vertical forms over a bimdle. Various géométrie problems on a fiber
bundle p : X -> Y lead to eonsidering objecta which are very similar to
scalar or veetor forms over X, the différence being essentially that the domain
of définition of the objects is restricted. Many of the previously considered
opérations can be defined for the modified objects and hâve similar properties.

The first concept is that of a veetor field v on the bundle space X, as in § 2,
which is, however, defined only at the points of one fiber Zy p~x(y), y c F;
but is not required to be tangent to the fiber. Such a veetor field at the fiber
Zy is thus simply a section in T(X) over the subset Zy c X. The concept
of being projectable or not applies to veetor fields at Zy. If u is a projectable
veetor field at Zy, its projection p*(u) is a veetor of Ty(Y). Conversely,
if uy € Ty(Y) is given, there is at least one veetor field u at the fiber Zy with
p^ u uy. Any such u is called a lifting of uy. If u is a veetor field at Zy
and / a C°° function in a neighborhood of Zy> then uf is a C00 function on Zy.

The next concept is that of an object acting on g-tuples of vectors in exactly
the same way as a scalar g-form over X, with the only différence that it acts
only on g-tuples of vertical vectors and is therefore called a vertical scalar
g-form over X9). Denoting by VX(X) the subspace of TX(X) formed by
the vertical vectors at xeX, and by V(X) UVX(X) the submanifold

of T(X) formed by ail vertical tangent vectors to X, we hâve therefore the
analogous définition as for scalar g-forms (cf. § 1).

Définition. A vertical scalar q-form co over X is a real-valued C00 function
on ®qV{X) whose restriction wx= co \ @qVx(X) is, for each x, i£-multi-
linear and skew-symmetric.

Since VX(X) is identified with Tx(Zy)9 y p(x), by means of the im-
bedding of Zy in X, a vertical scalar g-form co détermines for each fiber Zy
an ordinary scalar g-form over Zy. Intuitively speaking, co is the collection
of thèse scalar g-forms over the fibers ; the given définition insures, however,
that that transition from fiber to fiber is sufficiently smooth. If vl9... ,vq
are vertical C00 veetor fields over X, then co (%..., va) is a C00 function
over X, because it is a composite of G°° mappings. œ(vl9...,vq) is &0{X)-
linear in each of the v/s. Conversely, one can prove (in analogy to Lemma
1.1) that the <P0(X)-multilinear skew-symmetric mappings of the 0O(X)-

9) The English language has good terms to restrict rangée of functions (e.g. "real-valued,"
"vertical-valued"), but the situation for domains seems to force some kind of abuse of language,
since vertical scalar forms are not scalar forms in the proper sensé.
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module 2B of vertical vector fields into &0(X) are in 1-1-correspondence
with the vertical scalar forms over X.

Another way (for paracompact Y) to look at vertical scalar forms is as
follows. Call two scalar forms over X équivalent if for ail y c Y, their restrictions

to Zy are the same. The équivalence classes of this relation are in 1-1-

correspondence with the vertical scalar forms as defined above. In fact, any
such class can be assigned to the common restriction to the fibers; and con-
versely, every vertical form g/ on X is the restriction to the fibers of some
form o) on X. A construction of co can be given by a method analogous to the
proof of Proposition 5.1 below.

Définition. A vertical vector l-form L over X is a C°° mapping L : ®lV(X) ->
V(X) whose restriction Lx L \ ®lVx(X) is, for each x, a 2?-multilinear
and skew-symmetric mapping Lx: ®lVx(X) -> VX(X).

A vertical vector field is obviously the same as a vertical-valued vector
0-form. Not ail vector forms over X are restrictable to the fibers ; but for the
ones that are, the remarks made for scalar forms hold hère, mutatis mutandis.

Proposition 5.1. Let hf be a vector l-form on the paracompact base space
F of a fiber bundle p : X -> Y and h" a vertical vector l-form over X. Suppose

that they satisfy the équations %{h!) %{h") 0, where ^ is a poly-
nomial whose coefficients are functions on Y. Then there is a vector l-form
h over X such that :

i) h is projectable, its projection being h1 ;

ii) the restriction of h to the fibers is h" ;

iii)

Proof. a) In the spécial case where the fiber bundle is actually a direct
product, 1=7x2, the proposition is obvious. b) In order to reduce the
gênerai case to the spécial one, let lt {Ut}i€l and Wt : U{ x Z -> p~1(î7<)
hâve the meanings stated in the définition of a fiber bundle (§4). We can
suppose that U is a locally finite covering. Each set p"1^^ has, through the
diffeomorphism Wi, a structure of direct product, and according to the case

a) there exists a vector l-form h{ over p""1(î7t) whose projection is h' (re-
stricted to U{ of course) and whose restriction to the fibers is h" (restricted
to p^iUi), of course) and which satisfies #(&t) 0. Let {<Pi}i€i be a

partition of unity with respect to the covering Xt. Then h 2t(p*ç?t)-fe< is

a vector l-form over X which projects to hr and restricts to h". It remains
to prove that %{h) 0. This is a pointwise property and follows from the
équations x(K) 0 according to the following:
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Lemma5.2. Suppose given

a) p: T ->H, a homomorphism of a vector space T onto an other H;
b) h11 : F -» F, an endomorphism of F, F being the kernel of p;
e) h' : H -+H, an endomorphism of H.

Then for any polynomial W (with real coefficients), any endomorphisms
hx,..., hn of T satisfying p o h{ h1 o p and h{ \ F h" (i 1,..., n),

n
and any numbers Kx,..., Àn satisfying E Xt 1 one has :

Proof. For at least one i, say i n, one has Xt ^ 1 (unless n 1,
in which case there is nothing to prove). Writing then

Mi + • • • + KK (i - K)(ihK + • • • + Vn-iK-i) + KK,
»-i

one has Z fa 1, and therefore the lemma foliows by induction on %,
i=i

provided we prove it for n 2. Given W there is a polynomial A in two
non-commutative variables such that for any two endomorphisms f, Ç of T
one has

o
With Ai + A2 1 and fc A2 — At we hâve A^ + ^2^2 ^i + ^2^ î

hence

+ A2/i2) W{hx) + A(ht, X2k) (5.2)

According to the assumptions on ht and h2, their diiïerence h (and hence also

Aa&) has projection zéro and restriction zéro, i.e. k(T) c F and k(V) 0.
Together with hx(V) c F this implies that ail those terms of A(hlf A2&)

which contain at least two factors k vanish, and since A has no terms of
degree 0, we conclude that A(hl9 A2&) is actually linear in A2fc, i.e.
A(hx, A2&) A2yl(fe1, k). Using this and (5.1), we obtain from (5.2);
Xx + A2 1 and k h2 — hx :

V(M, + AA) W(hx) + A(hx, X%k) W(hx) + l2A(h, k)

W(hx) + l2(V(hx + k)~ W(hx)) XxW(hx) + XW(h) ' }

which gives the desired formula.
The main subject of this section is to introduce and study Lie derivatives

of vertical forms with respect to projectable vector fields. Intuitively, thèse
Lie derivatives are meaningful since the mappings exp tu, for projectable u,
send fibers into fibers. However, the domains in which thèse mappings can
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be defined may create difficulties (unless the fibers are compact, or certain
additional conditions are imposed on the vector fields). Besides, it turns out
that in the more formai approach which is given hère, the assumption on the
domain over which u is defined, can be reduced greatly.

Proposition 5.S, Let ubea vector field at one fiber Zy ; v a vertical vector
field defined in a neighborhood V of Zy. Then the following holds :

a) The usual définition of [u, v]x is meaningful for ail x e Zy ;

b) [u,fv] f.[u,v] + {uf).v for ail f€0o(V) ;

c) \fu,v] f.[u,v] -(vf)-u foraU f€0o(Zy) ;

d) u projectable implies [u, v] vertical.

Prooî. a) The defining expression for [u, v]x is

[u,v]xf ux(vf) -vw(uf), /e$0(F). (5.4)

Hère vf is defined in a neighborhood of Zy, and since x € Zy, the action of
ux on vf is defined. uf is defined only over Zy, but vx being tangent to Zy,
its action on vf is also defined. b) and c) are as usual, except for the domain
of /, which is obvious. d) If u is an extension of u over a neighborhood of
Zy, then [u, v]x [u, v]x for x € Zy\ u being projectable, u can be chosen

projectable. By Theorem 1, p*[u, v] [p*û, p*v] 0 since v is vertical,
which proves d).

Thus the action of a projectable vector field u at Zy on fonctions of &0(X)
and on vertical vector fields are meaningful. This is used in order to extend
the action of u to any vertical scalar or vector g-form £i. The action of u
shall hâve the usual dérivation property of a Lie derivative, i.e.

Q

[u, D]{vl9 ...,vq) [u9û(vl9..., vq)] -ZQ(vly..., O, v{],..., vq) (5.5)

Theorem 7. Let u be a vector field at the fiber Zy; Q a vertical scalar
or vector g-form over a neighborhood of Zy; and vx,..., vq vertical vector
fields over a neighborhood of Zy, Then the right side of (5.5) is meaningful
at points x c Zy; is skew-symmetric and $0(X)-multilinear in the v/a; and
is vertical in case Q is a vertical vector form. Thus (5.5) defines a vertical
scalar resp. vector q-form. [u, Q] over Zy.

Proof. The skew-symmetry statement is obvious; ail the rest is a
conséquence of Proposition 5.3.

The brackets [L, co] and [L, M] of vertical forms over X are again
vertical forms over X and could be defined according to the dérivation
approach; or by defining their action on (vertical) vector fields analogously as
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for ordinary forms over X. If then the vertical forms co, L, M are the
restrictions to the fibers of forms co,L,M over X, then the brackets [L, co],

[L, M] so defined are the restrictions to the fibers of the forms [L,a>],[L, M]
(which by Theorem 1 are restrictable to the fibers). This can be used to give
a shorter définition of [eu, L] and [L, M] : for given vertical forms m, L, M,
choose extensions S, L, M10); by Theorem 1 the restrictions to the fibers of

[L, co] and [L, M] exist and do not dépend on the choice of the extensions,
and therefore can be defined to be [L,co] and [L,M], The same procédure
works of course for co Â L and MâL. From thèse définitions it foliows at
once, that for vertical forms over X there hold the analogous formulas as
for forms over X.

With Lie derivatives of vertical forms with respect to a projectable vector
field at one fiber Zy, as introduced in Theorem 7, one has to be more careful.
If e.g. u and v are projectable vector fields at Zy, then it is of course not
possible to take Lie derivatives with respect to u and v in succession - unless
% and v are both vertical. However, many properties of ordinary Lie derivatives

still hold; in particular the following ,,Leibnitz rules":

Proposition 6.4. Let u be a projectable vector field at the fiber Zy\ Q a
vertical scalar or vector form and L a vertical vector form over a neighborhood
of Zy. Then

[u, [L, Q}] - [[u, L], Q] + [L, [u, Q]] ; (5.6)

[u,QâL] [u,Q]âL + Q-R[u,L]. (5.7)

The proof follows from the définition of the opérations for vertical forms
and the following.

Lemma B.5. Let Q be a vertical form over a neighborhood of Zy and u

a projectable vector field at Zy. If Q is any form over a neighborhood of Zy
whose restriction to the fibers is Q, and u any projectable vector field over a

neighborhood of Zy which is an extension of u, then [u9 Q] is the restriction
to Zy of [u, û]. Moreover, such extensions always exist.

The proof consists in evaluating [u, Q] on vertical vector fields and com-
paring with the équation (5.5) by which [u,Q] was defined. That extensions
exist is trivial if one chooses a neighborhood of Zy which is a direct product.

10) Extensions over X do not necessarily exist. However, since the opérations to be defined
are local opérations, it is sufficient to choose extensions over one of the sets p"1 U) which has
a product structure (cf. the définition of a fiber bundle).
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§ 6. Homogeneous almost-complex and complex structures. Let G be a real
Lie group, H a closed connected subgroup and GjH the set of left-cosets of
H in G. Then p: G ->(?///, where p (a) is the left-coset aH containing
the élément a cG, is a fiber bundle of class C°\ Since for any a e G the
left-translation la : (?->(? préserves left-cosets, la induces a Gm mapping
Wa : GjH -> G/H characterized by

Waop pola. (6.1)

A veetor form - or any other tensor field - over G/H is called invariant or
homogeneous, if it is invariant under ail Wa; or, equivalently, if it is Wa-
related to itself for ail a eG. A veetor 1-form J thus is invariant if and only if

Jwa(*)°(Wa)* (WXoJx (6.2)

for ail xeG/H and ail aeG.

Lemma 6.1. Let J be a veetor 1-form over GjH. Then the following state-
ments are équivalent :

i) J is invariant
ii) J is the projection of a (projectable) left-invariant veetor 1-form K over

G whose restriction to the fibers is zéro.

ProoL i) => ii). We first construct K. Let e be the identity élément of G,
and x0 p(e). Choose a subspace V of Te(G) which is complementary to
Te(H). Then^mapsFisomorphicaUyonto TXq(G/H). Let q: TXq(GIH)->V
be the inverse map. Define the value of K at e by

Ke qoJXoop* (6.3)

and define K over G by left-invariance :

Z. (Z<1)*ojr.o(I(rI)*. (6.4)

From (6.4) we obtain, using (6.3) and (6.1):

Ka (IX o Q - «/*„ » W^)* o a, (6.5)

which shows, that Ka maps vertical vectors into zéro (cf. the définition of a
vertical veetor in §4). Multiplying (6.5) from the left with p#, and using
(6.1), (6.2) and the fact that p*oq is the identity on TXo(G/H), one obtains

p* o Ka JWa{*o) ° P* ' (6-6)
and since

Wa(x0) Wa(p(e)) p(l.(e)) p(a-e) p(a),

(6.6) states that J is the projection of K.
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ii) -> i) We consider the diagram

T(G/H) T(GjH)

a) Square 1 is commutative, since K is left-invariant.
b) Squares 2 and 3 are commutative, since K and J are p-related (cf. (2.4)).
c) Squares 4 and 5 are commutative according to (6.1).
a), b), c) together with the fact that p* is onto immediately imply the com-

mutatrvity of the outside square, i.e. the invariance of J under Wa.
Let g dénote the Lie algebra of left-invariant vector fields on G, h the sub-

algebra of those that are tangent to H. g and h are isomorphic to the Lie
algebras of G and H, respectively, and the éléments of h form a set 93 in the
sensé of Lemma 4.3. A left-invariant vector 1-form K on G sends left-invariant
vector fields into such, hence induces a linear transformation on g (also denoted
by K). Conversely, a linear transformation of g induces a left-invariant vector
1-form over G.

Lemma 6.2. Let K be a left-invariant vector 1-form over G whose restriction

to the fibers is zéro. Then the following are équivalent :

i) K is projectable
ii) \v,Ku] — K[v,u]eh for ail ueg and vch.

Proof. K, having restriction zéro, is certainly pointwise-projectable
(Proposition 4.2). Condition ii) is équivalent to saying that [v,K] is vertical-
valued for ail vertical v (cf. (1.12) and Lemma 4.3). This reduces the Lemma
to Theorem 6 (§ 4).

A homogeneous vector 1-form J on G/H is a homogeneous almost-complex
structure if Jj\J= —/. An associated K (cf. Lemma 6.1) then has the
property KKv= —v for ail v e F; where now F is precisely the set

K(Te(G)). Denoting by W the subset of those v c g for which ve c F and

combining with Lemmas 6.1 and 6.2 one thus has :

Theorem 7. GjH admits a homogeneous almost-complex J if and only if
the Lie algebra g of G admits a linear transformation K satisfying
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a) Ku 0 for ail u c h;
b) KKv —v for ail «ina subspace W oi g complementary to h;
c) [v, Ku] — K[v,u]€h for ail vch and wcgr.
The relation between J and K is not a one-to-one correspondence, since the

choice of F was involved in the construction of K. The action of K on gjh,
however, is uniquely determined by J. Denoting by <w> the équivalence
class u + h e g/h of the élément u eg, h acts on g/h, the action Av of t; € A

being
-4,<tt> <rt>,*]>. (6.7)

Theorem 8. The homogeneous almost-complex structures over OjH are
in one-to-one correspondence with those endomorphisms of gjh with square
minus identity which commute with the action (6.7) of h on gjh.

Remark. So far we assumed that H is connected. The motivation is that
the transformations Av, vch (cf. (6.7)) should generate the action of H
on g/h. Since the group which acts effectively on g/h is a factor group HjH0
of H, it is enough to require that HjH0 is connected. Hère, Ho is the normal
subgroup of those éléments of H which, when acting on g by the adjoint
représentation, keep every élément of g fixed modulo h. Another way of for-
mulating the condition is that Ho should intersect every component of Jï.

For the following theorem dealing with complex structures we make use
of the following two facts. The complex structures correspond precisely to
those almost-complex structures J that satisfy the integrability condition
[J 9 «/] 0 ; in this one-to-one correspondence the homogeneous complex
structures correspond to the invariant integrable almost complex structures J.

Theorem 9. OjH admits a homogeneous complex structure if and only if
the Lie algebra g of 0 admits a linear transformation K satisfying :

oc) Ku 0 for ail u eh;
P) KKu — u for ail u in a subspace W of g complementary to h ;

y) [Ku,Kv] + KK[u,v] —K[Ku,v] -K[u,Kv]eh for ail w, veg.
Proof. a) Suppose J is a homogeneous complex structure. Then [J, J] 0.

According to Theorem 8 we obtain K satisfying conditions <%) and j8). K is
p-related to J; hence by Theorem 1 [K, K] is p-related to [J, J] 0, i.e.
[K,K] must be vertical-valued, and (1.13) therefore shows that condition
y) is also verified.

b) Suppose we hâve K satisfying oc), fi), y). We first show that then condition
c) of Theorem 8 is satisfied. y) gives, for u c g and v eh (since Kv 0

according to oc) :

K(K[u,v] -[Ku,v])€h. (6.8)
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This gives condition c) of Theorem 8; in fact, for any w c g, Kw * h implies
Kw 0 (because K(g) W) and therefore w eh (because h is the kernel
of K). By Theorem 8 it follows, that K projects onto an invariant almost-
complex structure J over GjH. According to y), [K, K] is vertical-valued,
and thus its projection, which by Theorem 1 is [J, J], is zéro. Hence J is
a homogeneous complex structure over OjH.
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