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Zur Definition der quasikonformen Abbildungen

von HEinz RENGGLI, New Brunswick, N.J.

1. Einleitung

1. Es sei D ein in der komplexen z-Ebene £ gelegenes Gebiet und V, V < D,
ein Viereck. Darunter verstehen wir das Innere I(I") einer Jordankurve
I'n 'cD, II') c D, auf der vier verschiedene Punkte ausgezeichnet
sind. Damit sind die vier Seiten von V bestimmt. Wir betrachten nun die
beiden Kurvenscharen, die in V je zwei gegeniiberliegende Seiten verbinden.
Thre Extremalléingen seien m und u; sie heien die Moduln von V. Ferner
gilt m-u = 1. Fiir diese Definition der Moduln wird keine konforme Abbil-
dung vorausgesetzt.

Ist f eine orientierungstreue topologische Abbildung, f: D« D*, D* c E,
so sind analog in V* = f(V) die m und x entsprechenden Moduln m* und
u* erklart.

Bemerkung. Die Bezeichnungen f: D <«>D*; V<> V* m—m*, py<«>u*,
haben im folgenden immer die hier gegebene Bedeutung.

2. Bei beliebigem f ist das m zugeordnete m* i.a. von m unabhingig. Ist
dagegen f konform, so gilt m* = m und damit u* = u. Dies charakterisiert
sogar die konformen Abbildungen. Hat nimlich umgekehrt ein f die Eigen-
schaft, daB in jedem Paar V<« V* fiir die Moduln m = m* wund folglich
p = u* gilt, so ist f konform [1, S. 8].

Lockert man diese Invarianzeigenschaft der Moduln, so gelangt man zur
sog. geometrischen Definition der quasikonformen Abbildungen: Existiert bei
gegebenem f eine Konstante K, K > 1, derart, daf fiir alle Vierecke V bzw.
fiir deren Moduln die Ungleichungen m/K < m* <mK gelten, so heillt f
quasikonform.

3. Wir geben nun eine neue Definition der quasikonformen Abbildungen, in
der die Konstante K nicht mehr explizit auftritt. Wir kénnen ferner zeigen, daf3
diese Definition mit der geometrischen dquivalent ist, mit andern Worten, wir
werden beweisen:

Satz. Es sei f: D« D* topologisch und orientierungstreu. Ferner sei B eine
unendliche Menge beliebig gegebener, paarweise disjunkter Vierecke V,. In
jedem V, sei einer der beiden Moduln m, ausgezeichnet; m; sei der zugehérige
Modul von V7.
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Eine Abbildung f ist dann und nur dann quasikonform, falls fir alle derartigen

B die Reihen Xm,; und Xm; entweder beide konvergieren oder beide divergieren.
i=1 i=1

Der eine Teil unseres Satzes folgt unmittelbar aus der geometrischen De-

finition der quasikonformen Abbildungen. Dem Beweis des andern Teils sind

die folgenden Ausfiihrungen gewidmet.

2. Ein Lemma

1. Ist f gegeben, so kann fiir jede Zuordnung V «- V* die Variation
m <—m* betrachtet werden. Dafl man dabei die Moduln in gewissem Sinne
normieren kann, ist die Aussage von

Lemma 1. Es set m*/m > @ fir die zugeordneten Moduln von V < V*,
Dann existiert ein Viereck V,, Vo c V, derart, daf fir die Zuordnungen
Vo< Ve bzw. my<«>my die Ungleichungen my <2 und mg >Q erfallt
sind.

2. Beweis von Lemma 1.

o) Zuerst zeigen wir, da8 V,, V, c ¥V, mit m;, <2 gewidhlt werden kann.

Ist ndmlich m > 2, so gibt es eine natiirliche Zahl N mit 2N > m. Nun
bilden wir V* derart konform auf R* = {z: 0 <Rz <1, 0 < Jz < m*} ab,
daB} bei der Randzuordnung die vier Seiten von V* den vier Seiten von R*
entsprechen und die zur Berechnung von m* ausgezeichnete Kurvenschar die
Horizontalseiten von R* verbindet.

R* wird nun durch die Geraden Jz =k-m*/N (k=1,2,...,N — 1) in
N Rechtecke unterteilt. Die entsprechenden Teilkurvenscharen haben jeweils
die Extremallinge m*/N. Jedem dieser konform invariant nach V* iiber-
tragenen Modul ist ein entsprechender Modul der induzierten Unterteilung in
V zugeordnet. Die Moduln in V haben ein Minimum; wir wéihlen ein Viereck
V,, V; c V, aus, dessen Modul m, diesen kleinsten Wert besitze. Es sei
V,<> VT und m, <> mJ.

Nun gilt nach einem bekannten Zerlegungssatze fiir Extremalldngen
Nm, <m (zum Beispiel [5], § 2.4.). Mit Hilfe von m < 2N und m} = m*/N
erhélt man damit m, <2 und m}/m, > m*/m > Q.

f) In einem zweiten Schritt zeigen wir, dafl sogar 1 <m, < 2 vorausge-
setzt werden darf.

Wire nimlich m, < 1, so existierte eine natiirliche Zahl L mit 1 < Lm, < 2.
Nun bilden wir diesmal ¥, konform derart auf R, = {z: 0 <Rz < 1,0 < Jz
< m,} ab, daB} wiederum die Seiten einander entsprechen und die ausgezeich-
nete Kurvenschar in R, vertikal verlduft.
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R, wird nun durch die Geraden Rz =k/L (k=1,2,3,...,L—1) in L
Rechtecke unterteilt. Die entsprechenden Teilkurvenscharen haben jeweils die
Extremallinge m,L. Wieder betrachten wir die in V} zugeordneten Teil-
kurvenscharen; die groBte der dort vorkommenden Extremallingen bezeich-
nen wir mit m; .

Jetzt wiihlen wir ein Viereck V,, V, c V,, mit Vy<«> Vi und my<«> mg.
Dann gilt nach einem bekannten Zerlegungssatze fiir Extremallingen
Limy < 1/m} (zum Beispiel [5], §2.3.). Mit 1 < Lm, <2 und m, = m,-L
erhilt man daraus 1 < my < 2 und mg/my, > mi/m, > Q.

3. Die Verzerrungstunktion 4(p)

1. Essei f:D«>D* und W, W c D, enthalte eine offene Teilmenge
von D. Wir betrachten die Menge B aller Vierecke ¥V mit V < W. Die
GroBe 6(V) = Max [m*/m, u*/u] nennen wir die Verzerrung von V; analog
heilt &(W) = sup 6(V) die Verzerrung von W.

B

Definition 1. Zs set U der Filter der Umgebungen U, U < D, eines gegebe-
nen Punktes p, peD. Die Grofe d(p) = inf 6(U), die in jedem Punkte p
u

definiert ist, heift Verzerrungsfunktion 8(p) der Abbildung f.

Da m-u =1 fiir jedes V, so ist J(p) > 1. Die Beziehung 4&(p) =1,
giiltig in D, charakterisiert die konformen Abbildungen. Existiert hingegen
eine Konstante K, K > 1, derart, daB &(p) < K in D erfiillt ist, so ist f
im geometrischen Sinne quasikonform. Infolge Definition 1 gilt dann ndmlich
bei gegebenem &, ¢ > 0, die Beziehung (V) < K + ¢ lokal. Da3 aber dar-
aus die globale Eigenschaft 6(V) < K, V c D, folgt, ist bekannt [1, S.7/8].

2. Die Funktion &(p) ist i.a. nicht stetig. Aus Definition 1 folgt hingegen
unmittelbar

Lemma 2. Die Funktion 6&(p) ist nach oben halbstetig.

3. Da 4(p) sozusagen die Abweichung von der Konformitét beschreibt, und
wir uns mit quasikonformen Abbildungen beschiftigen, treffen wir folgende

Definition 2. Ist 6(p) = oo, so heifit p ein singulirer Punkt der Abbildung f.
Aus Lemma 2 folgt

Korollar 1. Die Menge der singuliren Punkte von f ist tn D abgeschlossen.
In jedem kompakten Teil von D, der keine singuliren Punkte aufweist, ist f
quasikonform.
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Man konnte ein f schwach quasikonform nenn‘en, wenn J(p) endlich ist,
mit andern Worten, wenn f in jedem kompakten Teil quasikonform ist.

4. Aus [1, S. 8/9] folgt mit Hilfe von Definition 1

Lemma 3. Gibt es zu etnem Punkte p eine Umgebung U (p) und eine Kon-
stante k derart, dafB 6(q) <k fur jedes qeU(p), q F*p, so ist auch
o(p) <k.

Korollar 2. Zu jedem p existiert eine Folge p, (n =1,2,3...), p, #p,
Pp > p, mit lim é(p,) = 6(p).

n-> 0o

4. SchluB
1. Jetzt beweisen wir

Lemma 4. In bezug auf f sev p, (v =1,2,3...), p,eD, eine Punktfolge
mat den Eigenschaften: Jeder Punkt p, sei isoliert, das heift, es existiere zu jedem
p, eine Umgebung U (p,) mit p, ¢ U(p,) fir p #v; ferner gelte 6(p,) — oo.
Dann gibt es eine Menge B paarweise disjunkter Vierecke V, derart, daf

oo

Zm; divergiert, wihrend X'm; konvergiert.
=1 1=1

Beweis: Infolge d(p,) - co kann jeder natiirlichen Zahl n ein Punkt p,
der Folge p, zugeordnet werden mit &(p,) > n?. Gemidfl Definition 1 und
den obigen Voraussetzungen gibt es fiir jedes n ein Viereck ¥V, mit den folgen-
den Eigenschaften: Esist V, c U(p,) und V,~ V, =@ fir n £ m; fir
die Moduln 4}, und u, von V, <> Vi gilt uh/u, > n2.

Nach Lemma 1 kann man solche Teilvierecke auswéhlen, fiir die entspre-
chend u,, <2 und u, > n? gilt. Nun betrachten wir die reziproken Moduln
m, = 1juy, und m) = 1/ug,, fir die m, > 1/2 und m} < 1/n? gelten.

2. Aus Lemma 4 folgt

Korollar 3. Ist f quasikonform im Sinne von 1.3., so gibt es in D keine Folge
1solierter Punkte p, (n =1, 2...) mat der Eigenschaft 8(p,) — oo.

Aus Korollar 3 folgt, daf fiir eine quasikonforme Abbildung die Menge
S = {p: d(p) = oo} der Singularitdten von f hochstens endlich ist und daB
iiberdies die Verzerrungsfunktion 6(p) im Komplement D — 8§ beschrinkt
bleibt. Dies zusammen mit Lemma 3 ergibt die Beschrinktheit von &(p).
Damit ist unser Satz bewiesen.

Zusatz. Daf unsere Definition der quasikonformen Abbildungen auch mit der
8og. analytischen Definition dquivalent ist, folgt aus den Arbeiten (2], [3], [4]-
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