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Darstellungsanzahlen von quaterniiren quadratischen
Stammformen mit quadratischer Diskriminante

von H. Gross, Ziirich

Auf Grund einer neulich von G. AEBERLI') publizierten Arbeit iiber die Zu-
sammenhéinge zwischen quaterniren quadratischen Formen mit quadratischer
Diskriminante und Idealen in Quaternionenalgebren ergeben sich ziemlich
direkt die Darstellungsanzahlen fiir die definiten und indefiniten quaterniren
Stammformen mit quadratischer Diskriminante. Viele quaternire quadratische
Formen quadratischer Diskriminante vom Typus az? + by? 4 c2? 4 d¢? sind
von L1oUvIiLLE 2) untersucht worden. Im Gegensatz zu den UnregelmaBigkeiten,
die die Darstellungsanzahlen dieser Formen aufweisen, ergeben sich fiir die
Darstellungsanzahlen von quaterniren Stammformen quadratischer Diskrimi-
nante ganz einfache Ergebnisse. Durch den Zusammenhang mit der Ideal-
theorie wird auch die Sonderrolle der Diskriminantenteiler leicht verstandlich.

Verteilt man alle ganzen p-Linksideale b (beziiglich einer festen Maximal-
ordnung o) mit der ganzrationalen Norm m in Klassen @quivalenter Ideale
ATY A7 ..., A, so gehort zu jeder linksinversen Idealklasse 4,,4,,..., 4,
eine Stammform f,, f,, ..., f, und zugehorige Linkshauptform #,,%,, ..., A,.
Liegen a, Ideale b in A;* und ist e¢; die Anzahl der Einsdarstellungen von A,
so stellt die Form f; die ganzrationale Zahl m auf e;a; Arten dar (Satz 4). Fiir
die einzelnen a; gibt es bis jetzt keine einfache Formel, wohl aber fiir ihre
Summe, das heillt fiir die Gesamtzahl der ganzen p-Linksideale der Norm m
(Satz 2). Diese Formel wurde mit einer andern Methode auch von M. EicHLER
in der Arbeit: Zur Zahlentheorie der Quaternionen-Algebren, J. reine angew.
Math. 195 (1956) 127-151, Formeln (46) bis (48), hergeleitet. Ist die Klassen-
zahl der betrachteten Quaternionenalgebra 1, oder ist die darzustellende Zahl m
relativ prim zur Diskriminante der Algebra, so erhdlt man einfache Formeln
fiir die Anzahl der Darstellungen einer Zahl durch eine Stammform (vgl. I11.3).

Die Abhandlung ist die gekronte Losung der Preisaufgabe «HUuRwiTZ heeft
aangetoond, dat de bekende formule voor het aantal representaties van » als
2% + y2 + 22 + {* uit de ideaaltheorie der quaternionen kan worden afgeleid.
Gevraagd wordt, het onderzoek tot andere quaternaire quadratische vormen,

1) G. AEBERLI, Der Zusammenhang zwischen quaternéren quadratischen Formen und Idealen
in Quaternionenalgebren. Comment. Math. Helv. 33, 1959, 212-239. Diese Arbeit ist im Folgen-
den als AEBERLI zitiert.

?) Siehe etwa die Zusammenstellung in Dickson, History of the Theory of Numbers, vol. III ,
Washington, 1923, 227-229,
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waarvan de discriminant een quadraat is, uit te breiden.», die die niederlin-
dische mathematische Gesellschaft «Een onvermoeide arbeid komt alles te boven»
fiir das Jahr 1958 gestellt hatte.

I. Definitionen. Die Ergebnisse von AEBERLI

1. Quaternire Formen
4
Im Folgenden werden immer nur ganze quaternire Formen f(z,) = Ya,,x;,
i,k=1

betrachtet, das heilt, wir verlangen, da8l die Zahlen a,;, 2a,;,¢,j=1,2,3,4
ganzrational sind. (Man nennt diese Formen auch ganze Formen zweiter Art;
ganze Formen erster Art besitzen ganzrationale Koeffizienten a,;, ¢,7 =
1,2,3,4)

Als Diskriminante D der Form f definiert man

*f
D == el 16 | a;; | -
Die Form f heil3t primativ, falls die Zahlen a,,, ..., a6y, 2a,,,..., 2a,, teiler-

fremd sind. Erteilt man den Unbestimmten x, ganzrationale Werte, z; = u,,

4
die nicht alle Null sind, so heifit die Zahl m = Xa,,u,u;, durch die Form f
ik=1
dargestellt. Zwei Formen f=2ZXa,x,x,, ¢§ = Xb,,y,y, heillen dquivalent, falls
sie durch eine unimodulare Transformation auseinander hervorgehen, mit an-
dern Worten, wenn gilt f=g¢g fir z, = Zafy,, mit af ganzrational und
det (a¥) = + 1. Um die Darstellungen einer Zahl durch Formen zu unter-
suchen, geniigt es offenbar, aus den Klassen dquivalenter Formen je einen
Reprisentanten auszuwéhlen.

2. Quaternionenalgebren

Fiir die Definitionen und Séitze dieses Paragraphen siehe die grundlegende
Arbeit von H. BrRanpr, Idealtheorie in Quaternionenalgebren, Math. Annalen
99 (1928) 4-93).

Die vierdimensionalen rationalen Algebren sind die sogenannten Algebren
der verallgemeinerten Quaternionen: Es sei [ ein vierdimensionaler Vektor-
raum iiber dem Korper der rationalen Zahlen mit den vier Basisvektoren
Uy, Ugy, Ug, Uy. Dabei sei u, das Einselement, also

Uy Uy = UjUy = Uy 1=1,2,3,4

Weiter sei
u2u3 = - u:;uz == u4

3) Diese Arbeit ist im Folgenden als BRANDT zitiert.
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und %2 = — xu,, us = — Bu, «,p rational. Aus diesen Gleichungen ergibt
sich die ganze Multiplikationstafel, die wir in

U, = Zciyu,
zusammenfassen.

Es sei ¢ = @, — Zyuy — x3us — ,u; das zum Quaternion q = z, + Z,u,
+ x3u; + x,4, konjugierte Quaternion. Ein Quaternion g heilt ganz, falls
seine Norm n(q):

n(g) = qq = a3 + 23 + fa; + afx;
und seine Spur
8(9) =q¢+ 9 =22
ganzrational sind.

BrANDT definiert als Zwischennorm zweier Quaternionen p = Xz,u,,
¢ = Zy,u; den Ausdruck n(p,q)= pg+ gp = n(g,p) = s(pg) und defi-
niert weiter als Diskriminante der vier beliebigen Quaternionen p, = Xz,,u,
vy=1,2, 3,4 die Determinante:

APy, D3, D5, Pa) = | 8(0,0) | = | n(D,, 1) | (1)
Man findet durch Ausrechnen:

A(py; P2s P3, Pa) = 1622 | Zyp 2.

Bemerkung. Betrachtet man die regulire Spur S(p) eines Quaternions
p: 8(p)=2ch, x, (siche vAN DER WAERDEN, Algebra I, Berlin 1955, S. 145),

(234

das heiBt die in beliebigen hyperkomplexen Systemen giiltige Spurendefinition,
und definiert man A4'(p,, s, ps, Ps) = [ S(p,p,) |, so findet man durch Aus-
rechnen A'= — 164.

Sind vier neue Quaternionen p, gegeben durch p, = Xalp,,» =1, 2,3, 4,

so gilt A(pLs Po> P, P8) = | &5 [2A(pys Pas P Pa) - (2)
Die Norm eines beliebigen Quaternions der Algebra wird durch eine rationale
quadratische Form (die Normenform der Basis) gegeben:

QY (z,) = n(Zxu,) = Zo,z,uu, = } Zx,2,8(uuy) . (3)

Aus (3) folgt, daB die Diskriminante dieser Form gleich der Diskriminante der
Basis ist.
Eine Basis v,, v =1, 2, 3,4, heit Minimalbasis, wenn ihre Multiplika-
tionszahlen cf, ganz sind und ihre Diskriminante moglichst klein ist.
Bemerkung. Aus der Ganzzahligkeit der Multiplikationszahlen ¢, folgt

die Ganzzahligkeit der Normenform (3), also auch die Ganzzahligkeit der Dis-
kriminante der Basis, woraus folgt, dal es wirklich Minimalbasen gibt.
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BranprT fand, daB die Diskriminante einer Minimalbasis eine Quadraizahl ist :
A(vy, vy, vy, vy) = d?.

Man nimmt d mit positivem Vorzeichen, falls die Normenform G(® definit
ist, dagegen mit negativem Vorzeichen, falls die Normenform G‘® eine in-
definite Form ist. Die in dieser Weise bestimmte ganze Zahl d heifit die Grund-
zahl der Algebra. Wegen (2) ist die Grundzahl eine Invariante der Algebra,
das heiflt von der speziellen Wahl der Minimalbasis unabhiingig, da fiir zwei

Minimalbasen v,, v), v, = Z«a’v,, notwendigerweise |y, | = 41 ist.

3. Ideale

Wir nannten ein Quaternion g einer Quaternionenalgebra ganz, wenn seine
Spur und seine Norm ganzrational sind.

Definition. Eine Ordnung o von 9 ist ein Ring ganzer Quaternionen, der
den Ring der ganzen rationalen Zahlen umfat und vier linear unabhingige
Quaternionen von 9 enthilt. Die Ordnung o heilt maximal, wenn es keine
Ordnung gibt, die p umfat, aber von p verschieden ist (DEURING, Algebren,
Ergebnisse der Mathematik IV, Berlin 1935, S. 69)4).

Wir definieren weiter:

Definition. Ein Modul a der Algebra 9 ist eine Teilmenge a von Quater-
nionen der Algebra U mit den Eigenschaften

(i) a enthilt vier linear unabhingige Quaternionen von U,
(ii) a enthilt mit zwei Quaternionen p, ¢ auch deren Differenz p — ¢,
(iii) es gibt eine rationale Zahl r derart, dafl ra nur ganze Quaternionen
enthilt.

Man beweist: Ein Modul a besitzt eine Basts (a,, a,, a;, a,), das heilt vier
linear unabhiingige Quaternionen a,, a,, a,, a,, derart, daB a aus allen ganz-
rationalen Linearkombinationen X'z;a; besteht (BranpT, S. 13). Es gilt wei-
ter der

Satz. Zu jedem Modul a gibt es zwei eindeutig bestimmte Ordnungen o,, o,
mit 0,0 = a = ao, (DEURING, S. 71).

Wir schreiben dann fiir a auch ;a,, wo die Indices sinngeméi8 die zugehori-
gen Ordnungen angeben.

Definition. Ein Modul a hei3t /deal, wenn die zugehérigen Ordnungen p,, o,
maximal sind. (Bei DEURING heiflen diese Ideale «normale Ideale», vgl. DEU-
RING, S. 72.)

Ist p, = o,, so heiBen die Ideale ,a, gleichseitig. Man beweist, daB ein

‘) Im Folgenden als DEURING zitiert.
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Ideal ,a., falls es in einer seiner Ordnungen p,, o, enthalten ist, in beiden
Ordnungen p,, o, enthalten ist. Man trifft daher folgende

Definition. Ein Ideal heillt ganz, wenn es in einer seiner Ordnungen enthal-
ten ist (DEURING, S. 71).

Die Multiplikation zweier Ideale ,a,, ;6, wird im Folgenden eingeschrinkt,
und zwar derart, dal den beiden Idealen nur dann ein Produkt ab zugeord-
net wird, wenn o, = p; gilt. Man spricht dann der Deutlichkeit halber auch von
etgentlicher Multiplikation der Ideale. Bei dieser eigentlichen Multiplikation
gilt ndmlich der folgende

Satz. Sind ,a, und b, 2wei Ideale, dann ist es genau dann unméglich, in
der Qleichung ab = ¢ einen der Faktoren a,b durch echte Teiler zu ersetzen,
wenn die Rechtsordnung o, von ,a, gleich der Linksordnung o, von b, ust
(DEURING, S. 76).

In der Folge wird auch oft, ohne spezielle Erwéhnung, von dem folgenden
Satze Gebrauch gemacht:

Satz. Das Ideal ., ist genau dann durch das Ideal ,b, teilbar, das heift,
a € b, wenn es eine Produktdarstellung ,a, = ¢, ,b, 0, mit ganzen ¢, D,
gibt. Ist o, = o,, so gilt sogar ,a, = b, 0, mit ganzem D, (DEURING, S. 76).

4. Die Idealnorm

Vgl. dazu die iibersichtliche Darstellung in der Arbeit von AEBERLI, S. 225.
Es sei p eine Maximalordnung in % und a ein p-Linksideal; man habe die
Basisdarstellungen a = (a,, @,,0as,a,), 0= (U, Uy, Ug, Uy), &;= ¥ u,. Det(x¥)
ist dann ein positives oder negatives rationales Quadrat. Bei geeigneter Wahl
der Reihenfolge der Basiselemente ist det(x¥) > 0. Die positive, rationale

Zahl n(a) = .V |af| heiBt dann die Norm des Ideals a. Man zeigt, daB die
Idealnorm von der bei der Definition zugrunde gelegten Maximalordnung un-
abhingig ist. Es gelten weiter die folgenden Séatze:

Normenmultiplikationssatz. Sind ,a,, b, zwet Ideale,so gilt n(ab) =n(a)n(b)
(DEURING, S. 80).

Satz. Ein ganzes Ideal der Norm 1 ist eine Maximalordnung (AEBERLI,
S. 225).

b. Normenformen

Ist a ein Modul der Algebra U mit der Basis (a,, @,, a5, a,), dann wird die
Norm eines allgemeinen Quaternions ¢ des Moduls, ¢ = Y'#,a;, durch eine
rationale quadratische Form gegeben: F(z,) = n(q) = n(X'x;a,).

Wir setzen F(z,) = A-f®(x,), A rational, wobei f* eine ganzzahlige, pri-
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mitive quaternire quadratische Form ist, die vom Modul a und der darin
gewihlten Basis abhingig ist. Nun gilt der Satz, daB der Modul a genau dann
ein Ideal ist, wenn gilt 1 = n(a) (AEBERLI, S. 225). Man hat also das fiir uns
in der Folge wichtige

Ergebnis. [st a ein Ideal, a = (a,, a5, a5, a,), und ist ¢ = Xx,0, das all-
gemeine Quaternion des Ideals a, dann gilt n(q) = n(a)f®(z,), wo fi* eine
ganzzahlige, primitive quaterndre quadratische Form ist.

Es seien a = (a,, a,, a;,a,), b = (by, by, by, b,) zwei Moduln und es sei
weiter F(x,) = n(Xz,a,), Q(y,) = n(Zy;b,). Es gibt eine rationale Trans-
formation a;, = Zalb, mit det (x¥) £ 0. Ist g ein beliebiges Quaternion, so
gibt es Darstellungen ¢ = X'z,a, = Xy,;b;, = X« oc{ b;, folglichist y, = Zalx
Geht also a iiber in b mit der Substitution (x¥), so geht die dem Modul b
zugeordnete Form G mittels der Substitution 7(x¥) iiber in die dem Modul a
zugeordnete Form F. Daraus ergibt sich, daf die Normenform eines Moduls
der Quaternionenalgebra W immer eine quadratische Diskriminante besitzt. Es
sei ndmlich (u,, u,, u;, u,) die im Paragraphen 2 betrachtete Basis der Alge-
bra A und F(z;) = n(Zx,u,), also F(z;) = a2} 4 axl + B2 + afxi. F(x,)
hat dann die Diskriminante 16x2p2. Ist 9’ Normenform des Moduls
a=(a,,a,,as,a) und Q(y,) = n(Z’y, @), a; = Xx¥u,, so ist die Diskri-
minante der Form GQ(y,) gleich 16 | x¥ |2x2 ,32 also wieder quadratisch. Beim
Ubergang von G(y,) zur Normenform g&“’, G = Ag®, geht die Diskriminante

von G (y,) iiber in die quadratische Diskriminante [af [2a282 von ¢@.

14
6. Stammformen und Kernformen

Bei AEBERLI werden die Stammformen und die Kernformen folgendermafien
eingefithrt (AEBERLI, S. 223):

Irgendeine ganzzahlige primitive Form G(x,) definiert eine Gesamtheit von
Formen auf folgende Weise: Man iibt auf die Formen cG(z;), wo ¢ beliebig
rational ist, alle rationalen Substitutionen mit von Null verschiedener Deter-
minante aus. Jede entstehende Form schreiben wir als kF (x;), wo k groBter
Koeffiziententeiler, also F(z,) auch primitiv ganzzahlig ist. Die Formen
F(x,), G(x,),... bilden eine sogenannte Sippe. Die Formen mit absolut klein-
ster Determinante einer Sippe heiflen Stammformen.

Ubt man auf G(x,) alle rationalen Substitutionen mit von Null verschie-
dener Determinante aus, so bilden die entstandenen Formen eine Gesamtheit,
die man Familie nennt.

Kernformen sind solche ganzzahlige primitive Formen, die nicht ganzzahlig
in einer ganzzahligen Form kleinerer Diskriminante enthalten sind.

Es gilt dann der Satz: Die Kernformen sind diejenigen ganzzahligen Formen,
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welche in der von thnen erzeugten Familie die absolut kleinste Diskriminante be-
sitzen (BRANDT, Speiser-Festschrift, Ziirich 1945, S. 96).

AEBERLI bewies, daB fiir die Normenformen der Moduln, also insbesondere
fiir die Normenformen der Ideale, die Begriffe Stammform und Kernform zu-
sammenfallen, und es gilt der

Satz. Ewn Modul a ist genau dann ein Ideal, wenn die zugehorige Normenform

(®) eine Stammform ist (AEBERLI, S. 227).

Die Normenformen von Idealen sind also Stammformen mit quadratischer Dis-

kriminante.

7. Aquivalenzklassen

Ist ,a, ein Ideal mit den Ordnungen b;, 0, und sind p,q zwei beliebige
Quaternionen mit nicht verschwindender Norm, so ist der Modul paq wieder
ein Ideal mit der Linksordnung pp,p~' und der Rechtsordnung ¢~'p,q.

Auf Grund dieser Tatsache stellt man folgende Definition auf:

Definition. Zwei Ideale a und b heilen dquivalent, wenn es zwei Quater-
nionen p,q gibt, derart, da n(pg) > 0 und a = pbgq ist. Ist speziell p =1
oder ¢ = 1, so spricht man von rechtsseitiger bzw. linksseitiger Aquivalenz.

Im Folgenden wird unter Aquivalenz nur dann die schirfere einseitige Aqui-
valenz verstanden, wenn das ausdriicklich bemerkt wird. (Uber die Forderung
n(pg) > 0 siehe AEBERLI, S. 237.)

AEBERLI bewies den fundamentalen Satz: Zwe: Ideale sind genau dann dqui-
valent, wenn die zugehorigen Normenformen dquivalent sind (AEBERLI, S. 233).
Und weiter gilt auch der Satz: Hat die Quaternionenalgebra W Normenstamm-
Sformen der Diskriminante D = d*, dann sind alle Stammformen der Diskrim:-
nante d* Normenformen einer Idealklasse der Algebra W (AEBERLI, S. 236).

Man hat also eine 1 — 1 deutige Beziehung zwischen den Idealklassen der
Algebra % und den Klassen dquivalenter Stammformen der Diskriminante d2.

AEBERLI bewies, daB dieser Isomorphismus sogar ein Gruppoidisomorphismus
ist bei geeigneter Definition der Multiplikation (Komposition) der Ideal- und
Formenklassen (AEBERLI, S. 237). (Vgl. den folgenden Paragraphen.) Dieses
letzte Ergebnis werden wir allerdings im Folgenden nicht bend&tigen.

8. Gruppoide

Es sei @ eine nichtleere Menge mit einer zweistelligen Operation, die jedem
geordneten Paar (@, b) einer gewissen Teilmenge 7' von @ X @ eindeutig ein
Element ab von @ zuordnet. ab heilt dann das Produkt oder die Komposi-
tion von a mit b (in dieser Reihenfolge). Zu zwei Elementen a, b aus G braucht
also nicht immer ein Produkt definiert zu sein.
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G heit Gruppoid, falls firr die Produktoperation folgende Axiome erfiillt
sind :

(i) Zu jedem a in G gibt es genau ein Paar Elemente ¢, f mit ea = af = a.

(ii) Ist ea = a oder ae = a fiir ein a, e in G, dann ist ee =e.

(ili) Zu a,b in G ist ab genau dann definiert, wenn es ein Element e in G
gibt, mit ae =a und eb=2>.

(iv) Ist zu a,b,c in @ auch ab und bc definiert, dann sind auch die Pro-
dukte (ab)c und a(bc) definiert, und es ist (ab)c = a(bc).

(v) Ist ea =a, af =a fir a,e,f in @, so existiert ein Element b in G
mit ab =e¢ und ba = f.

(vi) Ist ee=e¢ und ff=f in @, dann existiert ein Element a¢ in G mit
ea =qa und af = a.

(Fiir die verschiedenen Axiomensysteme des Gruppoids siche H. BRaNDT,
Uber die Axiome des Gruppoids, Vierteljschr. Naturforsch. Ges. Ziirich 85
(1940), Beiblatt 32, 95-104. Das oben angegebene Axiomensystem findet sich
in R. H. BRuck, A Survey of Binary Systems, Ergebnisse der Mathematik,
neue Folge 20, Berlin 1958, 34.)

Es gilt nun der folgende Satz iiber die Ideale einer Quaternionenalgebra :

Satz. Die Ideale einer Quaternionenalgebra bilden bei der eigentlichen Multi-

plikation ein Qruppord mit den Maximalordnungen als Einheiten (DEURING,
S. 76).

11
n(a)
wo n(a) die Norm von q ist und a das zu a konjugierte Ideal bedeutet. Wir
betrachten jetzt die Klassen dquivalenter Ideale.

Insbesondere gilt fiir das zu einem Ideal a inverse Ideal a! =

Definition. Die Idealklasse 4 heile mit der Klasse B in dieser Reihenfolge
komponierbar, wenn Ideale aeA, be B existieren, fiir die das Produkt
ab = ¢ existiert. Dann heiflt C, die Klasse von ¢, die Produktklasse oder die
komponierte Klasse von 4 und B, 4B = C.

Daf} diese Definition sinnvoll, das hei3t nicht von den Repriasentanten der
Klassen 4, B abhingig ist, ergibt sich aus den Untersuchungen von AEBERLI:

Es sei nimlich 4 B = C definiert durch ab=¢ aed,beB, ceC. Ist
nun ' ~ q, so existiert mindestens ein b’, b’ ~b derart, daB qo'-b’ defi-
niert ist, und fiir jedes solche b’ ist ¢ ~ ¢ = a’-b’.

Da die Ideale ein Gruppoid bilden, verifiziert man leicht die Gruppoidaxiome
fir die Idealklassen bei der oben definierten Komposition fiir Klassen. Da die
Idealklassenzahl fiir rationale Algebren endlich ist (DEURING, S. 90), ergibt
sich also der Satz: Die Idealklassen der Algebra W bilden ein endliches Gruppoid.
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I1. Die Anzahl ganzer Ideale einer beliebigen Maximalordnung
von vorgeschriebener Norm

Es sei p eine beliebige, aber feste Maximalordnung der Algebra . Im Fol-
genden soll die Anzahl aller ganzen p-Linksideale von vorgeschriebener Norm
bestimmt werden. Dazu ist es notwendig, sich einen Uberblick iiber die Zer-
legung von Idealen in Primideale und unzerlegbare Ideale zu verschaffen. Wir
beginnen mit einigen Definitionen.

Definition. Das gleichseitige o-Ideal p heit Primideal, wenn es kein durch
p teilbares Produkt von gleichseitigen o-Idealen, a-b, gibt, dessen beide Fak-
toren a, b nicht durch p teilbar sind.

Definition. Ein ganzes Ideal heilt unzerlegbar, wenn es nicht als eigent-
liches Produkt von echten Teilern darstellbar ist.

Definition. Ein ganzes Ideal a hei3t primitiv, wenn es kein ganzrationales
n > 1 gibt, derart, daB —%’— - a ganz ist.
Es gelten dann die Sitze (BRANDT, S. 24):

A. Satz. Es gibt kein ganzes und primitives Ideal mit zur Grundzahl d primer
Norm, das rechts und links zu derselben Ordnung o gehort, aufer o selbst.

B. Satz. Die Norm eines ganzen und primitiven Ideals kann einen Diskrimi-
nantenteiler stets nur einfach, nicht im Quadrat enthalten.

C. Satz. Ein ganzes und primitives Ideal ist genau dann gleichseitig, wenn
seine Norm ein Teiler t von d ist, und fir jeden Teiler ¢ gibt es zu jeder Maximal-
ordnung gerade ein einziges derartiges Ideal.

Wir beweisen dazu noch den folgenden

1. Hilfssatz. Ein gleichseitiges ganzes Ideal a, dessen Norm verschiedene Prim-
faktoren enthdlt, ist nicht prim.

Beweis. Es sei n(a) = ab, (a,b) = 1. Wirsetzen a’' = (a,a),b = (a, b).
Dann gilt a’'b’ = a, a # a’, b’ % a. Da nimlich allgemein n(a) e a gilt, ist
sicher a’b’ < a. Wegen (a,b) = 1 kann man aber jedes x aus q in der Form
x = Azxa + uxb schreiben mit geeigneten ganzrationalen A, u. Also ist auch
acab'.

Auf Grund dieses Hilfssatzes sind die Normen von Primidealen Primzahl-
potenzen. Insbesondere konnen wir also die Primideale einteilen in solche,
deren Normen zur Diskriminante prim sind und in solche, deren Normen
Potenzen von Diskriminantenprimteilern sind.

Aus Satz C ergibt sich, daB es zu jedem Primteiler ¢ von d genau ein Prim-



Darstellungsanzahlen von quaterniren quadratischen Stammformen 207

ideal der Norm ¢ gibt. Diese Primideale sind wegen des Normenmultiplikations-
satzes natiirlich zugleich unzerlegbare Ideale.

Aus Satz A ergibt sich, daf3 die Primideale mit zu d primer Norm durch die
rationalen Primzahlen, die zu d prim sind, erschopft werden, genauer, durch
die von ihnen erzeugten Hauptideale.

Die Teiler der zweiseitigen p-Ideale (p), wo (p,d) = 1 ist, sind dann un-
zerlegbare einseitige p-Ideale der Norm p. Um diese zu finden, betrachten wir
den Ring o/op.

Der Ring o/op ist isomorph zum Ring p der p* zweizeiligen Matrizen, deren
Elemente das Galoisfeld G F(p) durchlaufen. Es gilt nimlich der Satz. Jede
Algebra, welche eine von Null verschiedene Diskriminante besitzt, ist halbeinfach
und die direkte Summe einfacher Algebren. (L. E. Dickson, Algebren und ihre
Zahlentheorie, Ziirich 1927, S. 1105.) Der Ring p/op mufl aber einfach sein,
sonst wire er eine Summe von Galoisfeldern, also kommutativ.

Das allgemeinste p-Linksideal in o/op besteht aus allen denjenigen Matri-
zen, deren Spalten §,, S, einer beliebigen, aber festen Relation

781 + 7.8, = 0(p) 7y, Ty ganzrational (1)

geniigen. Da es p 4 1 derartige Relationen gibt, die unter sich unabhingig
sind, besitzt das zweiseitige o-Ideal (p) p + 1 Linksteiler. Diese p + 1
p-Linksideale der Norm p sind nun alle rechtsiquivalent (vgl. Abschnitt I.7.).
Sei namlich p das durch die Relation (1) definierte Ideal. Wir betrachten dann

die Matrix (Tl 8), wo ry,r, die Koeffizienten aus (1) sind; s,¢ seien so

Te
gewihlt, dafl det (:1 i) > 0 ist. Ist jetzt (Z 2) ein beliebiges Element aus p,
2
so folgt wegen (1): a b\ [, s) (0 as+ be
cd/\rgt]  \0 cs -+ dt

Das beliebige Ideal p kann also durch Multiplikation mit einem geeigneten

Element (:l :) aus p in das spezielle Ideal p, aller Matrizen (g :j') iiber
2

gefithrt werden. Daraus ergibt sich unmittelbar die Behauptung. Wir erhalten
also das in der Folge wichtige Ergebnis:

1. Satz. In einer beliebigen Maximalordnung o der Algebra W gibt es zu jeder
Primzahl p, wo p die Diskriminante nicht teilt, p + 1 ganze o-Linksideale p
der Norm p (Linksteiler des zugehorigen zweiseitigen o-Primideals (p)). Alle
diese p + 1 wunzerlegharen Ideale p sind rechtsiquivalent.

Selbstverstindlich kann man in diesem Satz die Ausdriicke Linksteiler,
rechtsdquivalent durch die Ausdriicke Rechtsteiler, linksédquivalent ersetzen.

§) In der Folge als DICKSON zitiert.
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Es gelten die folgenden beiden Sitze iiber ganze Ideale einer beliebigen
Maximalordnung.

D. Satz. Jedes ganze Ideal .a, tst Produkt von unzerleghbaren Idealen (DEU-
RING, S. 77).

E. Satz. In der Darstellung eines Ideals a, als Produkt unzerlegbarer Ideale
kann die Rethenfolge der Primideale, von denen die unzerlegbaren Faktoren Teiler
sind, beliebig vorgeschrieben werden (DEURING, S. 106).

Es sei jetzt a ein primitives ganzes p-Linksideal mit der Norm =n(a) = p-s
wo p eine Primzahl ist (p und s brauchen nicht teilerfremd zu sein). Nach
dem 1. Satz und den beiden Sitzen D und E gibt es Darstellungen:

a=pq mit n(p)=p, n(q) =s, (p) =pp wo p das zu p konjugierte
Ideal ist. Der groBte gemeinsame Linksteiler von a und (p) ist also ein Teiler
von p. Wegen (p) = pp wo p und p unzerlegbare Ideale sind, ist der groBte
gemeinsame Linksteiler von a und (p) genau p, da a primitiv vorausgesetzt
wurde. Wir erhalten daher den

2. Hilfssatz. Es sei a ein ganzes primitives o-Linksideal mit der Norm n(a)=ps
wobetr p eine Primzahl ist. Der grofte gemeinsame o-Linksteiler von a und dem
zweiseitigen p-Ideal (p) ist ein unzerlegbares p-Linksideal p der Norm p.

Wir beweisen weiter den folgenden

3. Hilfssatz. Ist das ganze Ideal a Produkt von primitiven unzerlegbaren
Idealen :

A=P1Ps---PrGr--- G- n(P) =10, n(q) =¢,... (2)
wobet kein Faktor konjugiert zum vorangehenden ist, dann ist das Ideal a auch
primitiv.

Beweis. Ist die Norm n(a) eine quadratfreie Zahl, so ist der Satz trivialer-
weise richtig, so daf8 wir also » > 2 annehmen kénnen. Wir beweisen den
Satz durch Induktion nach der Anzahl der Faktoren von a. Der Satz sei also
richtig fiir » Faktoren. (Fir » = 1 ist die Behauptung richtig.) Es sei a ein
Ideal der Form (2) mit » + 1 unzerlegbaren Faktoren:

a=pb, b=ps...Pq ... (3)
b ist primitiv nach Induktionsvoraussetzung. Gesetzt es sei jetzt
a=38¢ &>1,s ganzrational, ¢ ganz. (4)
Aus (3) folgt
ha= p'b . (5)

Aus (4) und (5) folgt Pp,c-s = pb, also da p Primzahl und b primitiv ist,
folgt s|p, also s = p. Man hiitte also die Darstellungen
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b=pic, b=py...P0 ..., (P)="01P;.
Nach dem 2. Hilfssatz ergibt sich p, = p,, womit wir einen Widerspruch
zur Voraussetzung erhalten haben. Die Behauptung ist also auch richtig fiir
v + 1 Faktoren.
Es gilt nun der folgende Zerlegungssatz fiir ganze und primitive Ideale:

4. Hilfssatz («Eindeutigkeitssatz»). Ist a ein ganzes und primitives Ideal mit
der Norm n(a) = IIp, (wobei die Primzahlen p; micht notwendigerweise von-
etnander verschieden sind) und ist in der Zerlegung n(a) = p,ps...p, die
Reihenfolge der p, fest, so gibt es gerade exne Darstellung von a tn unzerlegbare
Faktoren @ = p,ps...p, derart, daf} n(p,) = p; g:lt.

Der Beweis ergibt sich direkt aus dem 2. Hilfssatz, indem man von a den
groten gemeinsamen Linksteiler von a und (p,) abspaltet und auf den ver-
bleibenden Faktor Induktionsvoraussetzung anwendet. Fiir das Folgende vgl.
auch M. EicHLER, Zur Zahlentheorie der Quaternionen. J. reine angew. Math.
195 (1956) 127-151.

Auf Grund der vorangehenden Hilfssidtze werden wir jetzt den folgenden
Satz beweisen:

R.8atz. Hs ses n=tpip;:...pyr wo die Primzahlen p, zur Grundzahl d
prim sind, wihrend ¢ nur Primteiler von d enthilt. Ist o eine beliebige Maximal-
ordnung, so ist die Anzahl y(n) der ganzen o-Linksideale der Norm n gleich

p) =@+ + ...+ @ 1)

(«Summe der zu d primen Teiler von n»).
Bewers. Um zunéchst alle primitiven p-Linksideale a mit zu d primer Norm
n=n()=p¢...v'>1 (n,d) =1
zu bestimmen, hat man nach den beiden letzten Hilfssitzen alle Produkte

a=pluocprqloooqacooulo.-ul

zu bilden, wobei die Faktoren unzerlegbar sind, der erste Faktor immer ein
o-Linksideal und keiner der Faktoren zum vorangehenden konjugiert ist.
Bezeichnet @ (n) die gesuchte Anzahl, so gilt

Q)=+ Lp~ g+ g ... (u+ l)u"‘—-———n(l +%)(1 +";‘)‘ . .(1 +;1;)

Suchen wir jetzt die Anzahl aller p-Linksideale mit zu d primer Norm 7, also
auch die nichtprimitiven, so gilt fiir ihre Anzahl y(»)

pn) = ZQ (—g)
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wobei sich die Summation iiber alle Quadratteiler &2 = p* ¢* ... u?"

2r'<<r,28 <s,...2lI' <) von n erstreckt. Wegen @ (m,m,;) = Q(m,)Q (m,)
gilt :

y(n) =2 { Q(}?’“z")-2 Z' Q) ... -21;?3 IQ(u""')
d N , N )
u Q) =p 44+ ... +p+1
also

y(n)=(p"+p+...+p+ 1) (@ +. .. +g+1) ... (wtut+ . L Hut ).

Da es zu jedem Primteiler I der Grundzahl d und zu jeder Maximalordnung
genau ein unzerlegbares Ideal der Norm /, nimlich ein Primideal gibt, so gibt
es zu jedem ¢, das nur Diskriminantenprimteiler enthélt und zu jeder Maxi-
malordnung genau ein ganzes p-Linksideal @ mit n(a) =¢; a ist nach dem
Gesagten sogar immer zweiseitig. Hierbei hat man nicht darauf zu achten, ob
das Ideal a primitiv ist oder nicht, da ja das Rechnen mit Primidealen kom-
mutativ ist. Aus dem 4. Hilfssatz ergibt sich, dal man alle Ideale der Norm
t-n, wo (n,d)=1 und ¢ nur Diskriminantenprimteiler enthilt, bekommt,
indem man alle Idealprodukte ab betrachtet mit n(a) = ¢, n(b) = n.

Damit ist die in unserem Satze aufgestellte Behauptung in voller Allgemein-
heit bewiesen.

IT1. Darstellungszahlen fiir Normenformen

In dem folgenden Abschnitt sollen Sdtze hergeleitet werden, die Auskunft
geben iiber die Anzahl Moglichkeiten, eine beliebige, aber feste ganzrationale
Zahl m durch eine vorgelegte ganze quaternire quadratische Stammform mit
quadratischer Diskriminante darzustellen. Diese quadratischen Formen kon-
nen nach dem Vorangehenden als Normenformen von Idealen in einer geeig-
neten Quaternionenalgebra aufgefafit werden. Wir beginnen daher mit

1. Darstellungszahlen fiir positive Normenformen

Es sei f die (positive) Normenform des Ideals a. Das Ideal a habe die Links-
ordnung p;, die Rechtsordnung p,. A sei die durch das Ideal a bestimmte
Idealklasse, 4 = {pagq | n(pgq) > 0}.

3. Satz. Damit f eine ganzrationale Zahl m darstellt, ist notwendig und hin-
reichend, daf es in der zu A rechtsinversen Idealklasse A-1 ein ganzes o,-Links-
tdeal der Norm m gibt.

Beweis. Es ist n(q) = n(a)f(z,) fir gea. Es sei f(:cz’:i) = m also n(&) =
n(@)m; q= o,& ist dann ein Hauptideal mit den Ordnungen p,, &"10,3 :
Man hat also eine Darstellung q = a-b, b ganz, wo b die Ordnungen o,,
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a—lo,a besitzt. b liegt in der zu A rechtsinversen Idealklasse 4-! und wegen
des Normensatzes folgt:

n(b) =m .

Hat man umgekehrt ein o,-Linksideal b aus 4-! mit der Norm m, so hat man
eine Gleichung q = a,,b, wobei q ein Hauptideal ist, q = (¢). Aus dem
Normensatz folgt n(g) = n(a)m und es ist gea, also n(a)f(g) = n(a)m,
flgg =m q.e.d.

Es gibt offenbar soviele verschiedene Darstellungen von m durch f, als es
in a Quaternionen gibt mit der Norm n(a)m. Betrachten wir fiir einen Mo-
ment nur solche p, gea mit n(p) = n(9) = n(a)m, die sich nicht bloB um
eine Einheit ¢ aus p, als Linksfaktor unterscheiden: p # eq, €epn,;, n(e) = 1.
Der Beweis des vorangehenden Satzes zeigt, dall jedem solchen p eineindeutig
eines der ganzen p,-Linksideale der Norm m aus der Idealklasse A-! zuge-
ordnet ist. Wir erhalten so den

4. Satz. Es sei f positive Normenform des Ideals a mit den Ordnungen p,, o,.
A sei die durch a bestimmie Idealklasse und A~ die zu A rechtsinverse Ideal-
klasse. Die Anzahl Darstellungen von m durch f ist dann gleich dem Produkt aus
der Anzahl der Einheiten in p, mit der Anzahl der ganzen o,-Linksideale der
Norm m aus A1,

Bemerkung. Diese p,-Linksideale in A~ sind alle rechtsdquivalent. Es seien
ndmlich ¢, d zwei beliebige p,-Linksideale aus A-!. Dann ist (¢) = a,,¢,
(p) =a,,0 und (¢) =0,9, (p)=0,p, also (¢) = (p)p~'q schlielich
¢ =Dd-p~lq mit n(pg) >0, da n(p)>0,n(g) >0 inA.

Betrachtet man an Stelle der p,-Linksideale in A-! die entsprechen-
den konjugierten p,-Rechtsideale in A4, so erhélt man auf Grund des letzten
Satzes und der eben gemachten Bemerkung den

b. Satz. Es sei f positive Normenform des Ideals a mit den Ordnungen o,, 0,.
Die Anzahl der Darstellungen der Zahl m durch die Form f ist gleich der Anzahl
der Hinheiten in o,, multipliziert mit der Anzahl der ganzen o,-Rechtsideale
der Norm m tn der durch a bestimmten Linksiquivalenzklasse.

Es sei jetzt ,b, ein beliebiges ganzes p,-Linksideal der Norm m, das nicht
in 41 liegt. Weiter sei m = p,m, woraus man die Gleichung m = ,a, ,b,
fiir ein geeignetes ganzes ,a, erhilt. Weiter ist n(,0,) = m ¢,a,. Zu ,a, ge-
hort eine Normenform ¢, die zu f nicht dquivalent ist:

n(g,) = n(sar)g(xq) = mg(xa) fiir 9z € sQr -

Wegen m ¢ ,a, folgt n(m)=m2=mg(x,), §(%,) =m. gstellt alsom dar. Jetzt
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kann man dieselben Uberlegungen von vorhin anwenden, das heift im 4.Satz
f durch g und o, durch p, ersetzen, also:

6. Satz. Man verteile alle ganzen o,-Linksideale b der Norm m in Klassen
dquivalenter Ideale A7', A;,...,A; . Zu jeder linksinversen Klasse A,,
A,,...A, gehort eine Form f,,fs,...f, und zugehorige Linkshauptform
hy,hg,..., k,. In A" mogen a, Ideale b liegen, e; sei die Anzahl der Eins-
darstellungen von h;,. Dann wird m durch die Gesamtheit der Formen f,, fa,
cees fn auf Ze,a, Arten dargestells.

2. Darstellungszahlen durch indefinite Normenformen

Ist die Normenform f des Ideals a eine indefinite Form, so erhilt man aus
einer Darstellung von m durch f eine unendliche Serie von Darstellungen.
Wihlt man dann aus jeder solchen Serie von Darstellungen eine einzige aus
(das heiBt, da man im vorangehenden Beweis alle zu einem Quaternion ¢
in @ mit der Norm = (a)m linksassoziierten Quaternionen eq zu einem System
zusammenfaft und man an Stelle aller Quaternionen ¢¢ mit der Norm = (a)m
pur diese Systeme von zueinander linksassoziierten Quaternionen &q aus-
zdhlt), dann erhidlt man wegen des 2. Satzes in IT und dem vorangehenden
Beweis ohne Miihe das

Ergebnis. Die Anzahl der wesentlich verschiedenen Darstellungen einer Zahl
m durch die Gesamtheit der indefiniten Formen f,,f;,... f, ist gleich der
Summe aller positiven, zu d primen Teiler von m.

Nun gibt es aber in einer indefiniten Quaternionenalgebra nur eine einzige
Idealklasse (M. ExcHLER, Neuere Ergebnisse der Theorie der einfachen Alge-
bren, Jber. Deutsch. Math. Verein. 47 (1937) 209); man erhilt also das fol-
gende Theorem :

7. Satz. Ist f eine indefinite Normenform, dann ist die Anzahl der wesentlich
verschiedenen Darstellungen von m durch f gleich der Summe aller Teiler von
m, die zu d prim sind.

3. Beispiele

Der 4. Satz iiber Darstellungszahlen positiv definiter Normenformen lift
sich in drei verschiedenen Spezialfillen besonders einfach anwenden:

a) wenn die darzustellende Zahl m nur Diskriminantenprimieiler enthdlt,
b) wenn die darzustellende Zahl m eine Primzahl ist, die zu d prim ist,
¢) wenn die Idealklassenzahl der Algebra U eins ist.
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a) Es sei f Normenform des Ideals a mit der Linksordnung o. Enthilt die
darzustellende Zahl m nur Diskriminantenprimteiler, m = IIt}?, t,|d, so gibt
es nach dem 2. Satz in IT genau ein o-Linksideal mit der Norm m. Stellt also
f die Zahl m dar, dann ist die Anzahl der verschiedenen Darstellungen von m
durch f gleich der Anzahl der Einheiten in o.

b) Ist die darzustellende Zahl hingegen eine Primzahl p mit (p,d) =1,
dann gibt es p + 1 ganze p-Linksideale der Norm p und alle diese Ideale
sind dquivalent nach dem 1.Satz in II. Man erhilt so das Ergebnis: Ist f
eine beliebige Normenform, die die Primzahl p mit (p,d) = 1 darstellt, dann
betrigt die Anzahl der verschiedenen Darstellungen von p durch f das (p + 1)-
fache der Anzahl Einheiten von o.

¢) Ist die Idealklassenzahl der Algebra U gleich 1, so ist die (einzige) Nor-
menform Normenform einer Maximalordnung o, stellt also nach dem 3. Satz
alle ganzrationalen Zahlen m dar. Man hat also das Ergebnis: Die Anzahl der
Darstellungen einer beliebigen festen Zahl m durch die Form f ist gleich dem
Produkt aus der Anzahl der Einheiten von o mit der Summe aller zu d primen
Terler von m .

Um zu diesem letzten Falle Beispiele zu haben, leiten wir drei spezielle
Ergebnisse her, die man bei Dickson dargestellt findet®).

A) Wir betrachten die sogenannte Hurwitzsche Algebra der gewdhnlichen
Quaternionen. Diese Algebra wird erzeugt von den vier Elementen 1, 7, j, ¢}
mit der Multiplikationstafel: 2= —1, 2= —1, 44+ 9J1 =0, 11 =1,
19 =4, 1-¢j = ¢j. Man hat also fiir die Norm eines Quaternions

g =% + @y + 23f + x8f: n(g) = 2] + x5 + x5 + 7.

In der Hurwitzschen Quaternionenalgebra hat man fiir zwei ganze Quater-
nionen einen euklidischen Divisionsalgorithmus (Dicksoxn, S. 163), also ist
jedes Ideal Hauptideal, die Idealklassenzahl also gleich 1. Diese (einzige)
Idealklasse kann reprisentiert werden durch die Maximalordnung (Dickson,
S. 157)7):

0= (1,7,5,3(1 + 2+ 5+ ¢j)) .

Fiir die zugehorige Normenform findet man sofort:
f=al+ a3+ @) + 2 + 2,7, + 237 + 257,

und fiir die Diskriminante von f gilt D = d? = 22.

%) Einige dieser Ergebnisse sind zuerst von HurwiTtz gefunden worden. Wir verweisen des
allgemeinen Zusammenhangs wegen auf die Darstellung von DIcksoN.
7) Vgl. FuBnote 6.

156 CMH vol. 34
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Setzt man f(x,) = 1, so erhidlt man vierundzwanzig Einheiten von p,
nimlich + 1, +4¢, +9, 4+¢7, 3(+ 1 +¢ 47 4 ¢9)7) (Dickson, S. 180).
Wir erhalten also den Satz: Die Anzahl Darstellungen einer beliebigen Zahl m
durch die quadratische Form f= x} + x2 + 25 + a2 + 2,(x; + x5 + x3) be-
tragt 24mal die Summe aller ungeraden Teiler von m. (Vgl. dazu Satz 17, Dick-
SON, S. 180.)

B) Betrachten wir die Algebra A = (1, %, v, #uv) mit der Multiplikations-
tafel :

U= —1, = —3, wv+ovu=0, lu=u, lv=9v, l-uv=wuv,

so erhilt man fiir die Norm eines Quaternions ¢ = z, + x,u + x,v + z,uv
die Form n(q) = a3 + 22 + 32} 4 3x3. In dieser Algebra ist aus demselben
Grunde wie bei der Hurwitzschen Algebra die Idealklassenzahl gleich 1. Eine
Maximalordnung ist gegeben durch o = (1, %, $(u + v), 3(1 + »v)). Fir die
zugehorige Normenform findet man f= 2} + 22 + 23 + 22 + 2,2, + 2,2,
und fiir ihre Diskriminante D, D = d? = 32. In p gibt es zwolf Einheiten,
némlich :I'_' 1, :l: u, :t %(u + ’U), + %(1 + uv)) :t %(’U - u)’ :I: %(uv - 1)
(Dickson, S.170), so daf3 wir das folgende Ergebnis erhalten: Die Anzahl
der Darstellungen einer beliebigen ganzrationalen Zahl m durch die Form
x4+ 22 4 22+ a2+ x,x, + 2,1, betrdgt 12mal die Summe aller zu 3 primen
Teiler von m. (Vgl. dazu Satz 19, Dickson, S. 181).

C) Betrachten wir zum Schlul noch eine indefinite Form. Wir gehen dazu
aus von der Quaternionenalgebra, die aus der vorhergehenden entsteht, wenn
man in der Multiplikationstafel die Zahl 3 durch die Zahl — 3 ersetzt, also

= —1, =3, wv4+vu=0.

Es ist dann also n(x; + z,u + 230 + x,uv) = 22 + 22 — 322 — 322. Genau
wie in den vorangehenden Fillen ist in dieser Algebra jedes Ideal Hauptideal,
also die Idealklassenzahl gleich 1. Eine Maximalordnung dieser Algebra ist
gegeben durch (Dicksox, S. 160)

0=(1,u,v,3(1 +u 4+ v 4 wv)) .
Fiir die zugehorige Normenform erhilt man die Form
f=a}+ x} — 32 — x% + @2, + Xy, — 3252, .
Thre Diskriminante D betrigt D = d? = 62. Also hat man den Satz: Die
Anzahl der wesentlich verschiedenen Darstellungen einer beliebigen ganzrationalen
Zahl m durch die Form 2%+ x2 — 8a) — 2} + 2,2, + 22, — 32,2, st

gleich der Summe aller zu 6 primen Teiler der Zahl m. (Vgl. dazu Satz 21,
Dickson, S. 181).
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IV. Die Automorphismen positiver Normenformen

Aus den drei am Anfang von II genannten BrANDTschen Sitzen ergeben
sich in ziemlich direkter Weise die Automorphismenanzahlen von positiven Nor-
menformen. Es sei o eine beliebige Maximalordnung der Algebra %. Wir be-
trachten die Gruppe $), aller zweiseitigen o-Hauptideale. Diese Gruppe $,
besteht aus endlich vielen ganzen und primitiven Hauptidealen und ihren
rationalen Multipla, denn die Norm jedes ganzen und primitiven zweiseitigen
Ideals ist nach Satz A und Satz B ein Teiler ¢ von d, und zu jedem solchen
Teiler ¢ gibt es genau ein ganzes und primitives zweiseitiges p-Ideal der Norm
t. Die Gruppe $, ist also charakterisiert durch die Menge H, aller Teiler ¢
von d, die Normen von o-Hauptidealen sind. Wir multiplizieren zwei Teiler
t',¢" in H, und lassen dabei die im Produkt eventuell auftretenden quadra-
tischen Faktoren weg. Bei dieser «neuen» Multiplikation wird H, zu einer
endlichen Gruppe, deren Elemente gerade die Normen aller ganzen und primi-
tiven p-Hauptideale sind (BRANDT, S. 24f.). Diese Behauptung ergibt sich aus
Satz B.

Es sei nun f Normenform des Ideals a mit den Ordnungen p,, 0,. Weiter
seien H,, H, die Gruppen (im obigen Sinne) der Teiler ¢ von d, die zu den
Gruppen $,, 9, der zweiseitigen Hauptideale von o, bzw. o, gehoren.

Ein Automorphismus von f wird geliefert durch eine Transformation

a=paql, aqg=pa (1)

wobei die Quaternionen p und ¢ ganz und primitiv angenommen werden kon-
nen. Aus (1) folgt

n(p) = n(q) . (2)
Durch Vergleichen der Ordnungen folgt

o, = po,p~! oder o,p = po, und o, = q~'o,q¢ oder 0,9 = qo,,

so daf3 also p und ¢ in o, bzw. o, gleichseitige Hauptideale erzeugen. Die ganz-
rationale Zahl ¢t = n(p) = n(q) liegt also in H, ~ H,. Umgekehrt gehort
natiirlich zu einem solchen ¢ ein Automorphismus von f.

Ist a=(a,,a;,0a5,02,) und a=pag™, so ist pa,q7*, pa,q, pasq™,
pa,q~! eine Basis von pag~! (AEBERLI, S. 236):

Q= Paq—l = (palq—l’ so ey pa4q—1) * (3)

Durch die Gleichung (3) wird genau dann der identische Automorphismus von
f induziert, wenn p = ¢ = 4+ 1 gilt. Wird némlich durch (3) der identische
Automorphismus erzeugt, so gilt pa,qgt =a,(t = 1,2, 3,4) oder pxqgl=x
fiir alle  in a. In a gibt es sicher eine rationale Zahl s, also ist psg—! = s,
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woraus p = ¢, also pzp™' = z fiir alle z in a folgt. Da a eine Basis der
ganzen Algebra enthilt, liegt p also im Zentrum der Algebra und ist somit
rational. Das Quaternion p wurde aber ganz und primitiv angenommen, somit
kann nur p = 4 1 sein. Erzeugt die Transformation a = p’aq¢’~! denselben
Automorphismus von f wie die Transformation (3), dann gilt p’'a;q'~! = pa,q?!
fir 1=1,2,3,4 oder (p'p)x(¢g~'¢’)*= x fiir alle  in a, woraus
Y =q'¢ =+ 1.

Gilt (1), so gilt auch a = (ep)a(eq)! fiir beliebige Einheiten e,,e, e €p,,
¢ € 0,. Man hat also, wenn man gleichzeitigen Vorzeichenwechsel von e und &
beriicksichtigt, das Ergebnis

8. Satz. Ist f Normenform des Ideals a mit den Ordnungen 0,, 0,, dann gibt
es 3(e;-e.-k) Automorphismen der Form f. Dabei bedeuten e,, e, die Anzahl
Einheiten in 0, bzw. o,; k bedeutet die Anzahl Elemente in H, ~ H, .

Korollar. Ist o eine Maximalordnung, dann gibt es 3 (e-k) Automorphismen
des Ringes o. Dabei bedeutet e die Anzahl der Einheiten von o und k die Anzahl
der Elemente in H,.

Beweis. In (1) sei a eine Maximalordnung, etwa o = pog~!. Bei einem
Ringautomorphismus geht die Eins in sich iiber: 1 = plq~!, also erhalten
wir statt (2) hier die schirfere Bedingung p = q. o hat sich selbst als Links-
und Rechtsordnung, so dafl £ tatsichlich die Anzahl Elemente in H| ist.

Beispiel. Als Anwendung des letzten Satzes betrachten wir nochmals die
Hurwitzsche Algebra U und in U die Maximalordnung

das heilt den groBten Ring ganzer Quaternionen, der die Elemente ¢, j ent-
halt (vgl. Abschnitt II.3). Der Ring p besitzt 24 Einheiten, ¢ = 24. H ent-
hilt die beiden Zahlen 1 und 2, da d = 2 und in U jedes Ideal Hauptideal ist.
Die zugehorige Normenform f = x2 + a2 + a2 + 2} + 2,2, + 2,2, + 7,
besitzt also %(e?k) = 242 Automorphismen. Der Ring p besitzt 3 (ek) = 24
Automorphismen. Dieses letzte Ergebnis ist von HurwiTz direkt hergeleitet
worden (A. Hurwitz, Zahlentheorie der Quaternionen, Berlin 1919). In genau
derselben Weise findet man natiirlich, daB die Form (vgl. Abschnitt II.3):
2} + a3 + a2 + 22 + x, 7, + xa2; 122 Automorphismen besitzt.
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V. Anhang: Die Ergebnisse von FATOU und HUMBERT
tiber binéire hermitesche Formen

Farou und HoMBERT haben Sitze iiber hermitesche Formen bewiesen, die
sich im Falle einer einzigen Formenklasse bequem als Sidtze iiber gewisse
quaternire quadratische Formen mit quadratischer Diskriminante aussprechen
lassen.

Essei F(x,y) = azx + bxy + E—x-y + cyy eine binire hermitesche Form,
das heiBt es ist z =z, + 1x,, y =y, + ty,, b=b,+ib,, x=2, —tx,5, ...;
a,C,%,, Ty, Yy, Y3, b1, by, ganzrational. Die Invariante 4 = bb — ac heiBt die
Determinante der Form F(x,y). Es gilt dann: Die Form F(xz, y) ist definit,
falls 4 < 0. Ist hingegen 4 >0, dann ist die Form F(z,y) indefinit
(Cr. HERMITE, Oeuvres I, Paris, 1905, S. 240).

Zwei hermitesche Formen F(xz,y), G(x',y’) derselben Determinante
heilen dquivalent, falls es eine Substitution

(-6 s ;

gibt mit ganzen komplexen Zahlen a, b, c,d.
Eine hermitesche Form F(x,y) = axx + bxy + bxry + cyy heiBt eigent-
lich primitiv, falls a,b,b, ¢ keinen gemeinsamen Faktor besitzen und a,c

nicht gleichzeitig gerade sind.
Schreibt man

x=x, + tz,, Y=, + tx, (2)

8o erhdlt man aus F(z,y) eine quaternire quadratische Form f(z,):

4
F(z,y) = Zagz,x, = f(x,) Qi = Ay
mit ¥
Ay =Cgg =, Gg3 =0y =C; Gy =03, =0, @y3=105,=b,, 0y, = — g3 =0, .
Man findet durch Ausrechnen

1
16

*f

A2 = (b—g —ac) =|ay|= ox; 0,

. (3)

Selbstverstindlich kann man aus der Form F(x,y) auch alle quaterniren
quadratischen Formen g(z,) gewinnen, die sich von f(z;) nur durch Ver-
tauschung der Indices unterscheiden. Man hat dazu einfach die Indices in (2)
entsprechend zu vertauschen.

Aus (3) ergibt sich, dal die als quaternire Form f(z,) aufgefalite binire
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hermitesche Form F(z,y) eine quadratische Diskriminante besitzt. Schreibt
man die Transformation (1) als reelle Substitution:

4
so findet man 1

| o | = (ad — be) (ad — be) . (5)

Sind also zwei hermitesche Formen F(z,y), G(z',y') dquivalent im Sinne
von (1), dann sind die zugehorigen quaterniren Formen f(x,), g(x;) #qui-
valent mit der unimodularen Substitution (4).

FaTou betrachtete positive, eigentlich primitive bindre hermitesche Formen
F(z,y): F(x,y) = azx + bxy + bxy + cyy, 4<0, (a, 2b,, 2b,,¢c) =1
wo b=0b, + tb,. Sind F,F', F",... die Reprisentanten der verschiedenen
Aquivalenzklassen, so gilt (C. R. Acad. Sci., Paris, 142 (1906) S. 506-506 und
166 (1918), S. 582 (Korrekturen)):

72’1”‘ + 2F"1+ —-2 -2

Die Summen linkerhand erstrecken sich iiber die ganzen komplexen Zahlen-
paare (x,y), fiir die die entsprechende Form eine zu 24 prime Zahl dar-
stellt, wihrend die Summation rechterhand sich iiber alle zu 2 4 primen Zahlen
n erstreckt; k™ bedeutet die Anzahl Automorphismen von F®,

!/
Schreibt man fiir das Produkt rechts Z‘ 2

ns_l §> 2 (6)

oy ---”’ ﬂnm und fafBt

die Glieder mit gleichem Nenner zusammen, so folgt Z' 2 1 == 2 W( )

, WO
y(n) gleich der Summe aller Teiler von n ist. Zahlt man elne Darstellung einer

Zahl m durch F® ———-fach so erhilt man fiir die Anzahl A(m) der Darstel-

JAT
lungen von m durch die Formen F,F', F" ... aus (6)
pAm) _ pv®) oy
m m n N
und daraus
A(m) = p(m) . (7)
Im Falle 4 = — 1 hat man eine Formenklasse, die Automorphismenzahl

ist 8 und als Reprisentant kann die Form zz + yy = 2% + 22 + a2 + 23
gewihlt werden. Eine ungerade Zahl m kann somit auf genau 8y(m) ver-
schiedene Weisen als Summe von vier Quadraten geschrieben werden. Die
Form 22 + 2 + «} + 2} ist, wie man aus dem Beispiel in Abschnitt ITI.3
ersieht, keine Stammform. Sie besitzt die Diskriminante D = 42 und ist
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ganzzahlig in der Form a} + 22 + 22 + 23 + z,(z, + %, + ;) mit der Dis-
kriminante D = 2? enthalten. Diese Stammform 148t sich aber auch nicht
als bindre hermitesche Form schreiben, so daBl sich das formal gleich lautende
Ergebnis von Fatou nicht mit dem unsrigen deckt.

HomBeRrT hat fiir indefinite hermitesche Formen, 4 > 0, eine zur Glei-
chung (6) analoge Gleichung hergeleitet (C. R. Acad. Sci., Paris, 166 (1918)
S. 581-587) : Geht man zu indefiniten Formen iiber, so erhdlt man aus einer
Darstellung von m durch F® eine unendliche Serie von Darstellungen der
Zahl m durch F®., Um die bekannten transzendenten Methoden von Di-
RICHLET anwenden zu kénnen, hat man aus jeder solchen unendlichen Serie
von Darstellungen eine einzige Darstellung auszuzeichnen. Unter den Dar-
stellungen einer (festen) Serie m = F™ (x, y) gibt es genau eine Darstellung
mit den Eigenschaften:

m = F¥ (z,, yo)

(1) Der Punkt 2, = z,/y, liegt innerhalb oder auf dem Rand des zugehori-
gen Fundamentalbereiches R®

(2) Der Realteil von g, ist nicht negativ.
HuMmzsErr 148t die Bedingung (2) fallen, zeichnet also die beiden Darstellun-

gen m = F¥ (x,,y,) = F¥V(— xz,, — y,) aus und erhilt die zu (6) analoge
Gleichung:

SF-s L SF-s L SF"-s 4 ... — 22%2 1

ns-—l

§>2 (8)

Die Summen links erstrecken sich iiber alle ganzen komplexen Zahlen z, y
derart, dal (1) F™ (x,y) positiv und zu 2 4 prim ist, (2) der Punkt z = z/y
innerhalb oder auf dem Rande von R® liegt. Die Summe rechts erstreckt
sich iiber alle zu 24 primen ganzrationalen n.

Liegt der Punkt z = z/y auf dem Rande von R®, so zéhlt die entspre-
chende Darstellung m = F®)(x,y) 3}-fach und entsprechen 1/y-fach, falls
der Punkt z = z/y auf einer von » dquivalenten Ecken von R liegt. Be-
zeichnet A(m) die Summe der mit diesen Gewichten versehenen Darstellungs-
anzahlen von m durch die Formen F, F', F",..., so erhilt man entsprechend
zu (7)

A(m) = 2y(m) (9)

wenn y(m) wieder die Summe aller Teiler von m bedeutet.

Auch dieses Ergebnis deckt sich dem Wortlaut nach mit dem unsrigen bis
auf den Faktor 2. HUMBERT zeichnet aber in jeder unendlichen Serie von Dar-
stellungen deren zwei aus, im Gegensatz zur Auszeichnung einer einzigen Dar-
stellung bei uns.
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Da die Sitze und Vergleiche iiber Darstellungsanzahlen besonders iiber-
gichtlich sind im Falle einer einzigen Aquivalenzklasse, fithren wir noch einige
Sdtze von HUMBERT an, die angeben, wann dieser Fall eintritt:

Satz: Die indefiniten, eigentlich primitiven hermiteschen Formen F(x,y)
gegebener Determinante A bilden in den beiden Fillen 4 = 1(2), 4 = 2(4) je
eine einzige Aquivalenzklasse (C. R. Acad. Sci., Paris, 166 (1918), S. 869-870).

Insbesondere bilden also die entsprechenden quaterndren quadratischen
Formen f(z,) in diesen beiden Féllen je eine einzige Idealklasse. Und weiter,
falls man allgemeiner hermitesche Formen in einem Korper iVd betrachtet,
F(z,y) =az% + bay + bzy + cyy, b="b, + iVdb,, &=z, + iVdaz,,
Z =, —iVdz,,..., gilt der Satz: Ist d>0 und d = 1(4) oder d = 2(4),
so gibt eszu A = 1(2) und A = 2(4) in beiden Fillen genau eine Aquivalenz-
klasse indefiniter, eigentlich primitiver hermaitescher Formen im Kérper iVd
mit der Determinante A, falls d und A keinen ungeraden Teiler gemeinsam haben
(loc. cit.).

Fiir hermitesche Formen in einem quadratischen Korper i¥Vd hat HUMBERT
ebenfalls eine der Gleichung (8) entsprechende Gleichung hergeleitet:

Es seien die Ideale I,,I,,...I, Repridsentanten der » Idealklassen des

quadratischen Korpers i¥d und F,,F,,...Fy Reprisentanten der H Klas-

sen eigentlich primitiver positiver hermitescher Formen. Es sei I das zum

Ideal I konjugierte Ideal und wu,v ganze Zahlen des Ideals I, dann ist
m= (I 1) J1F(u,v) = F (—ZIL— , —;—) eine ganzrationale Zahl und man spricht von

einer dem Ideal I angehorenden Darstellung von m durch F. Es gilt dann
die Gleichung (C. R. Acad. Sci., Paris, 169 (1919), 360-365):
1 (X Y\ 1 1 —4\ 1
s>2 I LF; (7:, r)_hzﬁzwnw[ur(—;)w} (10)

L,e,X,Y ws1
l=1,2,...H, H: Formenklassenzahl; ¢=1,2,...h4, h: Idealklassenzahl.

Die Summation linkerhand erstreckt sich iiber alle /, ¢ und alle Terme (IE , ]I:)
mit der Eigenschaft: X, Y sind beliebige ganze Zahlen des Ideals I, dcera,r%,
daB der Wert F, (%—I— , TI:) zu 24 prim ist. k, ist wieder die Automorphismen-
anzahl von F,;. Recilts icst iiber alle zu 24 primen ganzrationalen n zu sum-
mieren, wihrend sich das Produkt I7, iiber alle ungeraden Primteiler w von
d erstreckt.

Fiir d = 1 erhilt man aus (10) offensichtlich die Gleichung (6) von FaTou

zuriick. Aus (10) lassen sich vollig analog zum Vorangehenden Sitze iiber
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Darstellungszahlen ableiten. Wegen dem Faktor XZn—*Zn—*+! rechts ist die
Darstellungsanzahl jedesmal ein Vielfaches der Summe aller Teiler der dar-
gestellten Zahl.
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