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Eine differentialgeometrische Anwendung
der Extremallingentheorie

von BERNT LaMPE, Basel

1. Einleitung

1.1. Wir betrachten auf einer differentialgeometrischen Fliche F eine Kur-
venschar €, welche gegeniiber allen zur Identitit homotopen topologischen
Selbstabbildungen von F invariant ist. Es sei L(€) das Infimum der Lingen
aller rektifizierbaren Kurven aus € und A4(F) der Flicheninhalt der Fliche

A(F)
[L@)F
tive untere Schranke finden, die nur vom topologischen Typus der Fliche ab-
hingt.

Das gelang P. M. Pu [1] und J. Herson [2] fiir eine Reihe von Kurvenscha-
ren auf Flichen, die eine kontinuierliche Gruppe von konformen Selbstabbil-
dungen besitzen. Ein wichtiges Hilfsmittel ist dabei der Begriff der Extremal-
lingen von L. AHLFORS und A. BEURLING [3], der zwar bei Pu nicht explizit
verwandt wird, mit dem sich aber, wie HERSCH in [2] zeigt, seine Rechnung
vereinfacht.

In der vorliegenden Arbeit wird gezeigt, wie ein derartiges Problem fiir einen
Typ von Flidchen gelost werden kann, die nur eine endliche Gruppe von kon-
formen Selbstabbildungen besitzen. Auch hier handelt es sich im wesentlichen
darum, Extremallingen abzuschitzen.

F. Dann kann man in gewissen Fillen fiir den Quotienten eine posi-

1.2. Es wird der folgende Satz bewiesen:

Satz A. Es set F eine differentialgeometrische Fliche), die homdomorph der
dresfach punktierten Kugel ist; sei € die Menge der geschlossenen Kurven auf F,

1) Unter «differentialgeometrischer Flache» sei eine Fliche mit dreimal stetig differenzierbarer
Struktur verstanden, auf der durch eine positiv definite Differentialform

ds® = E(u, v)du® + 2F (u, v)dudv 4+ G(u, v)dv?

(u, v seien lokale Parameter der Struktur) mit zweifach stetig differenzierbaren Koeffizienten
E, F, Q eine Metrik gegeben ist. Unter der Liinge einer Kurve ¢ ist dann das Integral

far,
unter dem Flécheninhalt eines Teilgebietes X der Fliche das Integral
s df = VEG — F* dudv
verstanden.
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welche je zwer der Enden voneinander trennen, ® die Menge der Kurven auf F,
welche je zwei Enden miteinander verbinden. Dann gilt die Ungleichung

2
A(F) >—L(€)-L(®), 1
(F) = V3 €)-L(6) (1)
wober das Produkt auf der rechten Seite der Ungleichung im Falle L(€) = 0,
L(®) = oo gleich Null zu setzen ist.

1.3. Dieser Satz wird sich als Korollar des folgenden Satzes iiber Extremal-
langen ergeben:

Satz B. Es set G ein beschrinktes Gebiet der komplexen Ebene, welches von
dret micht punktformigen Randkontinuen a,, a,, a; berandet wird. Es set €, die
Menge der Kurven, die a,, von a,2) trennen, ®, die Menge der Kurven, die q,
mit a, v a, verbinden, es seien ferner A,, A die Extremallingen®) der Kur-
venscharen &;, ®,. Dann gelten die Ungleichungen

3 ]
k=1 }»kllf:

=4, (2)

1 1
—_— >4, 3
& A & A S *
Das Gleichheitszeichen gilt dann und nur dann, wenn jede Randkomponente durch
etne konforme Selbstabbildung von G in jede andere ibergefithrt werden kann.

Die Anregung zu dieser Arbeit verdanke ich Herrn Prof. H. HUBER, dem
ich fiir seine mannigfaltigen Hinweise meinen wéirmsten Dank aussprechen
mochte.

2. Zuriickfiihrung auf kreisberandete Gebiete

2.1. Wie sich aus der Formulierung des Satzes A ergibt, kann man sich
beim Beweis auf den Fall
A(F)< oo, L@ >0 (1)
beschrénken.

2) Das Indextripel (I, m,n) bedeute im Folgenden immer eine beliebige gerade Permutation
von (1, 2, 3).

3) Ist M die Menge aller in G stetigen, nicht negativen Funktionen ¢(z), (g, ¢) = éf el dz|
die Liinge der Kurve ¢ und 4 (p, G) = fogz der Flacheninhalt von G beziiglich der Metrik
ds®* = p%(z) | dz |2, dann heit

inf [1(e, ¢)1?

cel
M) = sr 4T, 6)

die Extremallinge der Kurvenschar €. (Siehe [3].)
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2.2. Die Fliche F kann als RiEmaxnsche Flache aufgefat werden. Denn
unter den in !) gemachten Differenzierbarkeitsvoraussetzungen induziert be-
kanntlich ¢) die durch die quadratische Differentialform gegebene Metrik auf
der Fliche eine solche komplexe Struktur, daB die Differentialform in einem
lokalen Parameter dieser Struktur die Gestalt

ds? = g(2)%- | dz |? (2)
annimmt.

2.3. Da die Flache F schlichtartig ist, gibt es nach einem Satz von KoEBE
[6], [7] eine konforme Abbildung y von F auf ein Gebiet G der abgeschlossenen
Ebene, das von drei Kreisen berandet wird.

DaB diese Kreise unter der Voraussetzung (1) nicht zu Punkten entarten
konnen, 1af3t sich wie folgt zeigen: Angenommen das Bild G von F habe einen
isolierten Randpunkt a, dann kann die Abbildung y so gewéhlt werden, daf3
er in den Nullpunkt fillt. Sei R eine solche positive Zahl, dafl die punktierte
Kreisscheibe

K={z|0<]|z|<R} (3)
ganz in G liegt, dann ist
ds =p(2)|dz|; zeK (4)
und e
L@ <fo(re®)rdp; O0<r<R, (5)
0

da jeder Kreis um den Nullpunkt, der in K liegt, zu () gehort. Nach der
Scrwarzschen Ungleichung ist aber

2 2n
(OJ edp)® < 2n§ *dy . (6)
Aus (5) und (6) folgt durch Integration iiber
R R 2n
[L(G)]z-f—%tg2ﬁffg2rd¢dr; 0<e<R. (7)
g 0 0

Das rechts stehende Integral ist gerade der Flidcheninhalt eines Teilgebietes
von G und daher nicht groBer als A4 (F)

[LE)F log * < 2mA(F). ®

Ist L(€)> 0, dann kann die linke Seite der Ungleichung durch Wahl von &
beliebig gro gemacht werden, was im Widerspruch zu (1) steht.

Nach dem erwihnten Satz von KorBE kann die Abbildung y so gewéhlt wer-
den, daB die Mittelpunkte der drei Randkreise alle auf der reellen Achse liegen.

4) Siehe [8] S. 12, sowie [4] und [5].
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2.4. Es geniigt nach dem Vorangegangenen, den Satz A fiir ein Gebiet G
der Ebene zu beweisen, das von drei Kreisen berandet ist, und auf dem eine
beliebige konforme Metrik (2) gegeben ist.

Ist fiir ein solches Gebiet der Satz B bewiesen, so folgt daraus Satz A: Da

C.c@, G, c 6, (9)
ist A<k, M<I, (10)
wenn A, A* die Extremallingen von €, ® sind.

Nach der Definition der Extremallingen ist

46 P 1 |
[L(Q)-L((S)] =Y (11

und wegen (10) ist 1 1 4
21 b§1 Aklk (12)

woraus sich Satz A ergibt.

2.5. Séamtliche Behauptungen sind bewiesen, wenn Satz B fiir den Fall be-
wiesen ist, da3 das Gebiet G in der Halbebene Rez > 0 liegt und von drei
Kreisen berandet ist, deren Mittelpunkte auf der reellen Achse liegen, da jedes
der in Satz B vorkommenden Gebiete einem solchen kreisberandeten Gebiet

G konform #équivalent ist, und da die Extremallingen konforme Invarianten
sind.

3. Die Ditferentiale £,
3.1. Die drei G berandenden Kreiswege aq,, a,, a; seien so orientiert, dafl
a=a, + a, + ag (1)
das Gebiet G positiv berandet (Fig. 1).

sssev @ casw snsrpev oe oo 3]

Fig. 1

¢, sei der Weg, der auf der reellen Achse von a,, nach a, liuft?),
8) Vgl. FuBnote 3).
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Wir konstruieren die sogenannte ScHOTTKYsche Verdoppelung von G: Es
sei G* das zu G beziiglich der imaginiren Achse symmetrische Gebiet. Wir
identifizieren jeden Randpunkt z von G mit dem Randpunkt — z von G*
und definieren in geeigneter Weise ortsuniformisierende Parameter fiir diese
identifizierten Punkte®). So entsteht eine geschlossene RremMannsche Fliche
V vom Geschlecht zwei, auf welcher G und G* Teilgebiete sind.

Die Abbildungen

T: 2> —12, (2)

, (3)

sind offenbar umkehrbar eindeutige antikonforme Abbildungen der Fliche V
auf sich, und es gilt

. 2—>2

t=0"=1. (4)

3.2. Die Abbildungen r und ¢ induzieren im Raum der ABELschen Diffe-
rentiale Q2 auf V antilineare Abbildungen

T: 2 >0,

o: Q—>Q°, (6)
die dadurch eindeutig charakterisiert sind, daB fiir jeden Weg ¢ auf V gilt
fr =19,

[4 1f_. (6)
[ =(Q.
4 .14
Fiir jedes Teilgebiet X c V gilt, wie sich leicht zeigen laft,
N2 1lex = 1127 1lx
ol 7 (7)
12 llox = 112711x ") -
Bezeichnet man mit b, den geschlossenen Weg
bk - ek —_ ‘L’e,, ) (8)
dann sind
{ala——bm: am’bl}; l= 1s2,3 (9)

drei kanonischen Homologiebasen von V. Ferner ist (~ bezeichne Homologie)

a,~—q; — Qp> bnN"‘"b;—bm- (10)

¢) Zur Definition der ScEOTTKYschen Verdoppelung siehe [8] S. 14.
7) Unter || 2 ||x sei die Norm von 2 beziiglich X verstanden, gemi8 der Definition von
PrruGER [8] S. 64.
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Auf V seien die drei ABELschen Differentiale £, durch ihre Perioden auf
a; und q,, wie folgt definiert:

f[2,=0, [Q,=—i. (11)
a am
Sie besitzen die Eigenschaften
1) fQ, =1, (12)
an
2) Q,=—-802,—2,. (13)

Fiir zwei beliebige Differentiale 2, 2’ gilt die erste RIEMANNsche Perioden-
relation®):
— Q-+ Q- [ +fQ2 [Q —[2 - fQ =0; (14)
o  bm bn am By b om
setzt man darin

R=0,6 QL=Q, (15)
ein, so erhilt man
." ‘Ql = j‘ Qm : (16)
Setzt man bm b
dy=—J Q,=—§2,, (17)
bm b
so ergibt sich aus Gleichung (10) die folgende Periodentabelle
a; a, az b, b, b,
2, 0 — 1 v dy +dy, —d, — d,
0, 0 0 — 4 —d;, dy+d; —d, (18)
2, — 1 0 0 — d, —d, d,+4d,.
Die Wege a, sind gegeniiber der Abbildung 7 invariant; daher ist
JhR =2 =§2=—[2; (19)
a; ‘tai a,- a;

und weil ein ABELsches Differential durch seine Perioden auf a, und a, schon
eindeutig definiert ist, folgt daraus

R =—0.; k=1,2,3. (20)

4. Abbildung von G auf ein Ringschlitzgebiet
4.1. Lemma 1. Die Funktion

¥4
2n f Q1

w=@(p) =a;-er ; peG, fest (1)

%) Siehe [9] 8. 175.
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bildet G konform auf einen Kreisring S, ab, der lings eines Kreisbogens, des Bil-
des von a;, aufgeschlitzt ist. Dabei kann a, so gewihlt werden, daf3 der inmere
Randkreis der Einheitskreis ist.

@, ist eindeutig und analytisch auf G, da j 2, modulo 7 auf G eindeutig
und analytisch ist. Po

Ist ¢ ein Wegstiick, das auf q, liegt, dann ist

TC=C. (2)
Fiir einen solchen Weg ¢ gilt infolge Gleichung (3.20)
fO =—[0=—[Q,=—[2; (3)
also verschwindet ¢ ¢ z¢ ¢
fdlog| g, | =27 Re [2,, (4)
4 [4

was gleichbedeutend damit ist, daB | ¢,| auf jedem q, konstant ist, a, also
in einen Kreis um den Nullpunkt abgebildet wird.
Da a G positiv berandet und

fdargp, =2aIm |2, =0,

o o
jdarg<p1=—-27z1mj'[),=-—-2n, (5)
j'dargq),—2nIm_fQ = 2x,

an
werden q,, und a, auf Vollkreise abgebildet, S, liegt im Inneren des Bild-

kreises von a, und im AuBeren von ¢,(a,); @;(a;) bildet einen Schlitz da-
zwischen, so daf3 mit

|l pu(a) [=1
(6)
l (pl( )| =R, ,
und der Normierung
I ¢l(am) | =1 ’ (7)
(durch Wahl von a,) folgende Ungleichung gilt:
1<r,<R,. (8)
4.2. Die Radien r, und R, lassen sich wie folgt berechnen:
logr,——fdlogltpll————2nRef.Q,, (9)
—en
logR,—fdlog|q9,|_2nRejQ, . (10)
e €

Nun ist

j‘Qz:sz—j‘Qz:jQz” (11)
bz ek

ek ek ¢

ey
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und wegen Gleichung (3.20)

(2, =12, +[2,=2Re(Q,. (12)
b ek (27 ¢k
So erhilt man
logr,=mad,; 1=1,2,3, (13)
log R, = =(d,, + d,) . (14)

Aus der Ungleichung (8) und Gleichung (13) ergibt sich die spiter wichtige
Ungleichung

d,>0; k=1,2,3. (15)
5. Berechnung der 4,

6.1. Im Ringschlitzgebiet S, gehtren die Kreise um den Nullpunkt mit
Radien r

1<r<r, n<r<R, (1)
zu der Kurvenschar ¢,(€). Sei p eine beliebige Metrik auf G und

() = o (g ) | 22 | @)
die von G auf §, iibertragene Metrik, dann gilt mit
Le,€,) =inf fo|dz| (3)
die Ungleichung ceC ¢
L, ) < E,‘ez(re"’)fdw : (4)

Quadriert man dies und wendet die ScawARrzsche Ungleichung

2n 2n
[foi(re®®) do]? < 2z [o}(re?)dp ()
0 0
darauf an, so erhilt man
2n
[L(e, €] < 272 fo}(ret®)dy (8)
0

und daraus durch Division durch 7 und Integration iiber alle Werte (1) von r

[L(e,C))])*-log By < 2= gl.f o3 (w) [dw| . (7)

Das rechts stehende Integral ist gleich dem Flicheninhalt

Ao, G) = {_Ie“(Z) dz|; (8)
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wir erhalten daher
[L (Q ’ (Zl) ]8 < 2n (9)

A(Q’ G) - log Rl |

b.2. Wihlt man speziell die Metrik, die in S, die Gestalt

1
Qo(w) = Twl (10)
hat, dann gilt in (9) das Gleichheitszeichen, denn fiir diese Metrik gibt es in
#,(€,) keine kiirzeren Kurven als die Kreise. Da in (9) das Gleichheitszeichen
angenommen wird, ist

2n
Ay = _laé_RT ’ (11)
also mit Gleichung (4.14)
2
Ay = i T d. (12)

6. Die Differentiale @,
Die Fliache V zerfillt in zwei Komponenten H und oH, wenn sie lings
b=b1+bg+b3 (1)

aufgeschnitten wird. H sei die Komponente, die von b positiv berandet wird.
Auf V werden die ABELschen Differentiale @, durch die folgenden Perioden
definiert :

[@,=0, [&=—i; 2)
dann folgt daraus b bm
f&,=1. (3)
bn
Da die b, gegeniiber ¢ invariant sind, ist
bk obg bk be

und weil jedes Differential durch seine Perioden auf b, und b, eindeutig de-
finiert ist, folgt daraus
7 = - ¢l . (5)

Der Raum der ABELschen Differentiale auf V besitzt die Dimension zwei,
daher 148t sich @, darstellen als Linearkombination von £, und 2,. Durch
Vergleich der Perioden auf den b, erhilt man die Koeffizienten:

¢l = _}5 (— dm‘Qm + dﬂ‘Qn) (6)
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it D = d,dy + dyd, + dyd, . (7)

Die Perioden auf den q, lassen sich mit Gleichung (6) leicht berechnen und
sind in einer Tabelle zusammengefaf3t :

a; ap Qs b, b, bs
d,+d,  d d, .
1 D ~D D 0 —¢
d, d, + d, d, . .
D, | — 53 D ) ) 0 —2 (8)
d, d, d, + d, .
% |~ ) . ¢ 0

7. Abbildung von H auf ein Ringschlitzgebiet

Lemma 2. Die Funktion
2n Ip Dy
w=x,(p)="0be ? ; peH, fest (1)
bildet das Gebiet H bei geeigneter Wahl von b, so auf etn Ringschlitzgebiet T,
ab, daf x(a~ H) in der reellen Achse
liegt und der innere Randkreis der
Einheitskreis ist.

Analog Abschnitt 4.1. folgt aus
der Definition der Differentiale und
ihren Eigenschaften, daBl a) y,(b,,)
ein Kreis ist, der durch entspre-
chende Wahl von |b,| zum Ein-
heitskreis gemacht werden kann, und
der den inneren Rand von T, bildet,

b) #,(b,) ein Kreis ist, der den
duBeren Rand von T, bildet,

c) x,(b;) ein kreisbogenférmiger
Schlitz ist, der durch Wahl des arg b,
so symmetrisch zur reellen Achse gemacht werden kann, dafl er die positive
Halbachse schneidet.

Durch diese drei Eigenschaften ist aber die konforme Abbildung y, eindeu-
tig charakterisiert. Ist o die Spiegelung an der reellen w-Achse, dann hat die
Abbildung o y,v die selben Eigenschaften a), b) und c) und ist konform, daher
ist

Fig. 2

TNT =% - (2)
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Die Spiegelung v 148t a invariant, daher muB3 auch ¢ y,(a) invariant lassen,
was bedeutet, dal es auf der reellen Achse liegt.
Durch y, wird also das Gebiet

auf den Teil T} von T, abgebildet, der in der unteren Halbebene liegt.

8. Berechnung der i}

8.1. Da g,(a,~ H) den inneren und den &uBeren Randhalbkreis von T,
verbindet, gehoren die Halbkreise um den Nullpunkt, die in T; liegen, zu
%:(®,); und analog zu Abschnitt 5.1. zeigt man, daf fiir jede beliebige kon-
forme Metrik p auf G

[L(e, ®,)] n
< : 1
A(e. 6) —Tog 5, a

wenn §; der Radius von y,(b,) ist.
Durch die Funktion o¢y,0 wird G, = ¢G, auf das Spiegelbild von T;
konform abgebildet. Daher gilt auch

(Lo, G)P _ =
Ao, G) = TogS; @)

Aus (1) und (2) ergibt sich

L, )} _ =
A, 6) =3log#; " ®)

8.2. Sei g, in T} die Metrik
1

0o (W) = m (4)

und p, die auf G folgendermafen iibertragene Metrik:

dy, (2)
dz

0:(2) = 00 (%:(2)) ; 2eGy,

(5)
0:(2) = @i(z); 2¢G,.

Wegen der Symmetrie der Metrik ist die Linge jeder Kurve ¢ auf G gleich

der Linge ihres Spiegelbildes o7, daher

fa@|de]=1% [ eldz|= | eldz]. (6)

¢+oc (¢+oc) Gy
Mit jeder Kurve ¢e ®, ist auch die Kurve (¢ + o¢)~ G, aus ®;, daher ist

L(g;, ®,;) = L(g,, ®;~G,)=m. (M
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Ferner errechnet man:
A(g;, G) =2nlog S, .
Somit ist
L. G __ =
A(e:, G) 2log 8,

und wegen (3)

T
*
AI....

2log S,
8.3. Wir erhalten 8, aus

2nlog 8, = (fdlog|w|-dargw = }(2n)?|| D, ||},
n

wegen Gleichung (6.5) ist

N lly =11 e llls + I Pillon = 211 Dills -

(8)

(9)

(10)

(11)

(12)

Fiir die Norm || 2 ||, eines Differentials 2 gilt die zweite RiEMANNsche Pe-

riodenrelation®):

121y =—2Imgofo—fofa),

am 7]

mit deren Hilfe man durch Einsetzen von Q = &, erhilt:

d, + d,
1B [} =22t

somit aus Gleichung (10)
D

2(dm + da)

17 ==

9, Beweis des Satzes B

9.1. Aus den Gleichungen (5.12) und (8.15) ergibt sich

3 kﬁldi
S 2 sda T°
k<j
und
v di

1 S Y
RN LI A Ty} = &,
<

(13)

(14)

(15)

(2)

%) Siehe [8] 8. 170.
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Nach der Cavcry-ScEWARZschen Ungleichung ist aber

3 3 3
33di > (Zdy)t=Xdt +2Xd,d,, (3)
k=1 k=1 k=1 k<j
und, weil d, > 0,
3
kEI a
—_——>1, 4
3 did; )
k<j

woraus die behaupteten Ungleichungen folgen.

9.2. Das Gleichheitszeichen gilt in den Ungleichungen dann und nur dann,
wenn

dy =dy=ds, (5)
was nach (5.12) gleichbedeutend ist mit
}.1 =5 2.2 = 2-3 . (6)

Nach A. ScENYDER[10] bestimmen diese Extremalldngen aber das Gebiet G voll-
stindig bis auf konforme Aquivalenz. Gleichung (6) gilt also dann und nur
dann, wenn sich jedes Randkontinum in jedes andere durch eine konforme
Selbstabbildung von G iiberfiihren 148t.
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