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Sur les structures fibrées osculatrices
d’une surface de RIEMANN

par CoSTAKE TELEMAN, Bucarest

En utilisant la théorie des classes des représentations de M. ANDRE WEIL
[11] et la théorie des connexions infinitésimales (intégrables) de M. EHRESMANN,
[2], nous donnons une interprétation géometrique des systémes homographi-
ques sur une surface de RIEMANN R, que nous avons définis dans [9]. Cette
interprétation utilise des structures fibrées généralisant la structure fibrée
tangente de R, ayant pour fibres des espaces projectifs.

1. Soit R une surface de RIEMANN fermée, de genre g > 0, que nous iden-
tifierons & I’ensemble des classes de transitivité 27 d’un groupe homographi-
que I'du cercle |[z]| <1 si g>1 oudu plan fini (2) si ¢ = 1. On sait que
le groupe I" est engendré par 2g générateurs S;, Sy, 8,,8;,...,8,,8, liés
par une seule relation

g9-gyg

8,888,718, 8,851 85 ... 8, 80818 =1

Le cercle |z]| <1 ou le plan () joue le role de surface universelle de re-
couvrement de R et nous le désignerons par R ou encore par (fi, R,I'), pour
mettre en évidence la structure fibrée définie dans R par les classes de tran-
sitivité du groupe I'.

Si r:I'>0G,,=GQL(qg+ 1,C) est une représentation linéaire d’ordre
q + 1 du groupe I', nous désignerons par [r] la représentation projective de
I' qu'on obtient en composant r avec I’homomorphisme canonique y, de
(.4, sur le groupe quotient de G ., et de son centre Z,,,. Le groupe G,
opéere dans ’espace vectoriel complexe V¢+! & ¢ 4 1 dimensions, tandis que
H,=Q,,Z,., peut étre identifié au groupe des homographies de I’espace
projectif complexe P?. Les représentations r,[r] associent & la structure
fibrée (ﬁ, R, TI') une structure fibrée (E,, R, Vet1, G .,) de fibre V2l et
une structure fibrée (E,,, B, P?, H)) de fibre P2. Ces structures fibrées sont
algébriques, d’apres les résultats de SERRE [8] et ATIvAH [1].

Nous dirons avec M. ANDRE WEIL, que deux représentations r, r' sont équi-

valentes s’il existe une matrice M, & éléments holomorphes dans R , ayant le
déterminant | M | = 0 dans R et subissant les transformations

M5 =r8)Mr'(S8-1), Sel. (1)
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En général, si F est une fonction définie dans R , nous désignerons par F*S
la fonction qu’on obtient en composant F avec la fonction

48 — %82+ Ps
y82 + 0s

définissant 1’élément S du groupe I', donc F¥ (z) = F(29).
De méme, nous dirons que deux représentations projectives du groupe I;
0,0 : I' > H,, sont équivalentes, si on peut trouver une matrice M , holomorphe

dans R et ayant | M | £ 0 et subissant des transformations de la forme
psM® = Mg MM, (2)

ou ug sont des fonctions méromorphes dans Ret M g, Mg sont des éléments
de @,,,, appartenant aux classes y;'op(S), x;'°0'(S).
On peut démontrer les propositions suivantes:

Proposition 1. Les structures fibrées algébriques assocides & deux représen-

tations linéaires (projectives) sont équivalentes si et seulement si ces représenta-
tions sont équivalentes.

Proposition 2. Si deux représentations linéaires r,r' somt équivalentes, les
représentations projectives [r], [r'] sont aussi équivalentes.

Proposition 3. Si la représentation projective p’ est équivalente & une repré-
sentation de la forme [r], r étant une représentation linéaire de I', alors on
peut trouver une représentation linéaire r', équivalente & r, telle que p' = [r'].

2. Soit u = (uy, 4, ..., u,) un systéme homographique d’ordre ¢ de la sur-
face B [9, page 206]. Ce systéme définit une représentation projective =, :
I' - H,. Nous allons démontrer le

Théorédme 1. Les représentations projectives définies par deux systémes homo-
graphiques d’ordre q sont équivalentes.
Considérons les transformations subies par les fonctions u;, qui sont de la
forme p,
osul =2 clu;,, 1=0,1,...,9) (3)
j=0 §

et que nous écrirons sous forme vectorielle

qus = Mgu, Myg= (gg) . (4)

D’aprés la théorie de LAGUERRE et FORSYGHT [9, page 209] on peut trouver
deux fonctions analytiques %(z), A(z), telles que I’équation différentielle li-
néaire d’ordre ¢ 4 1, ayant Awu,, Au,,..., Au, pour intégrales et & pour
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parameétre indépendant, ait les coefficients de d?(Au)/dh?, d?-1(Au)/dha

nuls. La fonction A& n’a pas d’autres singularités dans R que des pdles simples
et subit des transformations homographiques

hs-_—m
Csh+ds )

De plus, dh/dz ne s’annule en aucun point de R.
Les fonctions Au; forment un systéme homographique définissant la méme
représentation projective du groupe I' que le systéme . Nous supposons qu’on

a remplacé de I'avance le systéme u par Au. Dans ce cas, on peut prendre
dans (4),

0s = ( CZZS )_ %, (5)

donc gg est défini au signe prés. De la formule (5) on déduit qu’on a g4.(0g)% =
4 0555 (8,8 €I') et on peut choisir les signes des pg tel que le signe — soit
exclu. En appliquant alors 'opérateur 8’ aux deux membres de 1’égalité (4),

on obtient, en tenant compte que le wronskien W des fonctions %; n’est pas
nul, [9, page 206],

M Ss’ -_ M S M S’
donc on a la représentation linéaire de I,
r: 8 — Mg (5"
et &, = [r].
Soit @ une différentielle abélienne de premiére espéce de la surface R,

n’ayant que des zéros simples. On a donc w® = w, (SeI).
Les formules (4), (56) montrent que le vecteur

L

w 2
v=(—cﬁ-) v, (t=0,1,...,9) (6)
qui est définit dans R , au signe pres, subit les transformations
v$ = + Mgw. (7)
Si I’on considére la matrice carrée
Tp.
o~ (). (2-24)

on a
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Notons qu’on a
|| =+1. (10)

Considérons un second systeme homographique #', du méme ordre ¢, et
associons-lui une représentation 7':8 — Mg et une matrice @', par des for-
mules analogues a (4) et (8).

Les matrices @, @' ont en chaque point deux déterminations, qui se permu-
tent quand on entoure un zéro de w, si ¢ est un nombre impair. Par contre, la

matrice
M=00d-1 . (11)

est uniforme dans E et a le module du déterminant égal & 1. Montrons que les
éléments de la matrice M sont holomorphes dans R. En effet, @ et &’ sont

réguliéres en chaque point de R ot o #0. Dansle voisinage d’un zéro de
w, on peut trou ver un uniformisateur ¢ tel qu’on ait w = {d{ et en considé-

rant le vecteur
q
_(de\®

on montre par recurrence qu’on a les formules

j i g _ o 8
d'v _ o £ %+8 d*t ’
w0 ° ace

(12)
o les ¢/ sont des constantes définies par
A =d+ (f -2+ di d=0G<a).

Si ’on introduit la matrice

2 i+

Z=(), G=d7¢" ;

on peut écrire les formules (12) sous la forme

[ d%,
& =TZ, T= (—&—5)
et on a une formule analogue pour @', @' = 7"Z. On a donc dans le voisinage
du point =0, M = T7T'-1; or les éléments des matrices 7', 7" sont holo-
morphes dans le voisinage considéré et on a de plus | 7" | % 0, ce qui prouve

que M est une matrice réguliére dans R.
La formule (11) et la formule (9), ainsi que la formule analogue & (9), con-
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cernant la matrice @', montrent qu’on a des formules de la forme
S /-1 _

qui démontrent le théoréeme 1.

4. Si 'on remplace les fonctions «; d’'un systéme homographique d’ordre ¢,
par q + 1 combinaisons linéaires des u,, linéairement indépendantes, on ob-
tient un nouveau systéme et les systémes qu’on obtient de cette maniére for-
ment une structure homographique de la surface R [9]. Nous avons montré que
les structures homographiques d’ordre ¢ de la surface R forment une multi-
plicité linéaire de dimension complexe (¢2 4+ 29)(g — 1), si g> 1. Il en ré-
sulte que les systemes homographiques d’ordre ¢ de R forment une multipli-
cité & (92 + 2q)(9 — 1) + (¢ + 1)? dimensions complexes, donc les représen-
tations projectives =,, définies par ces systémes forment une multiplicité &
(¢* + 2¢)g dimensions.

Théoréme 2. Toute représentation projective I', équivalente a une représenta-
tion x,, est de la forme =, , w' étant un systéme homographique de R du méme
ordre que u, st le genre g de R est > 1.

Démonstration. D’aprés la Proposition 3, toute représentation projective
p:I'—> H_, équivalente aux représentations x,, est de la forme p = [r'], 7'
étant une représentation linéaire d’ordre ¢ -+ 1, équivalente & la représenta-
tion (5').

Soit 7' : 8 — My = '(S) une représentation équivalente 3 (5') et M une
matrice vérifiant les formules (1), réguliére dans R et ayant | M| #0. La
matrice différentielle réguliére [11]

Q=dM -M (13)

subira les transformations
Q5 = M Q M3? (14)

et la matrice différentielle
0 =D 10 (15)

est uniforme dans R et est invariante pour le groupe I', donc les éléments de
0 sont des fonctions rationnelles sur R. Ces fonctions sont réguliéres en chaque

point de R ot o # 0 et satisfont & la condition que Z0Z™! soit une matrice
réguliére dans le voisinage d’un zéro { =0 de w. Cette derniére condition
s’exprime par les formules

r,j
k —f 48— i vk -k _k
0F + X (Hr-ite-Boickel = -kl (16)
s<j,r<k
r—j<k-—s
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oll ¢ est la matrice inverse de (/) et &, sont des formes différentielles réguliéres
en C==O.
De ces conditions on déduit, en utilisant I’'induction, qu'on a, si ¢g>1,

F=0,k<s—1); 6 '=c,w,(c, = const.).

En écrivant alors la formule (16) pour ¥ = s, on voit que 6} a des pdles
simples aux zéros de w, avec les résidus égaux & X cjcj_jc;; comme la

j=8,8+1
somme de ces résidus doit étre nulle, on doit avoir 2 ¢)cj_,c, = 0. Pour
j=8,8+1
8 = g on obtient ¢, = 0 et en posant ensuite s =¢q — 1,...1 on trouve
quon a ¢, ;= ...=¢ =0, donc §2'=0, (s=1,...,q). Les formules

(16) montrent alors que pour k >s, 6% a des podles, d’ordre 2(k — s) au
plus, aux zéros de w.
La matrice M est définie & une transformation de la forme [11]

M =AM (168")
prés, A étant une matrice réguliére dans ﬁ, satisfaisant aux conditions
|A|#0, A4°%5=MgAM3", (17)
d’ol1 il en résulte que les éléments de la matrice
U=014D (18)

sont des fonctions rationnelles sur R, devenant infinies seulement aux zéros
de w. La condition que ZUZ-! soit réguliére dans le voisinage d’un zéro
de @ donne

r,j
—ddg— i~k -
uf+ y Cz(r j+s "’cﬁc,u;= Cs kﬂf, (19)
8<j,r<k
r—j<k-—s

p¥ étant une fonction holomorphe dans le voisinage du point ¢ = 0. Un rai-
sonnement analogue & celui indiqué plus haut montre qu'on a u*¥ = 0 pour
k<s, ug=u}= ... =ul=c, (c=const.) et que pour k>s, (uf)?
s’annule aux zéros de w, avec 'ordre 2(k — s) — 1 au plus, si g> 1. De
plus, il faut remarquer que les formules (19) permettent de calculer, en chaque
zéro de w, pour u¥, les coefficients de ¢'—2(*- (2-2k-o = p-(Fk-0)
en fonctions des coefficients analogues des u; (s <jJ <r <k, r—j<k —s).
Les équations qui expriment que la fonction uf, donnée par la formule (19),
est rationnelle, donc que la somme des résidus §u? w, est nulle, quelque soit
la différentielle de premiére espéce w,, n’imposent aucune relation entre les
coefficients des fonctions ¥, elles permettent seulement de calculer certains
des coefficients de (-, {~2 des fonctions £*~*g¥. Il en résulte la
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Proposition 4. Si on a des fonctions rationnelles u* pour tous les indices
k,s vérifiant k —s<ux, ou k —s=«, 8<pB, vérifiant les conditions (19)
pour ces indices, on peut completer ces fonctions & une matrice U vérifiant toutes
les conditions (19).

Si ’on désigne par ' = ®60'P-! la matrice différentielle dM'-M'-1 as-
sociée & la matrice (16’), on a

U =(HU —UH)w+dU + U0, (20)
ou Hw est la matrice ®-1d® et a la forme
01 0...0 O
O 01...0 O
Ho=} : : : ) e
0O 0 0...0 1
Ko &y Kg oo &g 10
L’équation (20) donne les relations
weo=— X 0fuitdui+ 2 Olui+ul_ o, (s<gq). (21)

i=j,i+1,...,8 i=i, i1, ...,

Supposons qu'on a 0; =0 pour 8 —it<a(x<q), 8<gq. Pour qu'on ait
aussi 0" = 0(s — 1 <«,8<gq), ilfaut qu'on ait u} = 0 pour 0 <s — j < «.
Dans ce cas, la formule (21) pour j = 0, 8 = « donne

ugtlw = — 0% ul + 05ul;
done si 'on prend ug=u;= ... =ul =1 et
6“
0
ug = — (22)
w

on aura 6,* = 0. D’aprés la Proposition 4, on peut compléter les fonctions

u; =0 (0<s—j<«,8<q) et (22) & une matrice U et on obtient de (21)

une matrice 6’ ayant 6* =0 pour s —1<a,8<<q et s=0«, i =0,
Supposons que pour la matrice 6 on & 0; =0 pour s —1<«x, 8<q et

pour 8 —t=«, 1t=0,1,...,8— 1. On aura les mémes conditions pour
la matrice 6’ si uj=0 pour 0<s—j<<a et pour s—j=a+1,
j=20,1,...,8— 1. L’équation (21) donne alors pour j =, s =« 4 f§,
o: . 8 — q:

Uo . uq 1: ug-{-p-{-lw e 6’3a+ﬂ + 6;+B

etona 07+ =0 si ugtPt! est choisi égal & 651F/w. Il en résulte qu’on peut
toujours supposer que la matrice 6 vérifie les conditions

6;=0, 6=0,1,...,9—1; j=0,1,...,9). (23)

13 CMH vol. 34
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Supposons que la matrice (15) satisfait aux relations (23). L’équation (13)
définit alors la matrice M [11]. Considérons la matrice ¥ = M-1@® qui subit

les substitutions P — L ML, (24)

On obtient d’autre part, par un calcul simple

¥ =¥ (Ho — 0),

donce ;
d¥; = PiMo, (i<q); dPi=Z(x, — 6)¥;.
i=0
De ces formules on déduit quona d | ¥ | = — 6| |, donc |¥| = e1%. 11
en résulte que les fonctions W3, ¥?,..., V7 forment un systéme homogra-

phique «’ de la surface R et la formule (24) montre que la représentation pro-
jective 7,, coincide avec la représentation [r']. Le théoréeme 2 est ainsi démon-
tré; pour g = 1, la propriété n’est plus vérifiée. Dans le cas g = 1, la re-
présentation triviale de I" dans H , est équivalente aux représentations =, et
ne correspond & aucun systeme homographique » de la surface R.

5. Les fonctions 1,z,...,22 forment un systéme homographique d’ordre
q de R. La représentation projective x, définie par ce systéme est la restriction
a I' de la représentation irréductible du groupe homographique H, dans H .

6. Les résultats obtenus précédemment montrent que les structures fibrées
(£,,, B, P?, H,) associées aux représentations projectives z, du groupe I,
définies par les systémes homographiques u de la surface R, sont isomorphes
a une méme structure (analytique), que nous désignérons par (&,, R, P4, H,).

Les représentations s, définissent des connexions intégrables dans la struc-
ture (£, R, P2, H,), [2, page 37]. Réciproquement, comme toute connexion
intégrable de cette structure est définie par une représentation du groupe I’
dans H,, équivalente aux représentations =,, il en résulte, d’aprés le théo-
réme 2, que toute connexion intégrable de la structure (E,, R, P4, H ) est
définie par un systéme homographique u de R si le genre de R est > 1.

La structure fibrée (K, , R, P4, H,) étant définie comme 1’ensemble des
classes de transitivité du groupe @ des transformations (z, y) — (2%, Myy) de

R x P2 en lui-méme, avec la projection p,: (z, ¥)¢ =27, on voit que cette
structure admet la section 2 — (2, ¥)%, (2, 9)% = U {(z°, Myy)}.
Ser

La connexion donnée par la représentation z, est définie dans (£, ,R,P?,H )
par ’équation dy = 0 et le systéme u définit le développement de la surface
R dans la fibre P?, par les formules

y;=u;(z), (¢=0,1,...,q),

y, étant des coordonnées homogénes dans P9,
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Par analogie avec la structure fibrée tangente a une variété, nous dirons que
(E,, R, P2, H)) est la structure fibrée, projective, osculatrice d’ordre ¢, de
la surface R. On peut alors résumer les résultats obtenus dans cette Note:

Les connexions intégrables de la structure fibrée projective, osculatrice d’ordre
q, de la surface fermée R, de genre g > 1, sont associées aux représentations
projectives définies par les systémes homographiques w, d’ordre q, de R. Les
systémes u définissent les développements de R dans la fibre P2, suivant ces con-
nexions.

On a ainsi U'interprétation géométrique des systéemes .

7. Dans la structure fibrée (£, , R, P?, H,), associons a chaque point
& =2 de R lespace projectif P{ engendré dans la fibre p;'(&) par les
points 3° = u, y* = dufdz,..., y¥ =d¥u/dz’, (¢’ <q). La somme topo-
logique des espaces P{ forme, avec la projection p': P{ — £ une structure
fibrée isomorphe & (E,, R, P”,H,). On a donc, pour chaque ¢'<g, un
isomorphisme analytique i,, de (E,,R,P”,H,) avec un sous-espace de
(E,, R, P2 H,, permutable avec les projections canoniques K, — R,
E,—-R.

8. Notons ce théoréme:

L’espace fibré sur R formé par les hyperquadriques non dégénérées des fibres
de (E,, R,P? H) admet une infinité de sections. Les éléments de ces sections
sont des quadriques contenant les images par t,, des fibres de (E,, R, P*, H,)
pour 2q" < q ou les transformées par polarité de ces tmages.

9. On peut montrer qu’aucune des représentations m, me peut étre unitaire,
donc en particulier, m, m’est jamais finie. En effet, si la représentation (5')
serait unitaire, la surface posséderait la métrique riemannienne partout régu-
liére

ds = (|t |2+ | ug |24 ... + |ug ) 7 | dh],

ayant la courbure de GAuUss

2 — du; du, du,
K=l o+ g 90| @y (2 G 2ot) — | 2, 2o

2
|>o0

ce qui est impossible, d’apres la formule de GAUSS-BONNET.
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