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Sur les structures fibrées osculatriees
d'une surface de Riemann

par Costake Teleman, Bucarest

En utilisant la théorie des classes des représentations de M. André Weil
[11] et la théorie des connexions infinitésimales (intégrables) de M. Ehresmann,
[2], nous donnons une interprétation géométrique des systèmes homographi-
ques sur une surface de Biemann R, que nous avons définis dans [9]. Cette

interprétation utilise des structures fibrées généralisant la structure fibrée
tangente de R, ayant pour fibres des espaces projectifs.

1. Soit R une surface de Biemann fermée, de genre g > 0, que nous
identifierons à l'ensemble des classes de transitivité zr d'un groupe homographi-
que F du cercle | z | < 1 si g > 1 ou du plan fini (z) si g 1. On sait que
le groupe F est engendré par 2g générateurs $1? 8[, S2, 8'2,..., Sgi 8'g liés

par une seule relation

S&S^S'^SXS^S'f1... S.SfàW-1 1

Le cercle | z \ < 1 ou le plan (z) joue le rôle de surface universelle de

recouvrement de R et nous le désignerons par R ou encore par (R, R, F), pour
mettre en évidence la structure fibrée définie dans R par les classes de
transitivité du groupe F.

Si r : F -> Gq+1 GL(q + 1, C) est une représentation linéaire d'ordre
q + 1 du groupe F, nous désignerons par [r] la représentation projective de

F qu'on obtient en composant r avec l'homomorphisme canonique %a de

Gq+i sur le groupe quotient de GQ+1 et de son centre Zq+1. Le groupe GQ+1

opère dans l'espace vectoriel complexe Vq+1 à q + 1 dimensions, tandis que
Hq GQ+1/ZQ+1 peut être identifié au groupe des homographies de l'espace
projectif complexe Pq. Les représentations r, [r] associent à la structure
fibrée {R,R,F) une structure fibrée (Er, R, F«+\ GQ+1) défibre F«+1 et
une structure fibrée (E[r], R, Pq, Hq) de fibre P«. Ces structures fibrées sont
algébriques, d'après les résultats de Serre [8] et Atiyah [1].

Nous dirons avec M. André Weil, que deux représentations r, rr sont

équivalentes s9il existe une matrice M, à éléments holomorphes dans R, ayant le

déterminant \ M \ ^ 0 dans R et subissant les transformations

Ms r (S) Mr'iS-1) SeF. (1)
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En général, si F est une fonction définie dans R, nous désignerons par F8
la fonction qu'on obtient en composant F avec la fonction

définissant l'élément 8 du groupe F, donc Fs (z) F(zs).
De même, nous dirons que deux représentations projectives du groupe F;

q, q1 : F -> Hq, sont équivalentes, si on peut trouver une matrice M, holomorphe
dans R et ayant \ M | ^ 0 et subissant des transformations de la forme

li8Ms MBMM'fx, (2)

où fi8 sont des fonctions méromorphes dans R et Ms, Mrs sont des éléments
de Gq+1, appartenant aux classes %~x o g (S) %~x o gr (S).

On peut démontrer les propositions suivantes :

Proposition 1. Les structures fibrées algébriques associées à deux représentations

linéaires (projectives) sont équivalentes si et seulement si ces représentations

sont équivalentes.

Proposition 2, Si deux représentations linéaires r, r' sont équivalentes, les

représentations projectives [r], [r'] sont aussi équivalentes.

Proposition 3. Si la représentation projective p1 est équivalente à une
représentation de la forme [r], r étant une représentation linéaire de F, alors on
peut trouver une représentation linéaire r', équivalente à r, telle que pr [r'].

2. Soit u (u0, % uq) un système homographique d'ordre q de la
surface R [9, page 206]. Ce système définit une représentation projective nu :

F -> Hq. Nous allons démontrer le

Théorème 1. Les représentations projectives définies par deux systèmes homo-

graphiques d'ordre q sont équivalentes.
Considérons les transformations subies par les fonctions ui9 qui sont de la

forme qfi (» 0, l,...,g) (3)

et que nous écrirons sous forme vectorielle

8=*M8u9 Ms~(4). (4)

D'après la théorie de Lagttebrb et Pobsyght [9, page 209] on peut trouver
deux fonctions analytiques h (z), A(z), telles que l'équation différentielle
linéaire d'ordre q + 1, ayant Xu0, Xul9..., Xuq pour intégrales et h pour
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paramètre indépendant, ait les coefficients de dQ(Xu)/dhq, dq~1(Xu)jdhq'-1

nuls. La fonction h n'a pas d'autres singularités dans R que des pôles simples
et subit des transformations homographiques

+ bs
^+ ds

De plus, dhjdz ne s'annule en aucun point de R.
Les fonctions Xut forment un système homographique définissant la même

représentation projective du groupe F que le système u. Nous supposons qu'on
a remplacé de l'avance le système u par Xu. Dans ce cas, on peut prendre
dans (4),

donc qs est défini au signe près. De la formule (5) on déduit qu'on a qS'(Qs)S>'~

± qss, (S, 8r € F) et on peut choisir les signes des qs tel que le signe - soit
exclu. En appliquant alors l'opérateur Sr aux deux membres de l'égalité (4),
on obtient, en tenant compte que le wronskien W des fonctions uf n'est pas
nul, [9, page 206],

Mss, Ms Ms,

donc on a la représentation linéaire de F,

r:S ->MS (5;)
et nu [r].

Soit eo une différentielle abélienne de première espèce de la surface jB,
n'ayant que des zéros simples. On a donc cos œ, (8 c F).

Les formules (4), (5) montrent que le vecteur

qui est définit dans R, au signe près, subit les transformations

vs=±Msv. (7)

Si l'on considère la matrice carrée

\ af )' \w~ m dz)
on a

±MS0. (9)
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Notons q u'on a
I * I ± 1 • (10)

Considérons un second système homographique u', du même ordre q, et
associons-lui une représentation rf : 8 -> Mfs et une matrice 0', par des
formules analogues à (4) et (8).

Les matrices 0, 0! ont en chaque point deux déterminations, qui se permutent

quand on entoure un zéro de co, si q est un nombre impair. Par contre, la
matrice

1 (11)

est uniforme dans R et a le module du déterminant égal à 1. Montrons que les

éléments de la matrice M sont holomorphes dans J?. En effet, 0 et 0f sont

régulières en chaque point de R où œ ^ 0. Dans le voisinage d'un zéro de

co, on peut trouver un uniformisateur £ tel qu'on ait co ÇdÇ et en considérant

le vecteur

on montre par récurrence qu'on a les formules

où les cl sont des constantes définies par

Si l'on introduit la matrice

on peut écrire les formules (12) sous la forme

et on a une formule analogue pour 0!, 01 T'Z. On a donc dans le voisinage
du point f 0, M TT'*1; or les éléments des matrices î7, ï7' sont
holomorphes dans le voisinage considéré et on a de plus | T' \ =fi 0, ce qui prouve

que M est une matrice régulière dans R.
La formule (11) et la formule (9), ainsi que la formule analogue à (9), con-
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cernant la matrice 0f, montrent qu'on a des formules de la forme

esMs Ms M M's~l (ea ±l)
qui démontrent le théorème 1.

4. Si l'on remplace les fonctions u{ d'un système homographique d'ordre q,
par q -\- 1 combinaisons linéaires des u{, linéairement indépendantes, on
obtient un nouveau système et les systèmes qu'on obtient de cette manière
forment une structure homographique de la surface R [9]. Nous avons montré que
les structures homographiques d'ordre q de la surface R forment une
multiplicité linéaire de dimension complexe (q2 + 2q) (g — 1), si g > 1. Il en
résulte que les systèmes homographiques d'ordre q de R forment une multiplicité

à (q2 -)- 2q)(g — 1) + (q + l)2 dimensions complexes, donc les représentations

projectives nu, définies par ces systèmes forment une multiplicité à
(q2 -\- 2q)g dimensions.

Théorème 2. Toute représentation projective F, équivalente à une représentation

nu, est de la forme nu,, vl étant un système homographique de R du même
ordre que u, si le genre g de R est > 1.

Démonstration. D'après la Proposition 3, toute représentation projective
p: F -> Hq, équivalente aux représentations nu, est de la forme p [/], rf
étant une représentation linéaire d'ordre q + 1, équivalente à la représentation

(5').
Soit r' : S -> Mrs r'(S) une représentation équivalente à (5') et M une

matrice vérifiant les formules (1), régulière dans R et ayant \ M \ =£0. La
matrice différentielle régulière [11]

M-1 (13)
subira les transformations

QS MSQM^ (14)
et la matrice différentielle

6 &-1Q& (15)

est uniforme dans R et est invariante pour le groupe F, donc les éléments de
6 sont des fonctions rationnelles sur R. Ces fonctions sont régulières en chaque

point de R où co ^ 0 et satisfont à la condition que ZOZ~X soit une matrice
régulière dans le voisinage d'un zéro Ç 0 de w. Cette dernière condition
s'exprime par les formules

fl* + Z ^r-H8'h)c?9ZkrB) ?~kock8 (16)

r-j<Jc-8
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où c est la matrice inverse de (c{) et a8 sont des formes différentielles régulières
en C 0.

De ces conditions on déduit, en utilisant l'induction, qu'on a, si g > 1,

0* o, (k < s — 1) ; 68,-1 c8o), (c8 const.)

En écrivant alors la formule (16) pour k 8, on voit que 0J a des pôles
simples aux zéros de co, avec les résidus égaux à Z clc'^Cji comme la

somme de ces résidus doit être nulle, on doit avoir 2 cîc*-icj 0* Pour

5 g on obtient cfl 0 et en posant ensuite 8 q — 1,... 1 on trouve
qu'on a ca-1 ct 0, donc 0J"1 0, (5 1,..., q). Les formules
(16) montrent alors que pour k > s, 0* a des pôles, d'ordre 2(k — s) au
plus, aux zéros de co.

La matrice M est définie à une transformation de la forme [11]

M' AM (16')

près, A étant une matrice régulière dans B, satisfaisant aux conditions

\A\*0, As MsAMs\ (17)

d'où il en résulte que les éléments de la matrice

U 0~1A0 (18)

sont des fonctions rationnelles sur jB, devenant infinies seulement aux zéros
de g). La condition que ZUZ*1 soit régulière dans le voisinage d'un zéro
de ça donne r ,-

u*+ i {•"-'+-*>cjc*«ï r-*#, (19)

$ étant une fonction holomorphe dans le voisinage du point f 0. Un
raisonnement analogue à celui indiqué plus haut montre qu'on a uh8 0 pour
k<8, ul u\= tij c, (c const.) et que pour k>8, (u*)-1
s'annule aux zéros de a>, avec l'ordre 2 (k — s) — 1 au plus, si g > 1. De
plus, il faut remarquer que les formules (19) permettent de calculer, en chaque
zéro de m, pour <u*, les coefficients de £!-«<*-•>, fi-K*-*), ..#> £!-<*-#>,
en fonctions des coefficients analogues des Uj (s ^ j ^ r ^ &, r — / < k — s).
Les équations qui expriment que la fonction u8 donnée par la formule (19),
est rationnelle, donc que la somme des résidus §uh80)a est nulle, quelque soit
la différentielle de première espèce coa, n'imposent aucune relation entre les
coefficients des fonctions u*, elles permettent seulement de calculer certains
des coefficients de C""1? C2 des fonctions C*~**/?*. Il en résulte la
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Proposition 4. Si on a des fonctions rationnelles uhg pour tous Us indices
k, s vérifiant k — s <<x, ou k — s a, s < /$, vérifiant les conditions (19)

pour ces indices, on peut compléter ces fonctions à une matrice U vérifiant toutes
les conditions (19).

Si Ton désigne par Q1 06r&-1 la matrice différentielle dM'M'*1
associée à la matrice (16'), on a

6fU (HU - UH)co + dU + Ud (20)

où H(o est la matrice 0~xd0 et a la forme

a>

L'équation (20) donne les relations

u'^a) - E tf}u\ + du) + Z 8lu) + u)_ta) (s<q). (21)

Supposons qu'on a Q\ 0 pour s — i < <x(oc < q), s <q. Pour qu'on ait
aussi O'j* 0 (s — i < oc, s < q), il faut qu'on ait u' 0 pour 0 < s — j ^ a,.
Dans ce cas, la formule (21) pour j 0, s oc donne

0

0

0

£X0

1

0

0

«1

0

1

0

0

0

ô

0

0

1

0

donc si l'on prend u% uj wj 1 et

<+1 -f- (22)

on aura 0£* 0. D'après la Proposition 4, on peut compléter les fonctions
u) 0 (0 < s — ; ^ a, s < q) et (22) à une matrice U et on obtient de (21)
une matrice 0' ayant 0$* 0 pour s — i <oc, s <q et 5 oc, i 0.

Supposons que pour la matrice 0 on a 0J 0 pour 5 — i < «, s <q et

pour s~-i <%, i 0,l,...,/?— 1. On aura les mêmes conditions pour
la matrice 6' si u) 0 pour 0 < s — j ^ oc et pour s — j a + 1,
7 0,1,...,/?— 1. L'équation (21) donne alors pour /?, £ & + /?,

WJ u\ 1, w«+^lw ^ _ g/«+0 + Q«+^

et on a 0^+0 0 si w£"^+1 est choisi égal à d^/co. Il en résulte qu'on peut
toujours supposer que la matrice 0 vérifie les conditions

0J O, (» O,lf...,gf-l; ?' 0,l,..., q). (23)

13 CMH vol. 34



182 Costake Telbman

Supposons que la matrice (15) satisfait aux relations (23). L'équation (13)
définit alors la matrice M [11]. Considérons la matrice W M~10 qui subit
les substitutions

Ws ± M'Y. (24)

On obtient d'autre part, par un calcul simple

£F W(Hco - 0)

donc q

dW) W}+Ia>, (i < q) ; dW) Z(oc, - d\) V)

De ces formules on déduit qu'on a, d\W\ — 6qq\W\, donc | W \ e~S6h II
en résulte que les fonctions ÎPJ, W^,..., W^ forment un système homogra-
phique uT de la surface B et la formule (24) montre que la représentation pro-
jective tiu, coïncide avec la représentation [>']. Le théorème 2 est ainsi démontré

; pour g 1, la propriété n'est plus vérifiée. Dans le cas g 1, la
représentation triviale de F dans Hq est équivalente aux représentations nu et
ne correspond à aucun système homographique u de la surface M.

5. Les fonctions 1, z,..., zQ forment un système homographique d'ordre
q de B. La représentation projective n0 définie par ce système est la restriction
à F de la représentation irréductible du groupe homographique Hx dans Hq.

6. Les résultats obtenus précédemment montrent que les structures fibrées

(Enu, B, Pq, Hq) associées aux représentations projectives nu du groupe F,
définies par les systèmes homographiques u de la surface jB, sont isomorphes
à une même structure (analytique), que nous désignerons par (EQ, B, PQ, Hq).

Les représentations nu définissent des connexions intégrables dans la structure

(EQ, B, PQ, Hq), [2, page 37]. Réciproquement, comme toute connexion
intégrable de cette structure est définie par une représentation du groupe F
dans Hq, équivalente aux représentations 7tui il en résulte, d'après le théorème

2, que toute connexion intégrable de la structure (Eq, B, Pq, Hq) est
définie par un système homographique u de B si le genre de B est > 1.

La structure fibrée (Enu, B, Pq, Hq) étant définie comme l'ensemble des
classes de transitivité du groupe 0 des transformations (z, y) -> (z8, Msy) de

B x Pq en lui-même, avec la projection pu : (z, y)0 ->zr, on voit que cette
structure admet la section zr -> (z, y)G, (z, y)° U {(z8, Msy)}.

ser
La connexion donnée par la représentation nu est définie dans (Enu,B,Pq,Hq)

par l'équation dy 0 et le système u définit le développement de la surface
B dans la fibre Pq, par les formules

yi étant des coordonnées homogènes dans Pq.
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Par analogie avec la structure fibrée tangente à une variété, nous dirons que
(Eq, R,Pq, Hq) est la structure fibrée, projective, osculatrice d'ordre q, de
la surface R. On peut alors résumer les résultats obtenus dans cette Note:

Les connexions intégrables de la structure fibrée projective, osculatrice d'ordre

q, de la surface fermée R, de genre g > 1, sont associées aux représentations
projectives définies par les systèmes homographiques u, d'ordre q, de R. Les

systèmes u définissent les développements de R dans la fibre Pq, suivant ces

connexions.

On a ainsi l'interprétation géométrique des systèmes u.
7. Dans la structure fibrée (Enu, R, Pq, Hq), associons à chaque point

£ zr de R l'espace projectif Pf engendré dans la fibre p^iS) Par les

points y0 u, y1 du/dz,..., yq' dq'u\dzq', (qr <q). La somme
topologique des espaces Pf forme, avec la projection p' : P|' -> £ une structure
fibrée isomorphe à (Eq,, R, Pq', Hqt). On a donc, pour chaque q1 <q, un
isomorphisme analytique iq,q de (Eq, ,R,Pq', Hq,) avec un sous-espace de

(Eq, R, Pq, Hq), permutable avec les projections canoniques Eq,->R,

8. Notons ce théorème :

L'espace fibre sur R formé par les hyperquadriques non dégénérées des fibres
de (Eq, R, Pq, Hq) admet une infinité de sections. Les éléments de ces sections

sont des quadriques contenant les images par iq,q des fibres de {Eq,, R, Pq', Hq,)
pour 2q' < g ou les transformées par polarité de ces images.

9. On peut montrer qu'aucune des représentations tzu ne peut être unitaire,
donc en particulier, nu n'est jamais finie. En effet, si la représentation (5')
serait unitaire, la surface posséderait la métrique riemannienne partout régulière

l
ds (\un I2 + \u, I2 + + \un I2)~7 \dh L

ayant la courbure de Gattss

z (KI2+ + K|2
dû{ |2i

dh \\
ce qui est impossible, d'après la formule de Gaxjss-Bonnet.
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